brw_draw_upload.c revision b922999a404322a1034c4f96c21acae860483bb0
1/**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#undef NDEBUG
29
30#include "main/glheader.h"
31#include "main/bufferobj.h"
32#include "main/context.h"
33#include "main/enums.h"
34#include "main/macros.h"
35
36#include "brw_draw.h"
37#include "brw_defines.h"
38#include "brw_context.h"
39#include "brw_state.h"
40
41#include "intel_batchbuffer.h"
42#include "intel_buffer_objects.h"
43
44static GLuint double_types[5] = {
45   0,
46   BRW_SURFACEFORMAT_R64_FLOAT,
47   BRW_SURFACEFORMAT_R64G64_FLOAT,
48   BRW_SURFACEFORMAT_R64G64B64_FLOAT,
49   BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
50};
51
52static GLuint float_types[5] = {
53   0,
54   BRW_SURFACEFORMAT_R32_FLOAT,
55   BRW_SURFACEFORMAT_R32G32_FLOAT,
56   BRW_SURFACEFORMAT_R32G32B32_FLOAT,
57   BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
58};
59
60static GLuint half_float_types[5] = {
61   0,
62   BRW_SURFACEFORMAT_R16_FLOAT,
63   BRW_SURFACEFORMAT_R16G16_FLOAT,
64   BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
65   BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
66};
67
68static GLuint uint_types_direct[5] = {
69   0,
70   BRW_SURFACEFORMAT_R32_UINT,
71   BRW_SURFACEFORMAT_R32G32_UINT,
72   BRW_SURFACEFORMAT_R32G32B32_UINT,
73   BRW_SURFACEFORMAT_R32G32B32A32_UINT
74};
75
76static GLuint uint_types_norm[5] = {
77   0,
78   BRW_SURFACEFORMAT_R32_UNORM,
79   BRW_SURFACEFORMAT_R32G32_UNORM,
80   BRW_SURFACEFORMAT_R32G32B32_UNORM,
81   BRW_SURFACEFORMAT_R32G32B32A32_UNORM
82};
83
84static GLuint uint_types_scale[5] = {
85   0,
86   BRW_SURFACEFORMAT_R32_USCALED,
87   BRW_SURFACEFORMAT_R32G32_USCALED,
88   BRW_SURFACEFORMAT_R32G32B32_USCALED,
89   BRW_SURFACEFORMAT_R32G32B32A32_USCALED
90};
91
92static GLuint int_types_direct[5] = {
93   0,
94   BRW_SURFACEFORMAT_R32_SINT,
95   BRW_SURFACEFORMAT_R32G32_SINT,
96   BRW_SURFACEFORMAT_R32G32B32_SINT,
97   BRW_SURFACEFORMAT_R32G32B32A32_SINT
98};
99
100static GLuint int_types_norm[5] = {
101   0,
102   BRW_SURFACEFORMAT_R32_SNORM,
103   BRW_SURFACEFORMAT_R32G32_SNORM,
104   BRW_SURFACEFORMAT_R32G32B32_SNORM,
105   BRW_SURFACEFORMAT_R32G32B32A32_SNORM
106};
107
108static GLuint int_types_scale[5] = {
109   0,
110   BRW_SURFACEFORMAT_R32_SSCALED,
111   BRW_SURFACEFORMAT_R32G32_SSCALED,
112   BRW_SURFACEFORMAT_R32G32B32_SSCALED,
113   BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
114};
115
116static GLuint ushort_types_direct[5] = {
117   0,
118   BRW_SURFACEFORMAT_R16_UINT,
119   BRW_SURFACEFORMAT_R16G16_UINT,
120   BRW_SURFACEFORMAT_R16G16B16A16_UINT,
121   BRW_SURFACEFORMAT_R16G16B16A16_UINT
122};
123
124static GLuint ushort_types_norm[5] = {
125   0,
126   BRW_SURFACEFORMAT_R16_UNORM,
127   BRW_SURFACEFORMAT_R16G16_UNORM,
128   BRW_SURFACEFORMAT_R16G16B16_UNORM,
129   BRW_SURFACEFORMAT_R16G16B16A16_UNORM
130};
131
132static GLuint ushort_types_scale[5] = {
133   0,
134   BRW_SURFACEFORMAT_R16_USCALED,
135   BRW_SURFACEFORMAT_R16G16_USCALED,
136   BRW_SURFACEFORMAT_R16G16B16_USCALED,
137   BRW_SURFACEFORMAT_R16G16B16A16_USCALED
138};
139
140static GLuint short_types_direct[5] = {
141   0,
142   BRW_SURFACEFORMAT_R16_SINT,
143   BRW_SURFACEFORMAT_R16G16_SINT,
144   BRW_SURFACEFORMAT_R16G16B16A16_SINT,
145   BRW_SURFACEFORMAT_R16G16B16A16_SINT
146};
147
148static GLuint short_types_norm[5] = {
149   0,
150   BRW_SURFACEFORMAT_R16_SNORM,
151   BRW_SURFACEFORMAT_R16G16_SNORM,
152   BRW_SURFACEFORMAT_R16G16B16_SNORM,
153   BRW_SURFACEFORMAT_R16G16B16A16_SNORM
154};
155
156static GLuint short_types_scale[5] = {
157   0,
158   BRW_SURFACEFORMAT_R16_SSCALED,
159   BRW_SURFACEFORMAT_R16G16_SSCALED,
160   BRW_SURFACEFORMAT_R16G16B16_SSCALED,
161   BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
162};
163
164static GLuint ubyte_types_direct[5] = {
165   0,
166   BRW_SURFACEFORMAT_R8_UINT,
167   BRW_SURFACEFORMAT_R8G8_UINT,
168   BRW_SURFACEFORMAT_R8G8B8A8_UINT,
169   BRW_SURFACEFORMAT_R8G8B8A8_UINT
170};
171
172static GLuint ubyte_types_norm[5] = {
173   0,
174   BRW_SURFACEFORMAT_R8_UNORM,
175   BRW_SURFACEFORMAT_R8G8_UNORM,
176   BRW_SURFACEFORMAT_R8G8B8_UNORM,
177   BRW_SURFACEFORMAT_R8G8B8A8_UNORM
178};
179
180static GLuint ubyte_types_scale[5] = {
181   0,
182   BRW_SURFACEFORMAT_R8_USCALED,
183   BRW_SURFACEFORMAT_R8G8_USCALED,
184   BRW_SURFACEFORMAT_R8G8B8_USCALED,
185   BRW_SURFACEFORMAT_R8G8B8A8_USCALED
186};
187
188static GLuint byte_types_direct[5] = {
189   0,
190   BRW_SURFACEFORMAT_R8_SINT,
191   BRW_SURFACEFORMAT_R8G8_SINT,
192   BRW_SURFACEFORMAT_R8G8B8A8_SINT,
193   BRW_SURFACEFORMAT_R8G8B8A8_SINT
194};
195
196static GLuint byte_types_norm[5] = {
197   0,
198   BRW_SURFACEFORMAT_R8_SNORM,
199   BRW_SURFACEFORMAT_R8G8_SNORM,
200   BRW_SURFACEFORMAT_R8G8B8_SNORM,
201   BRW_SURFACEFORMAT_R8G8B8A8_SNORM
202};
203
204static GLuint byte_types_scale[5] = {
205   0,
206   BRW_SURFACEFORMAT_R8_SSCALED,
207   BRW_SURFACEFORMAT_R8G8_SSCALED,
208   BRW_SURFACEFORMAT_R8G8B8_SSCALED,
209   BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
210};
211
212
213/**
214 * Given vertex array type/size/format/normalized info, return
215 * the appopriate hardware surface type.
216 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
217 */
218static GLuint get_surface_type( GLenum type, GLuint size,
219                                GLenum format, bool normalized, bool integer )
220{
221   if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
222      printf("type %s size %d normalized %d\n",
223		   _mesa_lookup_enum_by_nr(type), size, normalized);
224
225   if (integer) {
226      assert(format == GL_RGBA); /* sanity check */
227      switch (type) {
228      case GL_INT: return int_types_direct[size];
229      case GL_SHORT: return short_types_direct[size];
230      case GL_BYTE: return byte_types_direct[size];
231      case GL_UNSIGNED_INT: return uint_types_direct[size];
232      case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
233      case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
234      default: assert(0); return 0;
235      }
236   } else if (normalized) {
237      switch (type) {
238      case GL_DOUBLE: return double_types[size];
239      case GL_FLOAT: return float_types[size];
240      case GL_HALF_FLOAT: return half_float_types[size];
241      case GL_INT: return int_types_norm[size];
242      case GL_SHORT: return short_types_norm[size];
243      case GL_BYTE: return byte_types_norm[size];
244      case GL_UNSIGNED_INT: return uint_types_norm[size];
245      case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
246      case GL_UNSIGNED_BYTE:
247         if (format == GL_BGRA) {
248            /* See GL_EXT_vertex_array_bgra */
249            assert(size == 4);
250            return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
251         }
252         else {
253            return ubyte_types_norm[size];
254         }
255      default: assert(0); return 0;
256      }
257   }
258   else {
259      assert(format == GL_RGBA); /* sanity check */
260      switch (type) {
261      case GL_DOUBLE: return double_types[size];
262      case GL_FLOAT: return float_types[size];
263      case GL_HALF_FLOAT: return half_float_types[size];
264      case GL_INT: return int_types_scale[size];
265      case GL_SHORT: return short_types_scale[size];
266      case GL_BYTE: return byte_types_scale[size];
267      case GL_UNSIGNED_INT: return uint_types_scale[size];
268      case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
269      case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
270      /* This produces GL_FIXED inputs as values between INT32_MIN and
271       * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272       */
273      case GL_FIXED: return int_types_scale[size];
274      default: assert(0); return 0;
275      }
276   }
277}
278
279
280static GLuint get_size( GLenum type )
281{
282   switch (type) {
283   case GL_DOUBLE: return sizeof(GLdouble);
284   case GL_FLOAT: return sizeof(GLfloat);
285   case GL_HALF_FLOAT: return sizeof(GLhalfARB);
286   case GL_INT: return sizeof(GLint);
287   case GL_SHORT: return sizeof(GLshort);
288   case GL_BYTE: return sizeof(GLbyte);
289   case GL_UNSIGNED_INT: return sizeof(GLuint);
290   case GL_UNSIGNED_SHORT: return sizeof(GLushort);
291   case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
292   case GL_FIXED: return sizeof(GLuint);
293   default: assert(0); return 0;
294   }
295}
296
297static GLuint get_index_type(GLenum type)
298{
299   switch (type) {
300   case GL_UNSIGNED_BYTE:  return BRW_INDEX_BYTE;
301   case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
302   case GL_UNSIGNED_INT:   return BRW_INDEX_DWORD;
303   default: assert(0); return 0;
304   }
305}
306
307static void
308copy_array_to_vbo_array(struct brw_context *brw,
309			struct brw_vertex_element *element,
310			int min, int max,
311			struct brw_vertex_buffer *buffer,
312			GLuint dst_stride)
313{
314   if (min == -1) {
315      /* If we don't have computed min/max bounds, then this must be a use of
316       * the current attribute, which has a 0 stride.  Otherwise, we wouldn't
317       * know what data to upload.
318       */
319      assert(element->glarray->StrideB == 0);
320
321      intel_upload_data(&brw->intel, element->glarray->Ptr,
322                        element->element_size,
323                        element->element_size,
324			&buffer->bo, &buffer->offset);
325
326      buffer->stride = 0;
327      return;
328   }
329
330   int src_stride = element->glarray->StrideB;
331   const unsigned char *src = element->glarray->Ptr + min * src_stride;
332   int count = max - min + 1;
333   GLuint size = count * dst_stride;
334
335   if (dst_stride == src_stride) {
336      intel_upload_data(&brw->intel, src, size, dst_stride,
337			&buffer->bo, &buffer->offset);
338   } else {
339      char * const map = intel_upload_map(&brw->intel, size, dst_stride);
340      char *dst = map;
341
342      while (count--) {
343	 memcpy(dst, src, dst_stride);
344	 src += src_stride;
345	 dst += dst_stride;
346      }
347      intel_upload_unmap(&brw->intel, map, size, dst_stride,
348			 &buffer->bo, &buffer->offset);
349   }
350   buffer->stride = dst_stride;
351}
352
353static void brw_prepare_vertices(struct brw_context *brw)
354{
355   struct gl_context *ctx = &brw->intel.ctx;
356   struct intel_context *intel = intel_context(ctx);
357   /* CACHE_NEW_VS_PROG */
358   GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
359   const unsigned char *ptr = NULL;
360   GLuint interleaved = 0;
361   unsigned int min_index = brw->vb.min_index;
362   unsigned int max_index = brw->vb.max_index;
363   int delta, i, j;
364
365   struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
366   GLuint nr_uploads = 0;
367
368   /* _NEW_POLYGON
369    *
370    * On gen6+, edge flags don't end up in the VUE (either in or out of the
371    * VS).  Instead, they're uploaded as the last vertex element, and the data
372    * is passed sideband through the fixed function units.  So, we need to
373    * prepare the vertex buffer for it, but it's not present in inputs_read.
374    */
375   if (intel->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
376                           ctx->Polygon.BackMode != GL_FILL)) {
377      vs_inputs |= VERT_BIT_EDGEFLAG;
378   }
379
380   /* First build an array of pointers to ve's in vb.inputs_read
381    */
382   if (0)
383      printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
384
385   /* Accumulate the list of enabled arrays. */
386   brw->vb.nr_enabled = 0;
387   while (vs_inputs) {
388      GLuint i = ffsll(vs_inputs) - 1;
389      struct brw_vertex_element *input = &brw->vb.inputs[i];
390
391      vs_inputs &= ~BITFIELD64_BIT(i);
392      if (input->glarray->Size && get_size(input->glarray->Type))
393         brw->vb.enabled[brw->vb.nr_enabled++] = input;
394   }
395
396   if (brw->vb.nr_enabled == 0)
397      return;
398
399   if (brw->vb.nr_buffers)
400      goto prepare;
401
402   for (i = j = 0; i < brw->vb.nr_enabled; i++) {
403      struct brw_vertex_element *input = brw->vb.enabled[i];
404      const struct gl_client_array *glarray = input->glarray;
405      int type_size = get_size(glarray->Type);
406
407      input->element_size = type_size * glarray->Size;
408
409      if (_mesa_is_bufferobj(glarray->BufferObj)) {
410	 struct intel_buffer_object *intel_buffer =
411	    intel_buffer_object(glarray->BufferObj);
412	 int k;
413
414	 for (k = 0; k < i; k++) {
415	    const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
416	    if (glarray->BufferObj == other->BufferObj &&
417		glarray->StrideB == other->StrideB &&
418		glarray->InstanceDivisor == other->InstanceDivisor &&
419		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
420	    {
421	       input->buffer = brw->vb.enabled[k]->buffer;
422	       input->offset = glarray->Ptr - other->Ptr;
423	       break;
424	    }
425	 }
426	 if (k == i) {
427	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
428
429	    /* Named buffer object: Just reference its contents directly. */
430            buffer->bo = intel_bufferobj_source(intel,
431                                                intel_buffer, type_size,
432						&buffer->offset);
433	    drm_intel_bo_reference(buffer->bo);
434	    buffer->offset += (uintptr_t)glarray->Ptr;
435	    buffer->stride = glarray->StrideB;
436	    buffer->step_rate = glarray->InstanceDivisor;
437
438	    input->buffer = j++;
439	    input->offset = 0;
440	 }
441
442	 /* This is a common place to reach if the user mistakenly supplies
443	  * a pointer in place of a VBO offset.  If we just let it go through,
444	  * we may end up dereferencing a pointer beyond the bounds of the
445	  * GTT.  We would hope that the VBO's max_index would save us, but
446	  * Mesa appears to hand us min/max values not clipped to the
447	  * array object's _MaxElement, and _MaxElement frequently appears
448	  * to be wrong anyway.
449	  *
450	  * The VBO spec allows application termination in this case, and it's
451	  * probably a service to the poor programmer to do so rather than
452	  * trying to just not render.
453	  */
454	 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
455      } else {
456	 /* Queue the buffer object up to be uploaded in the next pass,
457	  * when we've decided if we're doing interleaved or not.
458	  */
459	 if (nr_uploads == 0) {
460	    interleaved = glarray->StrideB;
461	    ptr = glarray->Ptr;
462	 }
463	 else if (interleaved != glarray->StrideB ||
464		  (uintptr_t)(glarray->Ptr - ptr) > interleaved)
465	 {
466	    interleaved = 0;
467	 }
468	 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
469	 {
470	    /* enforce natural alignment (for doubles) */
471	    interleaved = 0;
472	 }
473
474	 upload[nr_uploads++] = input;
475      }
476   }
477
478   /* If we need to upload all the arrays, then we can trim those arrays to
479    * only the used elements [min_index, max_index] so long as we adjust all
480    * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
481    */
482   brw->vb.start_vertex_bias = 0;
483   delta = min_index;
484   if (nr_uploads == brw->vb.nr_enabled) {
485      brw->vb.start_vertex_bias = -delta;
486      delta = 0;
487   }
488   if (delta && !brw->intel.intelScreen->relaxed_relocations)
489      min_index = delta = 0;
490
491   /* Handle any arrays to be uploaded. */
492   if (nr_uploads > 1) {
493      if (interleaved) {
494	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
495	 /* All uploads are interleaved, so upload the arrays together as
496	  * interleaved.  First, upload the contents and set up upload[0].
497	  */
498	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
499				 buffer, interleaved);
500	 buffer->offset -= delta * interleaved;
501
502	 for (i = 0; i < nr_uploads; i++) {
503	    /* Then, just point upload[i] at upload[0]'s buffer. */
504	    upload[i]->offset =
505	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
506	    upload[i]->buffer = j;
507	 }
508	 j++;
509
510	 nr_uploads = 0;
511      }
512   }
513   /* Upload non-interleaved arrays */
514   for (i = 0; i < nr_uploads; i++) {
515      struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
516      if (upload[i]->glarray->InstanceDivisor == 0) {
517         copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
518                                 buffer, upload[i]->element_size);
519      } else {
520         /* This is an instanced attribute, since its InstanceDivisor
521          * is not zero. Therefore, its data will be stepped after the
522          * instanced draw has been run InstanceDivisor times.
523          */
524         uint32_t instanced_attr_max_index =
525            (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
526         copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
527                                 buffer, upload[i]->element_size);
528      }
529      buffer->offset -= delta * buffer->stride;
530      buffer->step_rate = upload[i]->glarray->InstanceDivisor;
531      upload[i]->buffer = j++;
532      upload[i]->offset = 0;
533   }
534
535   /* can we simply extend the current vb? */
536   if (j == brw->vb.nr_current_buffers) {
537      int delta = 0;
538      for (i = 0; i < j; i++) {
539	 int d;
540
541	 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
542	     brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
543	     brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
544	    break;
545
546	 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
547	 if (d < 0)
548	    break;
549	 if (i == 0)
550	    delta = d / brw->vb.current_buffers[i].stride;
551	 if (delta * brw->vb.current_buffers[i].stride != d)
552	    break;
553      }
554
555      if (i == j) {
556	 brw->vb.start_vertex_bias += delta;
557	 while (--j >= 0)
558	    drm_intel_bo_unreference(brw->vb.buffers[j].bo);
559	 j = 0;
560      }
561   }
562
563   brw->vb.nr_buffers = j;
564
565prepare:
566   brw_prepare_query_begin(brw);
567}
568
569static void brw_emit_vertices(struct brw_context *brw)
570{
571   struct gl_context *ctx = &brw->intel.ctx;
572   struct intel_context *intel = intel_context(ctx);
573   GLuint i, nr_elements;
574
575   brw_prepare_vertices(brw);
576
577   brw_emit_query_begin(brw);
578
579   /* If the VS doesn't read any inputs (calculating vertex position from
580    * a state variable for some reason, for example), emit a single pad
581    * VERTEX_ELEMENT struct and bail.
582    *
583    * The stale VB state stays in place, but they don't do anything unless
584    * a VE loads from them.
585    */
586   if (brw->vb.nr_enabled == 0) {
587      BEGIN_BATCH(3);
588      OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
589      if (intel->gen >= 6) {
590	 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
591		   GEN6_VE0_VALID |
592		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
593		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
594      } else {
595	 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
596		   BRW_VE0_VALID |
597		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
598		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
599      }
600      OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
601		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
602		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
603		(BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
604      CACHED_BATCH();
605      return;
606   }
607
608   /* Now emit VB and VEP state packets.
609    */
610
611   if (brw->vb.nr_buffers) {
612      if (intel->gen >= 6) {
613	 assert(brw->vb.nr_buffers <= 33);
614      } else {
615	 assert(brw->vb.nr_buffers <= 17);
616      }
617
618      BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
619      OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
620      for (i = 0; i < brw->vb.nr_buffers; i++) {
621	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
622	 uint32_t dw0;
623
624	 if (intel->gen >= 6) {
625	    dw0 = buffer->step_rate
626	             ? GEN6_VB0_ACCESS_INSTANCEDATA
627	             : GEN6_VB0_ACCESS_VERTEXDATA;
628	    dw0 |= i << GEN6_VB0_INDEX_SHIFT;
629	 } else {
630	    dw0 = buffer->step_rate
631	             ? BRW_VB0_ACCESS_INSTANCEDATA
632	             : BRW_VB0_ACCESS_VERTEXDATA;
633	    dw0 |= i << BRW_VB0_INDEX_SHIFT;
634	 }
635
636	 if (intel->gen >= 7)
637	    dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
638
639	 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
640	 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
641	 if (intel->gen >= 5) {
642	    OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
643	 } else
644	    OUT_BATCH(0);
645	 OUT_BATCH(buffer->step_rate);
646
647	 brw->vb.current_buffers[i].handle = buffer->bo->handle;
648	 brw->vb.current_buffers[i].offset = buffer->offset;
649	 brw->vb.current_buffers[i].stride = buffer->stride;
650	 brw->vb.current_buffers[i].step_rate = buffer->step_rate;
651      }
652      brw->vb.nr_current_buffers = i;
653      ADVANCE_BATCH();
654   }
655
656   nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
657
658   /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
659    * for VertexID/InstanceID.
660    */
661   if (intel->gen >= 6) {
662      assert(nr_elements <= 34);
663   } else {
664      assert(nr_elements <= 18);
665   }
666
667   struct brw_vertex_element *gen6_edgeflag_input = NULL;
668
669   BEGIN_BATCH(1 + nr_elements * 2);
670   OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
671   for (i = 0; i < brw->vb.nr_enabled; i++) {
672      struct brw_vertex_element *input = brw->vb.enabled[i];
673      uint32_t format = get_surface_type(input->glarray->Type,
674					 input->glarray->Size,
675					 input->glarray->Format,
676					 input->glarray->Normalized,
677                                         input->glarray->Integer);
678      uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
679      uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
680      uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
681      uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
682
683      /* The gen4 driver expects edgeflag to come in as a float, and passes
684       * that float on to the tests in the clipper.  Mesa's current vertex
685       * attribute value for EdgeFlag is stored as a float, which works out.
686       * glEdgeFlagPointer, on the other hand, gives us an unnormalized
687       * integer ubyte.  Just rewrite that to convert to a float.
688       */
689      if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
690         /* Gen6+ passes edgeflag as sideband along with the vertex, instead
691          * of in the VUE.  We have to upload it sideband as the last vertex
692          * element according to the B-Spec.
693          */
694         if (intel->gen >= 6) {
695            gen6_edgeflag_input = input;
696            continue;
697         }
698
699         if (format == BRW_SURFACEFORMAT_R8_UINT)
700            format = BRW_SURFACEFORMAT_R8_SSCALED;
701      }
702
703      switch (input->glarray->Size) {
704      case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
705      case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
706      case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
707      case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
708                                              : BRW_VE1_COMPONENT_STORE_1_FLT;
709	 break;
710      }
711
712      if (intel->gen >= 6) {
713	 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
714		   GEN6_VE0_VALID |
715		   (format << BRW_VE0_FORMAT_SHIFT) |
716		   (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
717      } else {
718	 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
719		   BRW_VE0_VALID |
720		   (format << BRW_VE0_FORMAT_SHIFT) |
721		   (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
722      }
723
724      if (intel->gen >= 5)
725          OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
726                    (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
727                    (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
728                    (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
729      else
730          OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
731                    (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
732                    (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
733                    (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
734                    ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
735   }
736
737   if (intel->gen >= 6 && gen6_edgeflag_input) {
738      uint32_t format = get_surface_type(gen6_edgeflag_input->glarray->Type,
739                                         gen6_edgeflag_input->glarray->Size,
740                                         gen6_edgeflag_input->glarray->Format,
741                                         gen6_edgeflag_input->glarray->Normalized,
742                                         gen6_edgeflag_input->glarray->Integer);
743
744      OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
745                GEN6_VE0_VALID |
746                GEN6_VE0_EDGE_FLAG_ENABLE |
747                (format << BRW_VE0_FORMAT_SHIFT) |
748                (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
749      OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
750                (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
751                (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
752                (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
753   }
754
755   if (brw->vs.prog_data->uses_vertexid) {
756      uint32_t dw0 = 0, dw1 = 0;
757
758      dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
759	     (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
760	     (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
761	     (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
762
763      if (intel->gen >= 6) {
764	 dw0 |= GEN6_VE0_VALID;
765      } else {
766	 dw0 |= BRW_VE0_VALID;
767	 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
768      }
769
770      /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
771       * the format is ignored and the value is always int.
772       */
773
774      OUT_BATCH(dw0);
775      OUT_BATCH(dw1);
776   }
777
778   CACHED_BATCH();
779}
780
781const struct brw_tracked_state brw_vertices = {
782   .dirty = {
783      .mesa = _NEW_POLYGON,
784      .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
785      .cache = CACHE_NEW_VS_PROG,
786   },
787   .emit = brw_emit_vertices,
788};
789
790static void brw_upload_indices(struct brw_context *brw)
791{
792   struct gl_context *ctx = &brw->intel.ctx;
793   struct intel_context *intel = &brw->intel;
794   const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
795   GLuint ib_size;
796   drm_intel_bo *bo = NULL;
797   struct gl_buffer_object *bufferobj;
798   GLuint offset;
799   GLuint ib_type_size;
800
801   if (index_buffer == NULL)
802      return;
803
804   ib_type_size = get_size(index_buffer->type);
805   ib_size = ib_type_size * index_buffer->count;
806   bufferobj = index_buffer->obj;
807
808   /* Turn into a proper VBO:
809    */
810   if (!_mesa_is_bufferobj(bufferobj)) {
811
812      /* Get new bufferobj, offset:
813       */
814      intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
815			&bo, &offset);
816      brw->ib.start_vertex_offset = offset / ib_type_size;
817   } else {
818      offset = (GLuint) (unsigned long) index_buffer->ptr;
819
820      /* If the index buffer isn't aligned to its element size, we have to
821       * rebase it into a temporary.
822       */
823       if ((get_size(index_buffer->type) - 1) & offset) {
824           GLubyte *map = ctx->Driver.MapBufferRange(ctx,
825						     offset,
826						     ib_size,
827						     GL_MAP_WRITE_BIT,
828						     bufferobj);
829
830	   intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
831			     &bo, &offset);
832	   brw->ib.start_vertex_offset = offset / ib_type_size;
833
834           ctx->Driver.UnmapBuffer(ctx, bufferobj);
835       } else {
836	  /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
837	   * the index buffer state when we're just moving the start index
838	   * of our drawing.
839	   */
840	  brw->ib.start_vertex_offset = offset / ib_type_size;
841
842	  bo = intel_bufferobj_source(intel,
843				      intel_buffer_object(bufferobj),
844				      ib_type_size,
845				      &offset);
846	  drm_intel_bo_reference(bo);
847
848	  brw->ib.start_vertex_offset += offset / ib_type_size;
849       }
850   }
851
852   if (brw->ib.bo != bo) {
853      drm_intel_bo_unreference(brw->ib.bo);
854      brw->ib.bo = bo;
855
856      brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
857   } else {
858      drm_intel_bo_unreference(bo);
859   }
860
861   if (index_buffer->type != brw->ib.type) {
862      brw->ib.type = index_buffer->type;
863      brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
864   }
865}
866
867const struct brw_tracked_state brw_indices = {
868   .dirty = {
869      .mesa = 0,
870      .brw = BRW_NEW_INDICES,
871      .cache = 0,
872   },
873   .emit = brw_upload_indices,
874};
875
876static void brw_emit_index_buffer(struct brw_context *brw)
877{
878   struct intel_context *intel = &brw->intel;
879   const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
880   GLuint cut_index_setting;
881
882   if (index_buffer == NULL)
883      return;
884
885   if (brw->prim_restart.enable_cut_index && !intel->is_haswell) {
886      cut_index_setting = BRW_CUT_INDEX_ENABLE;
887   } else {
888      cut_index_setting = 0;
889   }
890
891   BEGIN_BATCH(3);
892   OUT_BATCH(CMD_INDEX_BUFFER << 16 |
893             cut_index_setting |
894             get_index_type(index_buffer->type) << 8 |
895             1);
896   OUT_RELOC(brw->ib.bo,
897             I915_GEM_DOMAIN_VERTEX, 0,
898             0);
899   OUT_RELOC(brw->ib.bo,
900             I915_GEM_DOMAIN_VERTEX, 0,
901	     brw->ib.bo->size - 1);
902   ADVANCE_BATCH();
903}
904
905const struct brw_tracked_state brw_index_buffer = {
906   .dirty = {
907      .mesa = 0,
908      .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
909      .cache = 0,
910   },
911   .emit = brw_emit_index_buffer,
912};
913