brw_fs_visitor.cpp revision 01044fce6b3de11635ea5078b76ffee1a33b3802
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->location == FRAG_RESULT_COLOR) {
76	 /* Writing gl_FragColor outputs to all color regions. */
77	 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78	    this->outputs[i] = *reg;
79	 }
80      } else if (ir->location == FRAG_RESULT_DEPTH) {
81	 this->frag_depth = ir;
82      } else {
83	 /* gl_FragData or a user-defined FS output */
84	 assert(ir->location >= FRAG_RESULT_DATA0 &&
85		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87	 /* General color output. */
88	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89	    int output = ir->location - FRAG_RESULT_DATA0 + i;
90	    this->outputs[output] = *reg;
91	    this->outputs[output].reg_offset += 4 * i;
92	 }
93      }
94   } else if (ir->mode == ir_var_uniform) {
95      int param_index = c->prog_data.nr_params;
96
97      if (c->dispatch_width == 16) {
98	 if (!variable_storage(ir)) {
99	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100	 }
101	 return;
102      }
103
104      if (!strncmp(ir->name, "gl_", 3)) {
105	 setup_builtin_uniform_values(ir);
106      } else {
107	 setup_uniform_values(ir->location, ir->type);
108      }
109
110      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111      reg->type = brw_type_for_base_type(ir->type);
112   }
113
114   if (!reg)
115      reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117   hash_table_insert(this->variable_ht, reg, ir);
118}
119
120void
121fs_visitor::visit(ir_dereference_variable *ir)
122{
123   fs_reg *reg = variable_storage(ir->var);
124   this->result = *reg;
125}
126
127void
128fs_visitor::visit(ir_dereference_record *ir)
129{
130   const glsl_type *struct_type = ir->record->type;
131
132   ir->record->accept(this);
133
134   unsigned int offset = 0;
135   for (unsigned int i = 0; i < struct_type->length; i++) {
136      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137	 break;
138      offset += type_size(struct_type->fields.structure[i].type);
139   }
140   this->result.reg_offset += offset;
141   this->result.type = brw_type_for_base_type(ir->type);
142}
143
144void
145fs_visitor::visit(ir_dereference_array *ir)
146{
147   ir_constant *index;
148   int element_size;
149
150   ir->array->accept(this);
151   index = ir->array_index->as_constant();
152
153   element_size = type_size(ir->type);
154   this->result.type = brw_type_for_base_type(ir->type);
155
156   if (index) {
157      assert(this->result.file == UNIFORM || this->result.file == GRF);
158      this->result.reg_offset += index->value.i[0] * element_size;
159   } else {
160      assert(!"FINISHME: non-constant array element");
161   }
162}
163
164/* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167bool
168fs_visitor::try_emit_saturate(ir_expression *ir)
169{
170   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172   if (!sat_val)
173      return false;
174
175   sat_val->accept(this);
176   fs_reg src = this->result;
177
178   this->result = fs_reg(this, ir->type);
179   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
180   inst->saturate = true;
181
182   return true;
183}
184
185bool
186fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
187{
188   /* 3-src instructions were introduced in gen6. */
189   if (intel->gen < 6)
190      return false;
191
192   /* MAD can only handle floating-point data. */
193   if (ir->type != glsl_type::float_type)
194      return false;
195
196   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
197   ir_expression *mul = ir->operands[mul_arg]->as_expression();
198
199   if (!mul || mul->operation != ir_binop_mul)
200      return false;
201
202   if (nonmul->as_constant() ||
203       mul->operands[0]->as_constant() ||
204       mul->operands[1]->as_constant())
205      return false;
206
207   nonmul->accept(this);
208   fs_reg src0 = this->result;
209
210   mul->operands[0]->accept(this);
211   fs_reg src1 = this->result;
212
213   mul->operands[1]->accept(this);
214   fs_reg src2 = this->result;
215
216   this->result = fs_reg(this, ir->type);
217   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
218
219   return true;
220}
221
222void
223fs_visitor::visit(ir_expression *ir)
224{
225   unsigned int operand;
226   fs_reg op[2], temp;
227   fs_inst *inst;
228
229   assert(ir->get_num_operands() <= 2);
230
231   if (try_emit_saturate(ir))
232      return;
233   if (ir->operation == ir_binop_add) {
234      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
235	 return;
236   }
237
238   for (operand = 0; operand < ir->get_num_operands(); operand++) {
239      ir->operands[operand]->accept(this);
240      if (this->result.file == BAD_FILE) {
241	 ir_print_visitor v;
242	 fail("Failed to get tree for expression operand:\n");
243	 ir->operands[operand]->accept(&v);
244      }
245      op[operand] = this->result;
246
247      /* Matrix expression operands should have been broken down to vector
248       * operations already.
249       */
250      assert(!ir->operands[operand]->type->is_matrix());
251      /* And then those vector operands should have been broken down to scalar.
252       */
253      assert(!ir->operands[operand]->type->is_vector());
254   }
255
256   /* Storage for our result.  If our result goes into an assignment, it will
257    * just get copy-propagated out, so no worries.
258    */
259   this->result = fs_reg(this, ir->type);
260
261   switch (ir->operation) {
262   case ir_unop_logic_not:
263      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
264       * ones complement of the whole register, not just bit 0.
265       */
266      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
267      break;
268   case ir_unop_neg:
269      op[0].negate = !op[0].negate;
270      this->result = op[0];
271      break;
272   case ir_unop_abs:
273      op[0].abs = true;
274      op[0].negate = false;
275      this->result = op[0];
276      break;
277   case ir_unop_sign:
278      temp = fs_reg(this, ir->type);
279
280      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
281
282      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
283      inst->conditional_mod = BRW_CONDITIONAL_G;
284      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
285      inst->predicated = true;
286
287      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
288      inst->conditional_mod = BRW_CONDITIONAL_L;
289      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
290      inst->predicated = true;
291
292      break;
293   case ir_unop_rcp:
294      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
295      break;
296
297   case ir_unop_exp2:
298      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
299      break;
300   case ir_unop_log2:
301      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
302      break;
303   case ir_unop_exp:
304   case ir_unop_log:
305      assert(!"not reached: should be handled by ir_explog_to_explog2");
306      break;
307   case ir_unop_sin:
308   case ir_unop_sin_reduced:
309      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
310      break;
311   case ir_unop_cos:
312   case ir_unop_cos_reduced:
313      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
314      break;
315
316   case ir_unop_dFdx:
317      emit(FS_OPCODE_DDX, this->result, op[0]);
318      break;
319   case ir_unop_dFdy:
320      emit(FS_OPCODE_DDY, this->result, op[0]);
321      break;
322
323   case ir_binop_add:
324      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
325      break;
326   case ir_binop_sub:
327      assert(!"not reached: should be handled by ir_sub_to_add_neg");
328      break;
329
330   case ir_binop_mul:
331      if (ir->type->is_integer()) {
332	 /* For integer multiplication, the MUL uses the low 16 bits
333	  * of one of the operands (src0 on gen6, src1 on gen7).  The
334	  * MACH accumulates in the contribution of the upper 16 bits
335	  * of that operand.
336	  *
337	  * FINISHME: Emit just the MUL if we know an operand is small
338	  * enough.
339	  */
340	 if (intel->gen >= 7 && c->dispatch_width == 16)
341	    fail("16-wide explicit accumulator operands unsupported\n");
342
343	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
344
345	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
346	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
347	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
348      } else {
349	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
350      }
351      break;
352   case ir_binop_div:
353      if (intel->gen >= 7 && c->dispatch_width == 16)
354	 fail("16-wide INTDIV unsupported\n");
355
356      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
357      assert(ir->type->is_integer());
358      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
359      break;
360   case ir_binop_mod:
361      if (intel->gen >= 7 && c->dispatch_width == 16)
362	 fail("16-wide INTDIV unsupported\n");
363
364      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
365      assert(ir->type->is_integer());
366      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
367      break;
368
369   case ir_binop_less:
370   case ir_binop_greater:
371   case ir_binop_lequal:
372   case ir_binop_gequal:
373   case ir_binop_equal:
374   case ir_binop_all_equal:
375   case ir_binop_nequal:
376   case ir_binop_any_nequal:
377      temp = this->result;
378      /* original gen4 does implicit conversion before comparison. */
379      if (intel->gen < 5)
380	 temp.type = op[0].type;
381
382      resolve_ud_negate(&op[0]);
383      resolve_ud_negate(&op[1]);
384
385      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
386      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
387      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
388      break;
389
390   case ir_binop_logic_xor:
391      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
392      break;
393
394   case ir_binop_logic_or:
395      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
396      break;
397
398   case ir_binop_logic_and:
399      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
400      break;
401
402   case ir_binop_dot:
403   case ir_unop_any:
404      assert(!"not reached: should be handled by brw_fs_channel_expressions");
405      break;
406
407   case ir_unop_noise:
408      assert(!"not reached: should be handled by lower_noise");
409      break;
410
411   case ir_quadop_vector:
412      assert(!"not reached: should be handled by lower_quadop_vector");
413      break;
414
415   case ir_unop_sqrt:
416      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
417      break;
418
419   case ir_unop_rsq:
420      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
421      break;
422
423   case ir_unop_i2u:
424      op[0].type = BRW_REGISTER_TYPE_UD;
425      this->result = op[0];
426      break;
427   case ir_unop_u2i:
428      op[0].type = BRW_REGISTER_TYPE_D;
429      this->result = op[0];
430      break;
431   case ir_unop_i2f:
432   case ir_unop_u2f:
433   case ir_unop_b2f:
434   case ir_unop_b2i:
435   case ir_unop_f2i:
436      emit(BRW_OPCODE_MOV, this->result, op[0]);
437      break;
438   case ir_unop_f2b:
439   case ir_unop_i2b:
440      temp = this->result;
441      /* original gen4 does implicit conversion before comparison. */
442      if (intel->gen < 5)
443	 temp.type = op[0].type;
444
445      resolve_ud_negate(&op[0]);
446
447      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
448      inst->conditional_mod = BRW_CONDITIONAL_NZ;
449      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
450      break;
451
452   case ir_unop_trunc:
453      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
454      break;
455   case ir_unop_ceil:
456      op[0].negate = !op[0].negate;
457      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
458      this->result.negate = true;
459      break;
460   case ir_unop_floor:
461      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
462      break;
463   case ir_unop_fract:
464      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
465      break;
466   case ir_unop_round_even:
467      emit(BRW_OPCODE_RNDE, this->result, op[0]);
468      break;
469
470   case ir_binop_min:
471      resolve_ud_negate(&op[0]);
472      resolve_ud_negate(&op[1]);
473
474      if (intel->gen >= 6) {
475	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
476	 inst->conditional_mod = BRW_CONDITIONAL_L;
477      } else {
478	 /* Unalias the destination */
479	 this->result = fs_reg(this, ir->type);
480
481	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
482	 inst->conditional_mod = BRW_CONDITIONAL_L;
483
484	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
485	 inst->predicated = true;
486      }
487      break;
488   case ir_binop_max:
489      resolve_ud_negate(&op[0]);
490      resolve_ud_negate(&op[1]);
491
492      if (intel->gen >= 6) {
493	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
494	 inst->conditional_mod = BRW_CONDITIONAL_GE;
495      } else {
496	 /* Unalias the destination */
497	 this->result = fs_reg(this, ir->type);
498
499	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
500	 inst->conditional_mod = BRW_CONDITIONAL_G;
501
502	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
503	 inst->predicated = true;
504      }
505      break;
506
507   case ir_binop_pow:
508      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
509      break;
510
511   case ir_unop_bit_not:
512      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
513      break;
514   case ir_binop_bit_and:
515      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
516      break;
517   case ir_binop_bit_xor:
518      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
519      break;
520   case ir_binop_bit_or:
521      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
522      break;
523
524   case ir_binop_lshift:
525      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
526      break;
527
528   case ir_binop_rshift:
529      if (ir->type->base_type == GLSL_TYPE_INT)
530	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
531      else
532	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
533      break;
534   }
535}
536
537void
538fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
539				   const glsl_type *type, bool predicated)
540{
541   switch (type->base_type) {
542   case GLSL_TYPE_FLOAT:
543   case GLSL_TYPE_UINT:
544   case GLSL_TYPE_INT:
545   case GLSL_TYPE_BOOL:
546      for (unsigned int i = 0; i < type->components(); i++) {
547	 l.type = brw_type_for_base_type(type);
548	 r.type = brw_type_for_base_type(type);
549
550	 if (predicated || !l.equals(&r)) {
551	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
552	    inst->predicated = predicated;
553	 }
554
555	 l.reg_offset++;
556	 r.reg_offset++;
557      }
558      break;
559   case GLSL_TYPE_ARRAY:
560      for (unsigned int i = 0; i < type->length; i++) {
561	 emit_assignment_writes(l, r, type->fields.array, predicated);
562      }
563      break;
564
565   case GLSL_TYPE_STRUCT:
566      for (unsigned int i = 0; i < type->length; i++) {
567	 emit_assignment_writes(l, r, type->fields.structure[i].type,
568				predicated);
569      }
570      break;
571
572   case GLSL_TYPE_SAMPLER:
573      break;
574
575   default:
576      assert(!"not reached");
577      break;
578   }
579}
580
581/* If the RHS processing resulted in an instruction generating a
582 * temporary value, and it would be easy to rewrite the instruction to
583 * generate its result right into the LHS instead, do so.  This ends
584 * up reliably removing instructions where it can be tricky to do so
585 * later without real UD chain information.
586 */
587bool
588fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
589                                   fs_reg dst,
590                                   fs_reg src,
591                                   fs_inst *pre_rhs_inst,
592                                   fs_inst *last_rhs_inst)
593{
594   if (pre_rhs_inst == last_rhs_inst)
595      return false; /* No instructions generated to work with. */
596
597   /* Only attempt if we're doing a direct assignment. */
598   if (ir->condition ||
599       !(ir->lhs->type->is_scalar() ||
600        (ir->lhs->type->is_vector() &&
601         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
602      return false;
603
604   /* Make sure the last instruction generated our source reg. */
605   if (last_rhs_inst->predicated ||
606       last_rhs_inst->force_uncompressed ||
607       last_rhs_inst->force_sechalf ||
608       !src.equals(&last_rhs_inst->dst))
609      return false;
610
611   /* If last_rhs_inst wrote a different number of components than our LHS,
612    * we can't safely rewrite it.
613    */
614   if (ir->lhs->type->vector_elements != last_rhs_inst->regs_written())
615      return false;
616
617   /* Success!  Rewrite the instruction. */
618   last_rhs_inst->dst = dst;
619
620   return true;
621}
622
623void
624fs_visitor::visit(ir_assignment *ir)
625{
626   fs_reg l, r;
627   fs_inst *inst;
628
629   /* FINISHME: arrays on the lhs */
630   ir->lhs->accept(this);
631   l = this->result;
632
633   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
634
635   ir->rhs->accept(this);
636   r = this->result;
637
638   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
639
640   assert(l.file != BAD_FILE);
641   assert(r.file != BAD_FILE);
642
643   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
644      return;
645
646   if (ir->condition) {
647      emit_bool_to_cond_code(ir->condition);
648   }
649
650   if (ir->lhs->type->is_scalar() ||
651       ir->lhs->type->is_vector()) {
652      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
653	 if (ir->write_mask & (1 << i)) {
654	    inst = emit(BRW_OPCODE_MOV, l, r);
655	    if (ir->condition)
656	       inst->predicated = true;
657	    r.reg_offset++;
658	 }
659	 l.reg_offset++;
660      }
661   } else {
662      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
663   }
664}
665
666fs_inst *
667fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
668			      int sampler)
669{
670   int mlen;
671   int base_mrf = 1;
672   bool simd16 = false;
673   fs_reg orig_dst;
674
675   /* g0 header. */
676   mlen = 1;
677
678   if (ir->shadow_comparitor && ir->op != ir_txd) {
679      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
680	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
681	 coordinate.reg_offset++;
682      }
683      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
684      mlen += 3;
685
686      if (ir->op == ir_tex) {
687	 /* There's no plain shadow compare message, so we use shadow
688	  * compare with a bias of 0.0.
689	  */
690	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
691	 mlen++;
692      } else if (ir->op == ir_txb) {
693	 ir->lod_info.bias->accept(this);
694	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
695	 mlen++;
696      } else {
697	 assert(ir->op == ir_txl);
698	 ir->lod_info.lod->accept(this);
699	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
700	 mlen++;
701      }
702
703      ir->shadow_comparitor->accept(this);
704      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
705      mlen++;
706   } else if (ir->op == ir_tex) {
707      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
708	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
709	 coordinate.reg_offset++;
710      }
711      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
712      mlen += 3;
713   } else if (ir->op == ir_txd) {
714      ir->lod_info.grad.dPdx->accept(this);
715      fs_reg dPdx = this->result;
716
717      ir->lod_info.grad.dPdy->accept(this);
718      fs_reg dPdy = this->result;
719
720      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
721	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
722	 coordinate.reg_offset++;
723      }
724      /* the slots for u and v are always present, but r is optional */
725      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
726
727      /*  P   = u, v, r
728       * dPdx = dudx, dvdx, drdx
729       * dPdy = dudy, dvdy, drdy
730       *
731       * 1-arg: Does not exist.
732       *
733       * 2-arg: dudx   dvdx   dudy   dvdy
734       *        dPdx.x dPdx.y dPdy.x dPdy.y
735       *        m4     m5     m6     m7
736       *
737       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
738       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
739       *        m5     m6     m7     m8     m9     m10
740       */
741      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
742	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
743	 dPdx.reg_offset++;
744      }
745      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
746
747      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
748	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
749	 dPdy.reg_offset++;
750      }
751      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
752   } else if (ir->op == ir_txs) {
753      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
754      simd16 = true;
755      ir->lod_info.lod->accept(this);
756      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
757      mlen += 2;
758   } else {
759      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
760       * instructions.  We'll need to do SIMD16 here.
761       */
762      simd16 = true;
763      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
764
765      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
766	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
767	      coordinate);
768	 coordinate.reg_offset++;
769      }
770
771      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
772       * be necessary for TXF (ld), but seems wise to do for all messages.
773       */
774      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
775	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
776      }
777
778      /* lod/bias appears after u/v/r. */
779      mlen += 6;
780
781      if (ir->op == ir_txb) {
782	 ir->lod_info.bias->accept(this);
783	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
784	 mlen++;
785      } else {
786	 ir->lod_info.lod->accept(this);
787	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
788			      this->result);
789	 mlen++;
790      }
791
792      /* The unused upper half. */
793      mlen++;
794   }
795
796   if (simd16) {
797      /* Now, since we're doing simd16, the return is 2 interleaved
798       * vec4s where the odd-indexed ones are junk. We'll need to move
799       * this weirdness around to the expected layout.
800       */
801      orig_dst = dst;
802      const glsl_type *vec_type =
803	 glsl_type::get_instance(ir->type->base_type, 4, 1);
804      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
805      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
806			       : BRW_REGISTER_TYPE_F;
807   }
808
809   fs_inst *inst = NULL;
810   switch (ir->op) {
811   case ir_tex:
812      inst = emit(SHADER_OPCODE_TEX, dst);
813      break;
814   case ir_txb:
815      inst = emit(FS_OPCODE_TXB, dst);
816      break;
817   case ir_txl:
818      inst = emit(SHADER_OPCODE_TXL, dst);
819      break;
820   case ir_txd:
821      inst = emit(SHADER_OPCODE_TXD, dst);
822      break;
823   case ir_txs:
824      inst = emit(SHADER_OPCODE_TXS, dst);
825      break;
826   case ir_txf:
827      inst = emit(SHADER_OPCODE_TXF, dst);
828      break;
829   }
830   inst->base_mrf = base_mrf;
831   inst->mlen = mlen;
832   inst->header_present = true;
833
834   if (simd16) {
835      for (int i = 0; i < 4; i++) {
836	 emit(BRW_OPCODE_MOV, orig_dst, dst);
837	 orig_dst.reg_offset++;
838	 dst.reg_offset += 2;
839      }
840   }
841
842   return inst;
843}
844
845/* gen5's sampler has slots for u, v, r, array index, then optional
846 * parameters like shadow comparitor or LOD bias.  If optional
847 * parameters aren't present, those base slots are optional and don't
848 * need to be included in the message.
849 *
850 * We don't fill in the unnecessary slots regardless, which may look
851 * surprising in the disassembly.
852 */
853fs_inst *
854fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
855			      int sampler)
856{
857   int mlen = 0;
858   int base_mrf = 2;
859   int reg_width = c->dispatch_width / 8;
860   bool header_present = false;
861   const int vector_elements =
862      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
863
864   if (ir->offset) {
865      /* The offsets set up by the ir_texture visitor are in the
866       * m1 header, so we can't go headerless.
867       */
868      header_present = true;
869      mlen++;
870      base_mrf--;
871   }
872
873   for (int i = 0; i < vector_elements; i++) {
874      emit(BRW_OPCODE_MOV,
875	   fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
876	   coordinate);
877      coordinate.reg_offset++;
878   }
879   mlen += vector_elements * reg_width;
880
881   if (ir->shadow_comparitor && ir->op != ir_txd) {
882      mlen = MAX2(mlen, header_present + 4 * reg_width);
883
884      ir->shadow_comparitor->accept(this);
885      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
886      mlen += reg_width;
887   }
888
889   fs_inst *inst = NULL;
890   switch (ir->op) {
891   case ir_tex:
892      inst = emit(SHADER_OPCODE_TEX, dst);
893      break;
894   case ir_txb:
895      ir->lod_info.bias->accept(this);
896      mlen = MAX2(mlen, header_present + 4 * reg_width);
897      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
898      mlen += reg_width;
899
900      inst = emit(FS_OPCODE_TXB, dst);
901
902      break;
903   case ir_txl:
904      ir->lod_info.lod->accept(this);
905      mlen = MAX2(mlen, header_present + 4 * reg_width);
906      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
907      mlen += reg_width;
908
909      inst = emit(SHADER_OPCODE_TXL, dst);
910      break;
911   case ir_txd: {
912      ir->lod_info.grad.dPdx->accept(this);
913      fs_reg dPdx = this->result;
914
915      ir->lod_info.grad.dPdy->accept(this);
916      fs_reg dPdy = this->result;
917
918      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
919
920      /**
921       *  P   =  u,    v,    r
922       * dPdx = dudx, dvdx, drdx
923       * dPdy = dudy, dvdy, drdy
924       *
925       * Load up these values:
926       * - dudx   dudy   dvdx   dvdy   drdx   drdy
927       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
928       */
929      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
930	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
931	 dPdx.reg_offset++;
932	 mlen += reg_width;
933
934	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
935	 dPdy.reg_offset++;
936	 mlen += reg_width;
937      }
938
939      inst = emit(SHADER_OPCODE_TXD, dst);
940      break;
941   }
942   case ir_txs:
943      ir->lod_info.lod->accept(this);
944      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
945      mlen += reg_width;
946      inst = emit(SHADER_OPCODE_TXS, dst);
947      break;
948   case ir_txf:
949      mlen = header_present + 4 * reg_width;
950
951      ir->lod_info.lod->accept(this);
952      emit(BRW_OPCODE_MOV,
953	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
954	   this->result);
955      inst = emit(SHADER_OPCODE_TXF, dst);
956      break;
957   }
958   inst->base_mrf = base_mrf;
959   inst->mlen = mlen;
960   inst->header_present = header_present;
961
962   if (mlen > 11) {
963      fail("Message length >11 disallowed by hardware\n");
964   }
965
966   return inst;
967}
968
969fs_inst *
970fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
971			      int sampler)
972{
973   int mlen = 0;
974   int base_mrf = 2;
975   int reg_width = c->dispatch_width / 8;
976   bool header_present = false;
977
978   if (ir->offset) {
979      /* The offsets set up by the ir_texture visitor are in the
980       * m1 header, so we can't go headerless.
981       */
982      header_present = true;
983      mlen++;
984      base_mrf--;
985   }
986
987   if (ir->shadow_comparitor && ir->op != ir_txd) {
988      ir->shadow_comparitor->accept(this);
989      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
990      mlen += reg_width;
991   }
992
993   /* Set up the LOD info */
994   switch (ir->op) {
995   case ir_tex:
996      break;
997   case ir_txb:
998      ir->lod_info.bias->accept(this);
999      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1000      mlen += reg_width;
1001      break;
1002   case ir_txl:
1003      ir->lod_info.lod->accept(this);
1004      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1005      mlen += reg_width;
1006      break;
1007   case ir_txd: {
1008      if (c->dispatch_width == 16)
1009	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1010
1011      ir->lod_info.grad.dPdx->accept(this);
1012      fs_reg dPdx = this->result;
1013
1014      ir->lod_info.grad.dPdy->accept(this);
1015      fs_reg dPdy = this->result;
1016
1017      /* Load dPdx and the coordinate together:
1018       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1019       */
1020      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1021	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1022	 coordinate.reg_offset++;
1023	 mlen += reg_width;
1024
1025	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1026	 dPdx.reg_offset++;
1027	 mlen += reg_width;
1028
1029	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1030	 dPdy.reg_offset++;
1031	 mlen += reg_width;
1032      }
1033      break;
1034   }
1035   case ir_txs:
1036      ir->lod_info.lod->accept(this);
1037      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1038      mlen += reg_width;
1039      break;
1040   case ir_txf:
1041      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1042      emit(BRW_OPCODE_MOV,
1043	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1044      coordinate.reg_offset++;
1045      mlen += reg_width;
1046
1047      ir->lod_info.lod->accept(this);
1048      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1049      mlen += reg_width;
1050
1051      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1052	 emit(BRW_OPCODE_MOV,
1053	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1054	 coordinate.reg_offset++;
1055	 mlen += reg_width;
1056      }
1057      break;
1058   }
1059
1060   /* Set up the coordinate (except for cases where it was done above) */
1061   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1062      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1063	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1064	 coordinate.reg_offset++;
1065	 mlen += reg_width;
1066      }
1067   }
1068
1069   /* Generate the SEND */
1070   fs_inst *inst = NULL;
1071   switch (ir->op) {
1072   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1073   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1074   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1075   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1076   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1077   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1078   }
1079   inst->base_mrf = base_mrf;
1080   inst->mlen = mlen;
1081   inst->header_present = header_present;
1082
1083   if (mlen > 11) {
1084      fail("Message length >11 disallowed by hardware\n");
1085   }
1086
1087   return inst;
1088}
1089
1090void
1091fs_visitor::visit(ir_texture *ir)
1092{
1093   fs_inst *inst = NULL;
1094
1095   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1096   sampler = fp->Base.SamplerUnits[sampler];
1097
1098   /* Our hardware doesn't have a sample_d_c message, so shadow compares
1099    * for textureGrad/TXD need to be emulated with instructions.
1100    */
1101   bool hw_compare_supported = ir->op != ir_txd;
1102   if (ir->shadow_comparitor && !hw_compare_supported) {
1103      assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1104      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1105      if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1106	 return swizzle_result(ir, fs_reg(1.0f), sampler);
1107      else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1108	 return swizzle_result(ir, fs_reg(0.0f), sampler);
1109   }
1110
1111   if (ir->coordinate)
1112      ir->coordinate->accept(this);
1113   fs_reg coordinate = this->result;
1114
1115   if (ir->offset != NULL) {
1116      uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1117
1118      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1119      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1120	   fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1121
1122      /* Then set the offset bits in DWord 2 of the message header. */
1123      emit(BRW_OPCODE_MOV,
1124	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1125			 BRW_REGISTER_TYPE_UD)),
1126	   fs_reg(brw_imm_uw(offset_bits)));
1127   }
1128
1129   /* Should be lowered by do_lower_texture_projection */
1130   assert(!ir->projector);
1131
1132   bool needs_gl_clamp = true;
1133
1134   fs_reg scale_x, scale_y;
1135
1136   /* The 965 requires the EU to do the normalization of GL rectangle
1137    * texture coordinates.  We use the program parameter state
1138    * tracking to get the scaling factor.
1139    */
1140   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1141       (intel->gen < 6 ||
1142	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1143			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1144      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1145      int tokens[STATE_LENGTH] = {
1146	 STATE_INTERNAL,
1147	 STATE_TEXRECT_SCALE,
1148	 sampler,
1149	 0,
1150	 0
1151      };
1152
1153      if (c->dispatch_width == 16) {
1154	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1155	 this->result = fs_reg(this, ir->type);
1156	 return;
1157      }
1158
1159      c->prog_data.param_convert[c->prog_data.nr_params] =
1160	 PARAM_NO_CONVERT;
1161      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1162	 PARAM_NO_CONVERT;
1163
1164      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1165      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1166
1167      GLuint index = _mesa_add_state_reference(params,
1168					       (gl_state_index *)tokens);
1169
1170      this->param_index[c->prog_data.nr_params] = index;
1171      this->param_offset[c->prog_data.nr_params] = 0;
1172      c->prog_data.nr_params++;
1173      this->param_index[c->prog_data.nr_params] = index;
1174      this->param_offset[c->prog_data.nr_params] = 1;
1175      c->prog_data.nr_params++;
1176   }
1177
1178   /* The 965 requires the EU to do the normalization of GL rectangle
1179    * texture coordinates.  We use the program parameter state
1180    * tracking to get the scaling factor.
1181    */
1182   if (intel->gen < 6 &&
1183       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1184      fs_reg dst = fs_reg(this, ir->coordinate->type);
1185      fs_reg src = coordinate;
1186      coordinate = dst;
1187
1188      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1189      dst.reg_offset++;
1190      src.reg_offset++;
1191      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1192   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1193      /* On gen6+, the sampler handles the rectangle coordinates
1194       * natively, without needing rescaling.  But that means we have
1195       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1196       * not [0, 1] like the default case below.
1197       */
1198      needs_gl_clamp = false;
1199
1200      for (int i = 0; i < 2; i++) {
1201	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1202	    fs_reg chan = coordinate;
1203	    chan.reg_offset += i;
1204
1205	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1206	    inst->conditional_mod = BRW_CONDITIONAL_G;
1207
1208	    /* Our parameter comes in as 1.0/width or 1.0/height,
1209	     * because that's what people normally want for doing
1210	     * texture rectangle handling.  We need width or height
1211	     * for clamping, but we don't care enough to make a new
1212	     * parameter type, so just invert back.
1213	     */
1214	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1215	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1216	    emit(SHADER_OPCODE_RCP, limit, limit);
1217
1218	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1219	    inst->conditional_mod = BRW_CONDITIONAL_L;
1220	 }
1221      }
1222   }
1223
1224   if (ir->coordinate && needs_gl_clamp) {
1225      for (int i = 0; i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1226	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1227	    fs_reg chan = coordinate;
1228	    chan.reg_offset += i;
1229
1230	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1231	    inst->saturate = true;
1232	 }
1233      }
1234   }
1235
1236   /* Writemasking doesn't eliminate channels on SIMD8 texture
1237    * samples, so don't worry about them.
1238    */
1239   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1240
1241   if (intel->gen >= 7) {
1242      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1243   } else if (intel->gen >= 5) {
1244      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1245   } else {
1246      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1247   }
1248
1249   /* If there's an offset, we already set up m1.  To avoid the implied move,
1250    * use the null register.  Otherwise, we want an implied move from g0.
1251    */
1252   if (ir->offset != NULL || !inst->header_present)
1253      inst->src[0] = reg_undef;
1254   else
1255      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1256
1257   inst->sampler = sampler;
1258
1259   if (ir->shadow_comparitor) {
1260      if (hw_compare_supported) {
1261	 inst->shadow_compare = true;
1262      } else {
1263	 ir->shadow_comparitor->accept(this);
1264	 fs_reg ref = this->result;
1265
1266	 fs_reg value = dst;
1267	 dst = fs_reg(this, glsl_type::vec4_type);
1268
1269	 /* FINISHME: This needs to be done pre-filtering. */
1270
1271	 uint32_t conditional = 0;
1272	 switch (c->key.tex.compare_funcs[sampler]) {
1273	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1274	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1275	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1276	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1277	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1278	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1279	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1280	 default: assert(!"Should not get here: bad shadow compare function");
1281	 }
1282
1283	 /* Use conditional moves to load 0 or 1 as the result */
1284	 this->current_annotation = "manual shadow comparison";
1285	 for (int i = 0; i < 4; i++) {
1286	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1287
1288	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1289	    inst->conditional_mod = conditional;
1290
1291	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1292	    inst->predicated = true;
1293
1294	    dst.reg_offset++;
1295	    value.reg_offset++;
1296	 }
1297	 dst.reg_offset = 0;
1298      }
1299   }
1300
1301   swizzle_result(ir, dst, sampler);
1302}
1303
1304/**
1305 * Swizzle the result of a texture result.  This is necessary for
1306 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1307 */
1308void
1309fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1310{
1311   this->result = orig_val;
1312
1313   if (ir->op == ir_txs)
1314      return;
1315
1316   if (ir->type == glsl_type::float_type) {
1317      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1318      assert(ir->sampler->type->sampler_shadow);
1319   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1320      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1321
1322      for (int i = 0; i < 4; i++) {
1323	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1324	 fs_reg l = swizzled_result;
1325	 l.reg_offset += i;
1326
1327	 if (swiz == SWIZZLE_ZERO) {
1328	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1329	 } else if (swiz == SWIZZLE_ONE) {
1330	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1331	 } else {
1332	    fs_reg r = orig_val;
1333	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1334	    emit(BRW_OPCODE_MOV, l, r);
1335	 }
1336      }
1337      this->result = swizzled_result;
1338   }
1339}
1340
1341void
1342fs_visitor::visit(ir_swizzle *ir)
1343{
1344   ir->val->accept(this);
1345   fs_reg val = this->result;
1346
1347   if (ir->type->vector_elements == 1) {
1348      this->result.reg_offset += ir->mask.x;
1349      return;
1350   }
1351
1352   fs_reg result = fs_reg(this, ir->type);
1353   this->result = result;
1354
1355   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1356      fs_reg channel = val;
1357      int swiz = 0;
1358
1359      switch (i) {
1360      case 0:
1361	 swiz = ir->mask.x;
1362	 break;
1363      case 1:
1364	 swiz = ir->mask.y;
1365	 break;
1366      case 2:
1367	 swiz = ir->mask.z;
1368	 break;
1369      case 3:
1370	 swiz = ir->mask.w;
1371	 break;
1372      }
1373
1374      channel.reg_offset += swiz;
1375      emit(BRW_OPCODE_MOV, result, channel);
1376      result.reg_offset++;
1377   }
1378}
1379
1380void
1381fs_visitor::visit(ir_discard *ir)
1382{
1383   assert(ir->condition == NULL); /* FINISHME */
1384
1385   emit(FS_OPCODE_DISCARD);
1386   kill_emitted = true;
1387}
1388
1389void
1390fs_visitor::visit(ir_constant *ir)
1391{
1392   /* Set this->result to reg at the bottom of the function because some code
1393    * paths will cause this visitor to be applied to other fields.  This will
1394    * cause the value stored in this->result to be modified.
1395    *
1396    * Make reg constant so that it doesn't get accidentally modified along the
1397    * way.  Yes, I actually had this problem. :(
1398    */
1399   const fs_reg reg(this, ir->type);
1400   fs_reg dst_reg = reg;
1401
1402   if (ir->type->is_array()) {
1403      const unsigned size = type_size(ir->type->fields.array);
1404
1405      for (unsigned i = 0; i < ir->type->length; i++) {
1406	 ir->array_elements[i]->accept(this);
1407	 fs_reg src_reg = this->result;
1408
1409	 dst_reg.type = src_reg.type;
1410	 for (unsigned j = 0; j < size; j++) {
1411	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1412	    src_reg.reg_offset++;
1413	    dst_reg.reg_offset++;
1414	 }
1415      }
1416   } else if (ir->type->is_record()) {
1417      foreach_list(node, &ir->components) {
1418	 ir_instruction *const field = (ir_instruction *) node;
1419	 const unsigned size = type_size(field->type);
1420
1421	 field->accept(this);
1422	 fs_reg src_reg = this->result;
1423
1424	 dst_reg.type = src_reg.type;
1425	 for (unsigned j = 0; j < size; j++) {
1426	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1427	    src_reg.reg_offset++;
1428	    dst_reg.reg_offset++;
1429	 }
1430      }
1431   } else {
1432      const unsigned size = type_size(ir->type);
1433
1434      for (unsigned i = 0; i < size; i++) {
1435	 switch (ir->type->base_type) {
1436	 case GLSL_TYPE_FLOAT:
1437	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1438	    break;
1439	 case GLSL_TYPE_UINT:
1440	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1441	    break;
1442	 case GLSL_TYPE_INT:
1443	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1444	    break;
1445	 case GLSL_TYPE_BOOL:
1446	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1447	    break;
1448	 default:
1449	    assert(!"Non-float/uint/int/bool constant");
1450	 }
1451	 dst_reg.reg_offset++;
1452      }
1453   }
1454
1455   this->result = reg;
1456}
1457
1458void
1459fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1460{
1461   ir_expression *expr = ir->as_expression();
1462
1463   if (expr) {
1464      fs_reg op[2];
1465      fs_inst *inst;
1466
1467      assert(expr->get_num_operands() <= 2);
1468      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1469	 assert(expr->operands[i]->type->is_scalar());
1470
1471	 expr->operands[i]->accept(this);
1472	 op[i] = this->result;
1473
1474	 resolve_ud_negate(&op[i]);
1475      }
1476
1477      switch (expr->operation) {
1478      case ir_unop_logic_not:
1479	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1480	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1481	 break;
1482
1483      case ir_binop_logic_xor:
1484	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1485	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1486	 break;
1487
1488      case ir_binop_logic_or:
1489	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1490	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1491	 break;
1492
1493      case ir_binop_logic_and:
1494	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1495	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1496	 break;
1497
1498      case ir_unop_f2b:
1499	 if (intel->gen >= 6) {
1500	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1501	 } else {
1502	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1503	 }
1504	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1505	 break;
1506
1507      case ir_unop_i2b:
1508	 if (intel->gen >= 6) {
1509	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1510	 } else {
1511	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1512	 }
1513	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1514	 break;
1515
1516      case ir_binop_greater:
1517      case ir_binop_gequal:
1518      case ir_binop_less:
1519      case ir_binop_lequal:
1520      case ir_binop_equal:
1521      case ir_binop_all_equal:
1522      case ir_binop_nequal:
1523      case ir_binop_any_nequal:
1524	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1525	 inst->conditional_mod =
1526	    brw_conditional_for_comparison(expr->operation);
1527	 break;
1528
1529      default:
1530	 assert(!"not reached");
1531	 fail("bad cond code\n");
1532	 break;
1533      }
1534      return;
1535   }
1536
1537   ir->accept(this);
1538
1539   if (intel->gen >= 6) {
1540      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1541      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1542   } else {
1543      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1544      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1545   }
1546}
1547
1548/**
1549 * Emit a gen6 IF statement with the comparison folded into the IF
1550 * instruction.
1551 */
1552void
1553fs_visitor::emit_if_gen6(ir_if *ir)
1554{
1555   ir_expression *expr = ir->condition->as_expression();
1556
1557   if (expr) {
1558      fs_reg op[2];
1559      fs_inst *inst;
1560      fs_reg temp;
1561
1562      assert(expr->get_num_operands() <= 2);
1563      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1564	 assert(expr->operands[i]->type->is_scalar());
1565
1566	 expr->operands[i]->accept(this);
1567	 op[i] = this->result;
1568      }
1569
1570      switch (expr->operation) {
1571      case ir_unop_logic_not:
1572	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1573	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1574	 return;
1575
1576      case ir_binop_logic_xor:
1577	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1578	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1579	 return;
1580
1581      case ir_binop_logic_or:
1582	 temp = fs_reg(this, glsl_type::bool_type);
1583	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1584	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1585	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1586	 return;
1587
1588      case ir_binop_logic_and:
1589	 temp = fs_reg(this, glsl_type::bool_type);
1590	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1591	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1592	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1593	 return;
1594
1595      case ir_unop_f2b:
1596	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1597	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1598	 return;
1599
1600      case ir_unop_i2b:
1601	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1602	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1603	 return;
1604
1605      case ir_binop_greater:
1606      case ir_binop_gequal:
1607      case ir_binop_less:
1608      case ir_binop_lequal:
1609      case ir_binop_equal:
1610      case ir_binop_all_equal:
1611      case ir_binop_nequal:
1612      case ir_binop_any_nequal:
1613	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1614	 inst->conditional_mod =
1615	    brw_conditional_for_comparison(expr->operation);
1616	 return;
1617      default:
1618	 assert(!"not reached");
1619	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1620	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1621	 fail("bad condition\n");
1622	 return;
1623      }
1624      return;
1625   }
1626
1627   ir->condition->accept(this);
1628
1629   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1630   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1631}
1632
1633void
1634fs_visitor::visit(ir_if *ir)
1635{
1636   fs_inst *inst;
1637
1638   if (intel->gen < 6 && c->dispatch_width == 16) {
1639      fail("Can't support (non-uniform) control flow on 16-wide\n");
1640   }
1641
1642   /* Don't point the annotation at the if statement, because then it plus
1643    * the then and else blocks get printed.
1644    */
1645   this->base_ir = ir->condition;
1646
1647   if (intel->gen == 6) {
1648      emit_if_gen6(ir);
1649   } else {
1650      emit_bool_to_cond_code(ir->condition);
1651
1652      inst = emit(BRW_OPCODE_IF);
1653      inst->predicated = true;
1654   }
1655
1656   foreach_list(node, &ir->then_instructions) {
1657      ir_instruction *ir = (ir_instruction *)node;
1658      this->base_ir = ir;
1659
1660      ir->accept(this);
1661   }
1662
1663   if (!ir->else_instructions.is_empty()) {
1664      emit(BRW_OPCODE_ELSE);
1665
1666      foreach_list(node, &ir->else_instructions) {
1667	 ir_instruction *ir = (ir_instruction *)node;
1668	 this->base_ir = ir;
1669
1670	 ir->accept(this);
1671      }
1672   }
1673
1674   emit(BRW_OPCODE_ENDIF);
1675}
1676
1677void
1678fs_visitor::visit(ir_loop *ir)
1679{
1680   fs_reg counter = reg_undef;
1681
1682   if (intel->gen < 6 && c->dispatch_width == 16) {
1683      fail("Can't support (non-uniform) control flow on 16-wide\n");
1684   }
1685
1686   if (ir->counter) {
1687      this->base_ir = ir->counter;
1688      ir->counter->accept(this);
1689      counter = *(variable_storage(ir->counter));
1690
1691      if (ir->from) {
1692	 this->base_ir = ir->from;
1693	 ir->from->accept(this);
1694
1695	 emit(BRW_OPCODE_MOV, counter, this->result);
1696      }
1697   }
1698
1699   emit(BRW_OPCODE_DO);
1700
1701   if (ir->to) {
1702      this->base_ir = ir->to;
1703      ir->to->accept(this);
1704
1705      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1706      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1707
1708      inst = emit(BRW_OPCODE_BREAK);
1709      inst->predicated = true;
1710   }
1711
1712   foreach_list(node, &ir->body_instructions) {
1713      ir_instruction *ir = (ir_instruction *)node;
1714
1715      this->base_ir = ir;
1716      ir->accept(this);
1717   }
1718
1719   if (ir->increment) {
1720      this->base_ir = ir->increment;
1721      ir->increment->accept(this);
1722      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1723   }
1724
1725   emit(BRW_OPCODE_WHILE);
1726}
1727
1728void
1729fs_visitor::visit(ir_loop_jump *ir)
1730{
1731   switch (ir->mode) {
1732   case ir_loop_jump::jump_break:
1733      emit(BRW_OPCODE_BREAK);
1734      break;
1735   case ir_loop_jump::jump_continue:
1736      emit(BRW_OPCODE_CONTINUE);
1737      break;
1738   }
1739}
1740
1741void
1742fs_visitor::visit(ir_call *ir)
1743{
1744   assert(!"FINISHME");
1745}
1746
1747void
1748fs_visitor::visit(ir_return *ir)
1749{
1750   assert(!"FINISHME");
1751}
1752
1753void
1754fs_visitor::visit(ir_function *ir)
1755{
1756   /* Ignore function bodies other than main() -- we shouldn't see calls to
1757    * them since they should all be inlined before we get to ir_to_mesa.
1758    */
1759   if (strcmp(ir->name, "main") == 0) {
1760      const ir_function_signature *sig;
1761      exec_list empty;
1762
1763      sig = ir->matching_signature(&empty);
1764
1765      assert(sig);
1766
1767      foreach_list(node, &sig->body) {
1768	 ir_instruction *ir = (ir_instruction *)node;
1769	 this->base_ir = ir;
1770
1771	 ir->accept(this);
1772      }
1773   }
1774}
1775
1776void
1777fs_visitor::visit(ir_function_signature *ir)
1778{
1779   assert(!"not reached");
1780   (void)ir;
1781}
1782
1783fs_inst *
1784fs_visitor::emit(fs_inst inst)
1785{
1786   fs_inst *list_inst = new(mem_ctx) fs_inst;
1787   *list_inst = inst;
1788
1789   if (force_uncompressed_stack > 0)
1790      list_inst->force_uncompressed = true;
1791   else if (force_sechalf_stack > 0)
1792      list_inst->force_sechalf = true;
1793
1794   list_inst->annotation = this->current_annotation;
1795   list_inst->ir = this->base_ir;
1796
1797   this->instructions.push_tail(list_inst);
1798
1799   return list_inst;
1800}
1801
1802/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1803void
1804fs_visitor::emit_dummy_fs()
1805{
1806   int reg_width = c->dispatch_width / 8;
1807
1808   /* Everyone's favorite color. */
1809   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1810   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1811   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1812   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1813
1814   fs_inst *write;
1815   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1816   write->base_mrf = 2;
1817   write->mlen = 4 * reg_width;
1818   write->eot = true;
1819}
1820
1821/* The register location here is relative to the start of the URB
1822 * data.  It will get adjusted to be a real location before
1823 * generate_code() time.
1824 */
1825struct brw_reg
1826fs_visitor::interp_reg(int location, int channel)
1827{
1828   int regnr = urb_setup[location] * 2 + channel / 2;
1829   int stride = (channel & 1) * 4;
1830
1831   assert(urb_setup[location] != -1);
1832
1833   return brw_vec1_grf(regnr, stride);
1834}
1835
1836/** Emits the interpolation for the varying inputs. */
1837void
1838fs_visitor::emit_interpolation_setup_gen4()
1839{
1840   this->current_annotation = "compute pixel centers";
1841   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1842   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1843   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1844   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1845
1846   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1847   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1848
1849   this->current_annotation = "compute pixel deltas from v0";
1850   if (brw->has_pln) {
1851      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1852         fs_reg(this, glsl_type::vec2_type);
1853      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1854         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1855      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1856   } else {
1857      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1858         fs_reg(this, glsl_type::float_type);
1859      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1860         fs_reg(this, glsl_type::float_type);
1861   }
1862   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1863	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1864   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1865	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1866
1867   this->current_annotation = "compute pos.w and 1/pos.w";
1868   /* Compute wpos.w.  It's always in our setup, since it's needed to
1869    * interpolate the other attributes.
1870    */
1871   this->wpos_w = fs_reg(this, glsl_type::float_type);
1872   emit(FS_OPCODE_LINTERP, wpos_w,
1873        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1874        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1875	interp_reg(FRAG_ATTRIB_WPOS, 3));
1876   /* Compute the pixel 1/W value from wpos.w. */
1877   this->pixel_w = fs_reg(this, glsl_type::float_type);
1878   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1879   this->current_annotation = NULL;
1880}
1881
1882/** Emits the interpolation for the varying inputs. */
1883void
1884fs_visitor::emit_interpolation_setup_gen6()
1885{
1886   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1887
1888   /* If the pixel centers end up used, the setup is the same as for gen4. */
1889   this->current_annotation = "compute pixel centers";
1890   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1891   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1892   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1893   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1894   emit(BRW_OPCODE_ADD,
1895	int_pixel_x,
1896	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1897	fs_reg(brw_imm_v(0x10101010)));
1898   emit(BRW_OPCODE_ADD,
1899	int_pixel_y,
1900	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1901	fs_reg(brw_imm_v(0x11001100)));
1902
1903   /* As of gen6, we can no longer mix float and int sources.  We have
1904    * to turn the integer pixel centers into floats for their actual
1905    * use.
1906    */
1907   this->pixel_x = fs_reg(this, glsl_type::float_type);
1908   this->pixel_y = fs_reg(this, glsl_type::float_type);
1909   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1910   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1911
1912   this->current_annotation = "compute pos.w";
1913   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1914   this->wpos_w = fs_reg(this, glsl_type::float_type);
1915   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1916
1917   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1918      uint8_t reg = c->barycentric_coord_reg[i];
1919      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1920      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1921   }
1922
1923   this->current_annotation = NULL;
1924}
1925
1926void
1927fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1928{
1929   int reg_width = c->dispatch_width / 8;
1930   fs_inst *inst;
1931   fs_reg color = outputs[target];
1932   fs_reg mrf;
1933
1934   /* If there's no color data to be written, skip it. */
1935   if (color.file == BAD_FILE)
1936      return;
1937
1938   color.reg_offset += index;
1939
1940   if (c->dispatch_width == 8 || intel->gen >= 6) {
1941      /* SIMD8 write looks like:
1942       * m + 0: r0
1943       * m + 1: r1
1944       * m + 2: g0
1945       * m + 3: g1
1946       *
1947       * gen6 SIMD16 DP write looks like:
1948       * m + 0: r0
1949       * m + 1: r1
1950       * m + 2: g0
1951       * m + 3: g1
1952       * m + 4: b0
1953       * m + 5: b1
1954       * m + 6: a0
1955       * m + 7: a1
1956       */
1957      inst = emit(BRW_OPCODE_MOV,
1958		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1959		  color);
1960      inst->saturate = c->key.clamp_fragment_color;
1961   } else {
1962      /* pre-gen6 SIMD16 single source DP write looks like:
1963       * m + 0: r0
1964       * m + 1: g0
1965       * m + 2: b0
1966       * m + 3: a0
1967       * m + 4: r1
1968       * m + 5: g1
1969       * m + 6: b1
1970       * m + 7: a1
1971       */
1972      if (brw->has_compr4) {
1973	 /* By setting the high bit of the MRF register number, we
1974	  * indicate that we want COMPR4 mode - instead of doing the
1975	  * usual destination + 1 for the second half we get
1976	  * destination + 4.
1977	  */
1978	 inst = emit(BRW_OPCODE_MOV,
1979		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1980			    color.type),
1981		     color);
1982	 inst->saturate = c->key.clamp_fragment_color;
1983      } else {
1984	 push_force_uncompressed();
1985	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1986					    color.type),
1987		     color);
1988	 inst->saturate = c->key.clamp_fragment_color;
1989	 pop_force_uncompressed();
1990
1991	 push_force_sechalf();
1992	 color.sechalf = true;
1993	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1994					    color.type),
1995		     color);
1996	 inst->saturate = c->key.clamp_fragment_color;
1997	 pop_force_sechalf();
1998	 color.sechalf = false;
1999      }
2000   }
2001}
2002
2003void
2004fs_visitor::emit_fb_writes()
2005{
2006   this->current_annotation = "FB write header";
2007   bool header_present = true;
2008   int base_mrf = 2;
2009   int nr = base_mrf;
2010   int reg_width = c->dispatch_width / 8;
2011
2012   if (intel->gen >= 6 &&
2013       !this->kill_emitted &&
2014       c->key.nr_color_regions == 1) {
2015      header_present = false;
2016   }
2017
2018   if (header_present) {
2019      /* m2, m3 header */
2020      nr += 2;
2021   }
2022
2023   if (c->aa_dest_stencil_reg) {
2024      push_force_uncompressed();
2025      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2026	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2027      pop_force_uncompressed();
2028   }
2029
2030   /* Reserve space for color. It'll be filled in per MRT below. */
2031   int color_mrf = nr;
2032   nr += 4 * reg_width;
2033
2034   if (c->source_depth_to_render_target) {
2035      if (intel->gen == 6 && c->dispatch_width == 16) {
2036	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2037	  * used.  This would require 8-wide moves of each half to
2038	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2039	  * Just bail on doing so for now.
2040	  */
2041	 fail("Missing support for simd16 depth writes on gen6\n");
2042      }
2043
2044      if (c->computes_depth) {
2045	 /* Hand over gl_FragDepth. */
2046	 assert(this->frag_depth);
2047	 fs_reg depth = *(variable_storage(this->frag_depth));
2048
2049	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2050      } else {
2051	 /* Pass through the payload depth. */
2052	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2053	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2054      }
2055      nr += reg_width;
2056   }
2057
2058   if (c->dest_depth_reg) {
2059      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2060	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2061      nr += reg_width;
2062   }
2063
2064   for (int target = 0; target < c->key.nr_color_regions; target++) {
2065      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2066						 "FB write target %d",
2067						 target);
2068      for (int i = 0; i < 4; i++)
2069	 emit_color_write(target, i, color_mrf);
2070
2071      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2072      inst->target = target;
2073      inst->base_mrf = base_mrf;
2074      inst->mlen = nr - base_mrf;
2075      if (target == c->key.nr_color_regions - 1)
2076	 inst->eot = true;
2077      inst->header_present = header_present;
2078   }
2079
2080   if (c->key.nr_color_regions == 0) {
2081      if (c->key.alpha_test) {
2082	 /* If the alpha test is enabled but there's no color buffer,
2083	  * we still need to send alpha out the pipeline to our null
2084	  * renderbuffer.
2085	  */
2086	 emit_color_write(0, 3, color_mrf);
2087      }
2088
2089      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2090      inst->base_mrf = base_mrf;
2091      inst->mlen = nr - base_mrf;
2092      inst->eot = true;
2093      inst->header_present = header_present;
2094   }
2095
2096   this->current_annotation = NULL;
2097}
2098
2099void
2100fs_visitor::resolve_ud_negate(fs_reg *reg)
2101{
2102   if (reg->type != BRW_REGISTER_TYPE_UD ||
2103       !reg->negate)
2104      return;
2105
2106   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2107   emit(BRW_OPCODE_MOV, temp, *reg);
2108   *reg = temp;
2109}
2110