brw_fs_visitor.cpp revision 11a7b93592c22c8165f8fde6395f76778fca452e
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->index > 0) {
76	 assert(ir->location == FRAG_RESULT_DATA0);
77	 assert(ir->index == 1);
78	 this->dual_src_output = *reg;
79      } else if (ir->location == FRAG_RESULT_COLOR) {
80	 /* Writing gl_FragColor outputs to all color regions. */
81	 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
82	    this->outputs[i] = *reg;
83	    this->output_components[i] = 4;
84	 }
85      } else if (ir->location == FRAG_RESULT_DEPTH) {
86	 this->frag_depth = ir;
87      } else {
88	 /* gl_FragData or a user-defined FS output */
89	 assert(ir->location >= FRAG_RESULT_DATA0 &&
90		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92	 int vector_elements =
93	    ir->type->is_array() ? ir->type->fields.array->vector_elements
94				 : ir->type->vector_elements;
95
96	 /* General color output. */
97	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98	    int output = ir->location - FRAG_RESULT_DATA0 + i;
99	    this->outputs[output] = *reg;
100	    this->outputs[output].reg_offset += vector_elements * i;
101	    this->output_components[output] = vector_elements;
102	 }
103      }
104   } else if (ir->mode == ir_var_uniform) {
105      int param_index = c->prog_data.nr_params;
106
107      if (c->dispatch_width == 16) {
108	 if (!variable_storage(ir)) {
109	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
110	 }
111	 return;
112      }
113
114      if (!strncmp(ir->name, "gl_", 3)) {
115	 setup_builtin_uniform_values(ir);
116      } else {
117	 setup_uniform_values(ir->location, ir->type);
118      }
119
120      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
121      reg->type = brw_type_for_base_type(ir->type);
122   }
123
124   if (!reg)
125      reg = new(this->mem_ctx) fs_reg(this, ir->type);
126
127   hash_table_insert(this->variable_ht, reg, ir);
128}
129
130void
131fs_visitor::visit(ir_dereference_variable *ir)
132{
133   fs_reg *reg = variable_storage(ir->var);
134   this->result = *reg;
135}
136
137void
138fs_visitor::visit(ir_dereference_record *ir)
139{
140   const glsl_type *struct_type = ir->record->type;
141
142   ir->record->accept(this);
143
144   unsigned int offset = 0;
145   for (unsigned int i = 0; i < struct_type->length; i++) {
146      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
147	 break;
148      offset += type_size(struct_type->fields.structure[i].type);
149   }
150   this->result.reg_offset += offset;
151   this->result.type = brw_type_for_base_type(ir->type);
152}
153
154void
155fs_visitor::visit(ir_dereference_array *ir)
156{
157   ir_constant *index;
158   int element_size;
159
160   ir->array->accept(this);
161   index = ir->array_index->as_constant();
162
163   element_size = type_size(ir->type);
164   this->result.type = brw_type_for_base_type(ir->type);
165
166   if (index) {
167      assert(this->result.file == UNIFORM || this->result.file == GRF);
168      this->result.reg_offset += index->value.i[0] * element_size;
169   } else {
170      assert(!"FINISHME: non-constant array element");
171   }
172}
173
174/* Instruction selection: Produce a MOV.sat instead of
175 * MIN(MAX(val, 0), 1) when possible.
176 */
177bool
178fs_visitor::try_emit_saturate(ir_expression *ir)
179{
180   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
181
182   if (!sat_val)
183      return false;
184
185   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
186
187   sat_val->accept(this);
188   fs_reg src = this->result;
189
190   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
191
192   /* If the last instruction from our accept() didn't generate our
193    * src, generate a saturated MOV
194    */
195   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
196   if (!modify || modify->regs_written() != 1) {
197      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
198      inst->saturate = true;
199   } else {
200      modify->saturate = true;
201      this->result = src;
202   }
203
204
205   return true;
206}
207
208bool
209fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
210{
211   /* 3-src instructions were introduced in gen6. */
212   if (intel->gen < 6)
213      return false;
214
215   /* MAD can only handle floating-point data. */
216   if (ir->type != glsl_type::float_type)
217      return false;
218
219   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
220   ir_expression *mul = ir->operands[mul_arg]->as_expression();
221
222   if (!mul || mul->operation != ir_binop_mul)
223      return false;
224
225   if (nonmul->as_constant() ||
226       mul->operands[0]->as_constant() ||
227       mul->operands[1]->as_constant())
228      return false;
229
230   nonmul->accept(this);
231   fs_reg src0 = this->result;
232
233   mul->operands[0]->accept(this);
234   fs_reg src1 = this->result;
235
236   mul->operands[1]->accept(this);
237   fs_reg src2 = this->result;
238
239   this->result = fs_reg(this, ir->type);
240   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
241
242   return true;
243}
244
245void
246fs_visitor::visit(ir_expression *ir)
247{
248   unsigned int operand;
249   fs_reg op[2], temp;
250   fs_inst *inst;
251
252   assert(ir->get_num_operands() <= 2);
253
254   if (try_emit_saturate(ir))
255      return;
256   if (ir->operation == ir_binop_add) {
257      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
258	 return;
259   }
260
261   for (operand = 0; operand < ir->get_num_operands(); operand++) {
262      ir->operands[operand]->accept(this);
263      if (this->result.file == BAD_FILE) {
264	 ir_print_visitor v;
265	 fail("Failed to get tree for expression operand:\n");
266	 ir->operands[operand]->accept(&v);
267      }
268      op[operand] = this->result;
269
270      /* Matrix expression operands should have been broken down to vector
271       * operations already.
272       */
273      assert(!ir->operands[operand]->type->is_matrix());
274      /* And then those vector operands should have been broken down to scalar.
275       */
276      assert(!ir->operands[operand]->type->is_vector());
277   }
278
279   /* Storage for our result.  If our result goes into an assignment, it will
280    * just get copy-propagated out, so no worries.
281    */
282   this->result = fs_reg(this, ir->type);
283
284   switch (ir->operation) {
285   case ir_unop_logic_not:
286      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
287       * ones complement of the whole register, not just bit 0.
288       */
289      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
290      break;
291   case ir_unop_neg:
292      op[0].negate = !op[0].negate;
293      this->result = op[0];
294      break;
295   case ir_unop_abs:
296      op[0].abs = true;
297      op[0].negate = false;
298      this->result = op[0];
299      break;
300   case ir_unop_sign:
301      temp = fs_reg(this, ir->type);
302
303      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
304
305      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
306      inst->conditional_mod = BRW_CONDITIONAL_G;
307      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
308      inst->predicated = true;
309
310      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
311      inst->conditional_mod = BRW_CONDITIONAL_L;
312      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
313      inst->predicated = true;
314
315      break;
316   case ir_unop_rcp:
317      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
318      break;
319
320   case ir_unop_exp2:
321      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
322      break;
323   case ir_unop_log2:
324      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
325      break;
326   case ir_unop_exp:
327   case ir_unop_log:
328      assert(!"not reached: should be handled by ir_explog_to_explog2");
329      break;
330   case ir_unop_sin:
331   case ir_unop_sin_reduced:
332      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
333      break;
334   case ir_unop_cos:
335   case ir_unop_cos_reduced:
336      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
337      break;
338
339   case ir_unop_dFdx:
340      emit(FS_OPCODE_DDX, this->result, op[0]);
341      break;
342   case ir_unop_dFdy:
343      emit(FS_OPCODE_DDY, this->result, op[0]);
344      break;
345
346   case ir_binop_add:
347      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
348      break;
349   case ir_binop_sub:
350      assert(!"not reached: should be handled by ir_sub_to_add_neg");
351      break;
352
353   case ir_binop_mul:
354      if (ir->type->is_integer()) {
355	 /* For integer multiplication, the MUL uses the low 16 bits
356	  * of one of the operands (src0 on gen6, src1 on gen7).  The
357	  * MACH accumulates in the contribution of the upper 16 bits
358	  * of that operand.
359	  *
360	  * FINISHME: Emit just the MUL if we know an operand is small
361	  * enough.
362	  */
363	 if (intel->gen >= 7 && c->dispatch_width == 16)
364	    fail("16-wide explicit accumulator operands unsupported\n");
365
366	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
367
368	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
369	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
370	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
371      } else {
372	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
373      }
374      break;
375   case ir_binop_div:
376      if (intel->gen >= 7 && c->dispatch_width == 16)
377	 fail("16-wide INTDIV unsupported\n");
378
379      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
380      assert(ir->type->is_integer());
381      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
382      break;
383   case ir_binop_mod:
384      if (intel->gen >= 7 && c->dispatch_width == 16)
385	 fail("16-wide INTDIV unsupported\n");
386
387      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
388      assert(ir->type->is_integer());
389      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
390      break;
391
392   case ir_binop_less:
393   case ir_binop_greater:
394   case ir_binop_lequal:
395   case ir_binop_gequal:
396   case ir_binop_equal:
397   case ir_binop_all_equal:
398   case ir_binop_nequal:
399   case ir_binop_any_nequal:
400      temp = this->result;
401      /* original gen4 does implicit conversion before comparison. */
402      if (intel->gen < 5)
403	 temp.type = op[0].type;
404
405      resolve_ud_negate(&op[0]);
406      resolve_ud_negate(&op[1]);
407
408      resolve_bool_comparison(ir->operands[0], &op[0]);
409      resolve_bool_comparison(ir->operands[1], &op[1]);
410
411      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
412      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
413      break;
414
415   case ir_binop_logic_xor:
416      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
417      break;
418
419   case ir_binop_logic_or:
420      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
421      break;
422
423   case ir_binop_logic_and:
424      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
425      break;
426
427   case ir_binop_dot:
428   case ir_unop_any:
429      assert(!"not reached: should be handled by brw_fs_channel_expressions");
430      break;
431
432   case ir_unop_noise:
433      assert(!"not reached: should be handled by lower_noise");
434      break;
435
436   case ir_quadop_vector:
437      assert(!"not reached: should be handled by lower_quadop_vector");
438      break;
439
440   case ir_unop_sqrt:
441      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
442      break;
443
444   case ir_unop_rsq:
445      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
446      break;
447
448   case ir_unop_bitcast_i2f:
449   case ir_unop_bitcast_u2f:
450      op[0].type = BRW_REGISTER_TYPE_F;
451      this->result = op[0];
452      break;
453   case ir_unop_i2u:
454   case ir_unop_bitcast_f2u:
455      op[0].type = BRW_REGISTER_TYPE_UD;
456      this->result = op[0];
457      break;
458   case ir_unop_u2i:
459   case ir_unop_bitcast_f2i:
460      op[0].type = BRW_REGISTER_TYPE_D;
461      this->result = op[0];
462      break;
463   case ir_unop_i2f:
464   case ir_unop_u2f:
465   case ir_unop_f2i:
466   case ir_unop_f2u:
467      emit(BRW_OPCODE_MOV, this->result, op[0]);
468      break;
469
470   case ir_unop_b2i:
471      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
472      break;
473   case ir_unop_b2f:
474      temp = fs_reg(this, glsl_type::int_type);
475      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
476      emit(BRW_OPCODE_MOV, this->result, temp);
477      break;
478
479   case ir_unop_f2b:
480   case ir_unop_i2b:
481      temp = this->result;
482      /* original gen4 does implicit conversion before comparison. */
483      if (intel->gen < 5)
484	 temp.type = op[0].type;
485
486      resolve_ud_negate(&op[0]);
487
488      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
489      inst->conditional_mod = BRW_CONDITIONAL_NZ;
490      break;
491
492   case ir_unop_trunc:
493      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
494      break;
495   case ir_unop_ceil:
496      op[0].negate = !op[0].negate;
497      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
498      this->result.negate = true;
499      break;
500   case ir_unop_floor:
501      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
502      break;
503   case ir_unop_fract:
504      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
505      break;
506   case ir_unop_round_even:
507      emit(BRW_OPCODE_RNDE, this->result, op[0]);
508      break;
509
510   case ir_binop_min:
511      resolve_ud_negate(&op[0]);
512      resolve_ud_negate(&op[1]);
513
514      if (intel->gen >= 6) {
515	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
516	 inst->conditional_mod = BRW_CONDITIONAL_L;
517      } else {
518	 /* Unalias the destination */
519	 this->result = fs_reg(this, ir->type);
520
521	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
522	 inst->conditional_mod = BRW_CONDITIONAL_L;
523
524	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
525	 inst->predicated = true;
526      }
527      break;
528   case ir_binop_max:
529      resolve_ud_negate(&op[0]);
530      resolve_ud_negate(&op[1]);
531
532      if (intel->gen >= 6) {
533	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
534	 inst->conditional_mod = BRW_CONDITIONAL_GE;
535      } else {
536	 /* Unalias the destination */
537	 this->result = fs_reg(this, ir->type);
538
539	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
540	 inst->conditional_mod = BRW_CONDITIONAL_G;
541
542	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
543	 inst->predicated = true;
544      }
545      break;
546
547   case ir_binop_pow:
548      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
549      break;
550
551   case ir_unop_bit_not:
552      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
553      break;
554   case ir_binop_bit_and:
555      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
556      break;
557   case ir_binop_bit_xor:
558      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
559      break;
560   case ir_binop_bit_or:
561      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
562      break;
563
564   case ir_binop_lshift:
565      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
566      break;
567
568   case ir_binop_rshift:
569      if (ir->type->base_type == GLSL_TYPE_INT)
570	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
571      else
572	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
573      break;
574   }
575}
576
577void
578fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
579				   const glsl_type *type, bool predicated)
580{
581   switch (type->base_type) {
582   case GLSL_TYPE_FLOAT:
583   case GLSL_TYPE_UINT:
584   case GLSL_TYPE_INT:
585   case GLSL_TYPE_BOOL:
586      for (unsigned int i = 0; i < type->components(); i++) {
587	 l.type = brw_type_for_base_type(type);
588	 r.type = brw_type_for_base_type(type);
589
590	 if (predicated || !l.equals(r)) {
591	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
592	    inst->predicated = predicated;
593	 }
594
595	 l.reg_offset++;
596	 r.reg_offset++;
597      }
598      break;
599   case GLSL_TYPE_ARRAY:
600      for (unsigned int i = 0; i < type->length; i++) {
601	 emit_assignment_writes(l, r, type->fields.array, predicated);
602      }
603      break;
604
605   case GLSL_TYPE_STRUCT:
606      for (unsigned int i = 0; i < type->length; i++) {
607	 emit_assignment_writes(l, r, type->fields.structure[i].type,
608				predicated);
609      }
610      break;
611
612   case GLSL_TYPE_SAMPLER:
613      break;
614
615   default:
616      assert(!"not reached");
617      break;
618   }
619}
620
621/* If the RHS processing resulted in an instruction generating a
622 * temporary value, and it would be easy to rewrite the instruction to
623 * generate its result right into the LHS instead, do so.  This ends
624 * up reliably removing instructions where it can be tricky to do so
625 * later without real UD chain information.
626 */
627bool
628fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
629                                   fs_reg dst,
630                                   fs_reg src,
631                                   fs_inst *pre_rhs_inst,
632                                   fs_inst *last_rhs_inst)
633{
634   /* Only attempt if we're doing a direct assignment. */
635   if (ir->condition ||
636       !(ir->lhs->type->is_scalar() ||
637        (ir->lhs->type->is_vector() &&
638         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
639      return false;
640
641   /* Make sure the last instruction generated our source reg. */
642   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
643						    last_rhs_inst,
644						    src);
645   if (!modify)
646      return false;
647
648   /* If last_rhs_inst wrote a different number of components than our LHS,
649    * we can't safely rewrite it.
650    */
651   if (ir->lhs->type->vector_elements != modify->regs_written())
652      return false;
653
654   /* Success!  Rewrite the instruction. */
655   modify->dst = dst;
656
657   return true;
658}
659
660void
661fs_visitor::visit(ir_assignment *ir)
662{
663   fs_reg l, r;
664   fs_inst *inst;
665
666   /* FINISHME: arrays on the lhs */
667   ir->lhs->accept(this);
668   l = this->result;
669
670   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
671
672   ir->rhs->accept(this);
673   r = this->result;
674
675   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
676
677   assert(l.file != BAD_FILE);
678   assert(r.file != BAD_FILE);
679
680   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
681      return;
682
683   if (ir->condition) {
684      emit_bool_to_cond_code(ir->condition);
685   }
686
687   if (ir->lhs->type->is_scalar() ||
688       ir->lhs->type->is_vector()) {
689      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
690	 if (ir->write_mask & (1 << i)) {
691	    inst = emit(BRW_OPCODE_MOV, l, r);
692	    if (ir->condition)
693	       inst->predicated = true;
694	    r.reg_offset++;
695	 }
696	 l.reg_offset++;
697      }
698   } else {
699      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
700   }
701}
702
703fs_inst *
704fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
705			      int sampler)
706{
707   int mlen;
708   int base_mrf = 1;
709   bool simd16 = false;
710   fs_reg orig_dst;
711
712   /* g0 header. */
713   mlen = 1;
714
715   if (ir->shadow_comparitor && ir->op != ir_txd) {
716      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
717	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
718	 coordinate.reg_offset++;
719      }
720      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
721      mlen += 3;
722
723      if (ir->op == ir_tex) {
724	 /* There's no plain shadow compare message, so we use shadow
725	  * compare with a bias of 0.0.
726	  */
727	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
728	 mlen++;
729      } else if (ir->op == ir_txb) {
730	 ir->lod_info.bias->accept(this);
731	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
732	 mlen++;
733      } else {
734	 assert(ir->op == ir_txl);
735	 ir->lod_info.lod->accept(this);
736	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
737	 mlen++;
738      }
739
740      ir->shadow_comparitor->accept(this);
741      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
742      mlen++;
743   } else if (ir->op == ir_tex) {
744      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
745	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
746	 coordinate.reg_offset++;
747      }
748      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
749      mlen += 3;
750   } else if (ir->op == ir_txd) {
751      ir->lod_info.grad.dPdx->accept(this);
752      fs_reg dPdx = this->result;
753
754      ir->lod_info.grad.dPdy->accept(this);
755      fs_reg dPdy = this->result;
756
757      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
758	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
759	 coordinate.reg_offset++;
760      }
761      /* the slots for u and v are always present, but r is optional */
762      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
763
764      /*  P   = u, v, r
765       * dPdx = dudx, dvdx, drdx
766       * dPdy = dudy, dvdy, drdy
767       *
768       * 1-arg: Does not exist.
769       *
770       * 2-arg: dudx   dvdx   dudy   dvdy
771       *        dPdx.x dPdx.y dPdy.x dPdy.y
772       *        m4     m5     m6     m7
773       *
774       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
775       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
776       *        m5     m6     m7     m8     m9     m10
777       */
778      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
779	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
780	 dPdx.reg_offset++;
781      }
782      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
783
784      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
785	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
786	 dPdy.reg_offset++;
787      }
788      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
789   } else if (ir->op == ir_txs) {
790      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
791      simd16 = true;
792      ir->lod_info.lod->accept(this);
793      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
794      mlen += 2;
795   } else {
796      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
797       * instructions.  We'll need to do SIMD16 here.
798       */
799      simd16 = true;
800      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
801
802      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
803	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
804	      coordinate);
805	 coordinate.reg_offset++;
806      }
807
808      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
809       * be necessary for TXF (ld), but seems wise to do for all messages.
810       */
811      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
812	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
813      }
814
815      /* lod/bias appears after u/v/r. */
816      mlen += 6;
817
818      if (ir->op == ir_txb) {
819	 ir->lod_info.bias->accept(this);
820	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
821	 mlen++;
822      } else {
823	 ir->lod_info.lod->accept(this);
824	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
825			      this->result);
826	 mlen++;
827      }
828
829      /* The unused upper half. */
830      mlen++;
831   }
832
833   if (simd16) {
834      /* Now, since we're doing simd16, the return is 2 interleaved
835       * vec4s where the odd-indexed ones are junk. We'll need to move
836       * this weirdness around to the expected layout.
837       */
838      orig_dst = dst;
839      const glsl_type *vec_type =
840	 glsl_type::get_instance(ir->type->base_type, 4, 1);
841      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
842      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
843			       : BRW_REGISTER_TYPE_F;
844   }
845
846   fs_inst *inst = NULL;
847   switch (ir->op) {
848   case ir_tex:
849      inst = emit(SHADER_OPCODE_TEX, dst);
850      break;
851   case ir_txb:
852      inst = emit(FS_OPCODE_TXB, dst);
853      break;
854   case ir_txl:
855      inst = emit(SHADER_OPCODE_TXL, dst);
856      break;
857   case ir_txd:
858      inst = emit(SHADER_OPCODE_TXD, dst);
859      break;
860   case ir_txs:
861      inst = emit(SHADER_OPCODE_TXS, dst);
862      break;
863   case ir_txf:
864      inst = emit(SHADER_OPCODE_TXF, dst);
865      break;
866   }
867   inst->base_mrf = base_mrf;
868   inst->mlen = mlen;
869   inst->header_present = true;
870
871   if (simd16) {
872      for (int i = 0; i < 4; i++) {
873	 emit(BRW_OPCODE_MOV, orig_dst, dst);
874	 orig_dst.reg_offset++;
875	 dst.reg_offset += 2;
876      }
877   }
878
879   return inst;
880}
881
882/* gen5's sampler has slots for u, v, r, array index, then optional
883 * parameters like shadow comparitor or LOD bias.  If optional
884 * parameters aren't present, those base slots are optional and don't
885 * need to be included in the message.
886 *
887 * We don't fill in the unnecessary slots regardless, which may look
888 * surprising in the disassembly.
889 */
890fs_inst *
891fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
892			      int sampler)
893{
894   int mlen = 0;
895   int base_mrf = 2;
896   int reg_width = c->dispatch_width / 8;
897   bool header_present = false;
898   const int vector_elements =
899      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
900
901   if (ir->offset != NULL && ir->op == ir_txf) {
902      /* It appears that the ld instruction used for txf does its
903       * address bounds check before adding in the offset.  To work
904       * around this, just add the integer offset to the integer texel
905       * coordinate, and don't put the offset in the header.
906       */
907      ir_constant *offset = ir->offset->as_constant();
908      for (int i = 0; i < vector_elements; i++) {
909	 emit(BRW_OPCODE_ADD,
910	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
911	      coordinate,
912	      offset->value.i[i]);
913	 coordinate.reg_offset++;
914      }
915   } else {
916      if (ir->offset) {
917	 /* The offsets set up by the ir_texture visitor are in the
918	  * m1 header, so we can't go headerless.
919	  */
920	 header_present = true;
921	 mlen++;
922	 base_mrf--;
923      }
924
925      for (int i = 0; i < vector_elements; i++) {
926	 emit(BRW_OPCODE_MOV,
927	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
928	      coordinate);
929	 coordinate.reg_offset++;
930      }
931   }
932   mlen += vector_elements * reg_width;
933
934   if (ir->shadow_comparitor && ir->op != ir_txd) {
935      mlen = MAX2(mlen, header_present + 4 * reg_width);
936
937      ir->shadow_comparitor->accept(this);
938      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
939      mlen += reg_width;
940   }
941
942   fs_inst *inst = NULL;
943   switch (ir->op) {
944   case ir_tex:
945      inst = emit(SHADER_OPCODE_TEX, dst);
946      break;
947   case ir_txb:
948      ir->lod_info.bias->accept(this);
949      mlen = MAX2(mlen, header_present + 4 * reg_width);
950      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
951      mlen += reg_width;
952
953      inst = emit(FS_OPCODE_TXB, dst);
954
955      break;
956   case ir_txl:
957      ir->lod_info.lod->accept(this);
958      mlen = MAX2(mlen, header_present + 4 * reg_width);
959      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
960      mlen += reg_width;
961
962      inst = emit(SHADER_OPCODE_TXL, dst);
963      break;
964   case ir_txd: {
965      ir->lod_info.grad.dPdx->accept(this);
966      fs_reg dPdx = this->result;
967
968      ir->lod_info.grad.dPdy->accept(this);
969      fs_reg dPdy = this->result;
970
971      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
972
973      /**
974       *  P   =  u,    v,    r
975       * dPdx = dudx, dvdx, drdx
976       * dPdy = dudy, dvdy, drdy
977       *
978       * Load up these values:
979       * - dudx   dudy   dvdx   dvdy   drdx   drdy
980       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
981       */
982      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
983	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
984	 dPdx.reg_offset++;
985	 mlen += reg_width;
986
987	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
988	 dPdy.reg_offset++;
989	 mlen += reg_width;
990      }
991
992      inst = emit(SHADER_OPCODE_TXD, dst);
993      break;
994   }
995   case ir_txs:
996      ir->lod_info.lod->accept(this);
997      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
998      mlen += reg_width;
999      inst = emit(SHADER_OPCODE_TXS, dst);
1000      break;
1001   case ir_txf:
1002      mlen = header_present + 4 * reg_width;
1003
1004      ir->lod_info.lod->accept(this);
1005      emit(BRW_OPCODE_MOV,
1006	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
1007	   this->result);
1008      inst = emit(SHADER_OPCODE_TXF, dst);
1009      break;
1010   }
1011   inst->base_mrf = base_mrf;
1012   inst->mlen = mlen;
1013   inst->header_present = header_present;
1014
1015   if (mlen > 11) {
1016      fail("Message length >11 disallowed by hardware\n");
1017   }
1018
1019   return inst;
1020}
1021
1022fs_inst *
1023fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1024			      int sampler)
1025{
1026   int mlen = 0;
1027   int base_mrf = 2;
1028   int reg_width = c->dispatch_width / 8;
1029   bool header_present = false;
1030   int offsets[3];
1031
1032   if (ir->offset && ir->op != ir_txf) {
1033      /* The offsets set up by the ir_texture visitor are in the
1034       * m1 header, so we can't go headerless.
1035       */
1036      header_present = true;
1037      mlen++;
1038      base_mrf--;
1039   }
1040
1041   if (ir->shadow_comparitor && ir->op != ir_txd) {
1042      ir->shadow_comparitor->accept(this);
1043      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1044      mlen += reg_width;
1045   }
1046
1047   /* Set up the LOD info */
1048   switch (ir->op) {
1049   case ir_tex:
1050      break;
1051   case ir_txb:
1052      ir->lod_info.bias->accept(this);
1053      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1054      mlen += reg_width;
1055      break;
1056   case ir_txl:
1057      ir->lod_info.lod->accept(this);
1058      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1059      mlen += reg_width;
1060      break;
1061   case ir_txd: {
1062      if (c->dispatch_width == 16)
1063	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1064
1065      ir->lod_info.grad.dPdx->accept(this);
1066      fs_reg dPdx = this->result;
1067
1068      ir->lod_info.grad.dPdy->accept(this);
1069      fs_reg dPdy = this->result;
1070
1071      /* Load dPdx and the coordinate together:
1072       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1073       */
1074      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1075	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1076	 coordinate.reg_offset++;
1077	 mlen += reg_width;
1078
1079	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1080	 dPdx.reg_offset++;
1081	 mlen += reg_width;
1082
1083	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1084	 dPdy.reg_offset++;
1085	 mlen += reg_width;
1086      }
1087      break;
1088   }
1089   case ir_txs:
1090      ir->lod_info.lod->accept(this);
1091      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1092      mlen += reg_width;
1093      break;
1094   case ir_txf:
1095      /* It appears that the ld instruction used for txf does its
1096       * address bounds check before adding in the offset.  To work
1097       * around this, just add the integer offset to the integer texel
1098       * coordinate, and don't put the offset in the header.
1099       */
1100      if (ir->offset) {
1101	 ir_constant *offset = ir->offset->as_constant();
1102	 offsets[0] = offset->value.i[0];
1103	 offsets[1] = offset->value.i[1];
1104	 offsets[2] = offset->value.i[2];
1105      } else {
1106	 memset(offsets, 0, sizeof(offsets));
1107      }
1108
1109      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1110      emit(BRW_OPCODE_ADD,
1111	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1112      coordinate.reg_offset++;
1113      mlen += reg_width;
1114
1115      ir->lod_info.lod->accept(this);
1116      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1117      mlen += reg_width;
1118
1119      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1120	 emit(BRW_OPCODE_ADD,
1121	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1122	 coordinate.reg_offset++;
1123	 mlen += reg_width;
1124      }
1125      break;
1126   }
1127
1128   /* Set up the coordinate (except for cases where it was done above) */
1129   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1130      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1131	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1132	 coordinate.reg_offset++;
1133	 mlen += reg_width;
1134      }
1135   }
1136
1137   /* Generate the SEND */
1138   fs_inst *inst = NULL;
1139   switch (ir->op) {
1140   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1141   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1142   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1143   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1144   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1145   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1146   }
1147   inst->base_mrf = base_mrf;
1148   inst->mlen = mlen;
1149   inst->header_present = header_present;
1150
1151   if (mlen > 11) {
1152      fail("Message length >11 disallowed by hardware\n");
1153   }
1154
1155   return inst;
1156}
1157
1158void
1159fs_visitor::visit(ir_texture *ir)
1160{
1161   fs_inst *inst = NULL;
1162
1163   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1164   sampler = fp->Base.SamplerUnits[sampler];
1165
1166   /* Our hardware doesn't have a sample_d_c message, so shadow compares
1167    * for textureGrad/TXD need to be emulated with instructions.
1168    */
1169   bool hw_compare_supported = ir->op != ir_txd;
1170   if (ir->shadow_comparitor && !hw_compare_supported) {
1171      assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1172      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1173      if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1174	 return swizzle_result(ir, fs_reg(1.0f), sampler);
1175      else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1176	 return swizzle_result(ir, fs_reg(0.0f), sampler);
1177   }
1178
1179   if (ir->coordinate)
1180      ir->coordinate->accept(this);
1181   fs_reg coordinate = this->result;
1182
1183   if (ir->offset != NULL && !(intel->gen == 7 && ir->op == ir_txf)) {
1184      uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1185
1186      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1187      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1188	   fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1189
1190      /* Then set the offset bits in DWord 2 of the message header. */
1191      emit(BRW_OPCODE_MOV,
1192	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1193			 BRW_REGISTER_TYPE_UD)),
1194	   fs_reg(brw_imm_uw(offset_bits)));
1195   }
1196
1197   /* Should be lowered by do_lower_texture_projection */
1198   assert(!ir->projector);
1199
1200   bool needs_gl_clamp = true;
1201
1202   fs_reg scale_x, scale_y;
1203
1204   /* The 965 requires the EU to do the normalization of GL rectangle
1205    * texture coordinates.  We use the program parameter state
1206    * tracking to get the scaling factor.
1207    */
1208   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1209       (intel->gen < 6 ||
1210	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1211			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1212      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1213      int tokens[STATE_LENGTH] = {
1214	 STATE_INTERNAL,
1215	 STATE_TEXRECT_SCALE,
1216	 sampler,
1217	 0,
1218	 0
1219      };
1220
1221      if (c->dispatch_width == 16) {
1222	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1223	 this->result = fs_reg(this, ir->type);
1224	 return;
1225      }
1226
1227      c->prog_data.param_convert[c->prog_data.nr_params] =
1228	 PARAM_NO_CONVERT;
1229      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1230	 PARAM_NO_CONVERT;
1231
1232      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1233      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1234
1235      GLuint index = _mesa_add_state_reference(params,
1236					       (gl_state_index *)tokens);
1237
1238      this->param_index[c->prog_data.nr_params] = index;
1239      this->param_offset[c->prog_data.nr_params] = 0;
1240      c->prog_data.nr_params++;
1241      this->param_index[c->prog_data.nr_params] = index;
1242      this->param_offset[c->prog_data.nr_params] = 1;
1243      c->prog_data.nr_params++;
1244   }
1245
1246   /* The 965 requires the EU to do the normalization of GL rectangle
1247    * texture coordinates.  We use the program parameter state
1248    * tracking to get the scaling factor.
1249    */
1250   if (intel->gen < 6 &&
1251       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1252      fs_reg dst = fs_reg(this, ir->coordinate->type);
1253      fs_reg src = coordinate;
1254      coordinate = dst;
1255
1256      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1257      dst.reg_offset++;
1258      src.reg_offset++;
1259      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1260   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1261      /* On gen6+, the sampler handles the rectangle coordinates
1262       * natively, without needing rescaling.  But that means we have
1263       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1264       * not [0, 1] like the default case below.
1265       */
1266      needs_gl_clamp = false;
1267
1268      for (int i = 0; i < 2; i++) {
1269	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1270	    fs_reg chan = coordinate;
1271	    chan.reg_offset += i;
1272
1273	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1274	    inst->conditional_mod = BRW_CONDITIONAL_G;
1275
1276	    /* Our parameter comes in as 1.0/width or 1.0/height,
1277	     * because that's what people normally want for doing
1278	     * texture rectangle handling.  We need width or height
1279	     * for clamping, but we don't care enough to make a new
1280	     * parameter type, so just invert back.
1281	     */
1282	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1283	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1284	    emit(SHADER_OPCODE_RCP, limit, limit);
1285
1286	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1287	    inst->conditional_mod = BRW_CONDITIONAL_L;
1288	 }
1289      }
1290   }
1291
1292   if (ir->coordinate && needs_gl_clamp) {
1293      for (unsigned int i = 0;
1294	   i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1295	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1296	    fs_reg chan = coordinate;
1297	    chan.reg_offset += i;
1298
1299	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1300	    inst->saturate = true;
1301	 }
1302      }
1303   }
1304
1305   /* Writemasking doesn't eliminate channels on SIMD8 texture
1306    * samples, so don't worry about them.
1307    */
1308   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1309
1310   if (intel->gen >= 7) {
1311      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1312   } else if (intel->gen >= 5) {
1313      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1314   } else {
1315      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1316   }
1317
1318   /* If there's an offset, we already set up m1.  To avoid the implied move,
1319    * use the null register.  Otherwise, we want an implied move from g0.
1320    */
1321   if (ir->offset != NULL || !inst->header_present)
1322      inst->src[0] = reg_undef;
1323   else
1324      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1325
1326   inst->sampler = sampler;
1327
1328   if (ir->shadow_comparitor) {
1329      if (hw_compare_supported) {
1330	 inst->shadow_compare = true;
1331      } else {
1332	 ir->shadow_comparitor->accept(this);
1333	 fs_reg ref = this->result;
1334
1335	 fs_reg value = dst;
1336	 dst = fs_reg(this, glsl_type::vec4_type);
1337
1338	 /* FINISHME: This needs to be done pre-filtering. */
1339
1340	 uint32_t conditional = 0;
1341	 switch (c->key.tex.compare_funcs[sampler]) {
1342	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1343	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1344	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1345	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1346	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1347	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1348	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1349	 default: assert(!"Should not get here: bad shadow compare function");
1350	 }
1351
1352	 /* Use conditional moves to load 0 or 1 as the result */
1353	 this->current_annotation = "manual shadow comparison";
1354	 for (int i = 0; i < 4; i++) {
1355	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1356
1357	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1358	    inst->conditional_mod = conditional;
1359
1360	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1361	    inst->predicated = true;
1362
1363	    dst.reg_offset++;
1364	    value.reg_offset++;
1365	 }
1366	 dst.reg_offset = 0;
1367      }
1368   }
1369
1370   swizzle_result(ir, dst, sampler);
1371}
1372
1373/**
1374 * Swizzle the result of a texture result.  This is necessary for
1375 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1376 */
1377void
1378fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1379{
1380   this->result = orig_val;
1381
1382   if (ir->op == ir_txs)
1383      return;
1384
1385   if (ir->type == glsl_type::float_type) {
1386      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1387      assert(ir->sampler->type->sampler_shadow);
1388   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1389      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1390
1391      for (int i = 0; i < 4; i++) {
1392	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1393	 fs_reg l = swizzled_result;
1394	 l.reg_offset += i;
1395
1396	 if (swiz == SWIZZLE_ZERO) {
1397	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1398	 } else if (swiz == SWIZZLE_ONE) {
1399	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1400	 } else {
1401	    fs_reg r = orig_val;
1402	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1403	    emit(BRW_OPCODE_MOV, l, r);
1404	 }
1405      }
1406      this->result = swizzled_result;
1407   }
1408}
1409
1410void
1411fs_visitor::visit(ir_swizzle *ir)
1412{
1413   ir->val->accept(this);
1414   fs_reg val = this->result;
1415
1416   if (ir->type->vector_elements == 1) {
1417      this->result.reg_offset += ir->mask.x;
1418      return;
1419   }
1420
1421   fs_reg result = fs_reg(this, ir->type);
1422   this->result = result;
1423
1424   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1425      fs_reg channel = val;
1426      int swiz = 0;
1427
1428      switch (i) {
1429      case 0:
1430	 swiz = ir->mask.x;
1431	 break;
1432      case 1:
1433	 swiz = ir->mask.y;
1434	 break;
1435      case 2:
1436	 swiz = ir->mask.z;
1437	 break;
1438      case 3:
1439	 swiz = ir->mask.w;
1440	 break;
1441      }
1442
1443      channel.reg_offset += swiz;
1444      emit(BRW_OPCODE_MOV, result, channel);
1445      result.reg_offset++;
1446   }
1447}
1448
1449void
1450fs_visitor::visit(ir_discard *ir)
1451{
1452   assert(ir->condition == NULL); /* FINISHME */
1453
1454   emit(FS_OPCODE_DISCARD);
1455   kill_emitted = true;
1456}
1457
1458void
1459fs_visitor::visit(ir_constant *ir)
1460{
1461   /* Set this->result to reg at the bottom of the function because some code
1462    * paths will cause this visitor to be applied to other fields.  This will
1463    * cause the value stored in this->result to be modified.
1464    *
1465    * Make reg constant so that it doesn't get accidentally modified along the
1466    * way.  Yes, I actually had this problem. :(
1467    */
1468   const fs_reg reg(this, ir->type);
1469   fs_reg dst_reg = reg;
1470
1471   if (ir->type->is_array()) {
1472      const unsigned size = type_size(ir->type->fields.array);
1473
1474      for (unsigned i = 0; i < ir->type->length; i++) {
1475	 ir->array_elements[i]->accept(this);
1476	 fs_reg src_reg = this->result;
1477
1478	 dst_reg.type = src_reg.type;
1479	 for (unsigned j = 0; j < size; j++) {
1480	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1481	    src_reg.reg_offset++;
1482	    dst_reg.reg_offset++;
1483	 }
1484      }
1485   } else if (ir->type->is_record()) {
1486      foreach_list(node, &ir->components) {
1487	 ir_constant *const field = (ir_constant *) node;
1488	 const unsigned size = type_size(field->type);
1489
1490	 field->accept(this);
1491	 fs_reg src_reg = this->result;
1492
1493	 dst_reg.type = src_reg.type;
1494	 for (unsigned j = 0; j < size; j++) {
1495	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1496	    src_reg.reg_offset++;
1497	    dst_reg.reg_offset++;
1498	 }
1499      }
1500   } else {
1501      const unsigned size = type_size(ir->type);
1502
1503      for (unsigned i = 0; i < size; i++) {
1504	 switch (ir->type->base_type) {
1505	 case GLSL_TYPE_FLOAT:
1506	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1507	    break;
1508	 case GLSL_TYPE_UINT:
1509	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1510	    break;
1511	 case GLSL_TYPE_INT:
1512	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1513	    break;
1514	 case GLSL_TYPE_BOOL:
1515	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1516	    break;
1517	 default:
1518	    assert(!"Non-float/uint/int/bool constant");
1519	 }
1520	 dst_reg.reg_offset++;
1521      }
1522   }
1523
1524   this->result = reg;
1525}
1526
1527void
1528fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1529{
1530   ir_expression *expr = ir->as_expression();
1531
1532   if (expr) {
1533      fs_reg op[2];
1534      fs_inst *inst;
1535
1536      assert(expr->get_num_operands() <= 2);
1537      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1538	 assert(expr->operands[i]->type->is_scalar());
1539
1540	 expr->operands[i]->accept(this);
1541	 op[i] = this->result;
1542
1543	 resolve_ud_negate(&op[i]);
1544      }
1545
1546      switch (expr->operation) {
1547      case ir_unop_logic_not:
1548	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1549	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1550	 break;
1551
1552      case ir_binop_logic_xor:
1553      case ir_binop_logic_or:
1554      case ir_binop_logic_and:
1555	 goto out;
1556
1557      case ir_unop_f2b:
1558	 if (intel->gen >= 6) {
1559	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1560	 } else {
1561	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1562	 }
1563	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1564	 break;
1565
1566      case ir_unop_i2b:
1567	 if (intel->gen >= 6) {
1568	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1569	 } else {
1570	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1571	 }
1572	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1573	 break;
1574
1575      case ir_binop_greater:
1576      case ir_binop_gequal:
1577      case ir_binop_less:
1578      case ir_binop_lequal:
1579      case ir_binop_equal:
1580      case ir_binop_all_equal:
1581      case ir_binop_nequal:
1582      case ir_binop_any_nequal:
1583	 resolve_bool_comparison(expr->operands[0], &op[0]);
1584	 resolve_bool_comparison(expr->operands[1], &op[1]);
1585
1586	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1587	 inst->conditional_mod =
1588	    brw_conditional_for_comparison(expr->operation);
1589	 break;
1590
1591      default:
1592	 assert(!"not reached");
1593	 fail("bad cond code\n");
1594	 break;
1595      }
1596      return;
1597   }
1598
1599out:
1600   ir->accept(this);
1601
1602   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1603   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1604}
1605
1606/**
1607 * Emit a gen6 IF statement with the comparison folded into the IF
1608 * instruction.
1609 */
1610void
1611fs_visitor::emit_if_gen6(ir_if *ir)
1612{
1613   ir_expression *expr = ir->condition->as_expression();
1614
1615   if (expr) {
1616      fs_reg op[2];
1617      fs_inst *inst;
1618      fs_reg temp;
1619
1620      assert(expr->get_num_operands() <= 2);
1621      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1622	 assert(expr->operands[i]->type->is_scalar());
1623
1624	 expr->operands[i]->accept(this);
1625	 op[i] = this->result;
1626      }
1627
1628      switch (expr->operation) {
1629      case ir_unop_logic_not:
1630	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1631	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1632	 return;
1633
1634      case ir_binop_logic_xor:
1635	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1636	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1637	 return;
1638
1639      case ir_binop_logic_or:
1640	 temp = fs_reg(this, glsl_type::bool_type);
1641	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1642	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1643	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1644	 return;
1645
1646      case ir_binop_logic_and:
1647	 temp = fs_reg(this, glsl_type::bool_type);
1648	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1649	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1650	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1651	 return;
1652
1653      case ir_unop_f2b:
1654	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1655	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1656	 return;
1657
1658      case ir_unop_i2b:
1659	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1660	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1661	 return;
1662
1663      case ir_binop_greater:
1664      case ir_binop_gequal:
1665      case ir_binop_less:
1666      case ir_binop_lequal:
1667      case ir_binop_equal:
1668      case ir_binop_all_equal:
1669      case ir_binop_nequal:
1670      case ir_binop_any_nequal:
1671	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1672	 inst->conditional_mod =
1673	    brw_conditional_for_comparison(expr->operation);
1674	 return;
1675      default:
1676	 assert(!"not reached");
1677	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1678	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1679	 fail("bad condition\n");
1680	 return;
1681      }
1682      return;
1683   }
1684
1685   ir->condition->accept(this);
1686
1687   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1688   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1689}
1690
1691void
1692fs_visitor::visit(ir_if *ir)
1693{
1694   fs_inst *inst;
1695
1696   if (intel->gen < 6 && c->dispatch_width == 16) {
1697      fail("Can't support (non-uniform) control flow on 16-wide\n");
1698   }
1699
1700   /* Don't point the annotation at the if statement, because then it plus
1701    * the then and else blocks get printed.
1702    */
1703   this->base_ir = ir->condition;
1704
1705   if (intel->gen == 6) {
1706      emit_if_gen6(ir);
1707   } else {
1708      emit_bool_to_cond_code(ir->condition);
1709
1710      inst = emit(BRW_OPCODE_IF);
1711      inst->predicated = true;
1712   }
1713
1714   foreach_list(node, &ir->then_instructions) {
1715      ir_instruction *ir = (ir_instruction *)node;
1716      this->base_ir = ir;
1717
1718      ir->accept(this);
1719   }
1720
1721   if (!ir->else_instructions.is_empty()) {
1722      emit(BRW_OPCODE_ELSE);
1723
1724      foreach_list(node, &ir->else_instructions) {
1725	 ir_instruction *ir = (ir_instruction *)node;
1726	 this->base_ir = ir;
1727
1728	 ir->accept(this);
1729      }
1730   }
1731
1732   emit(BRW_OPCODE_ENDIF);
1733}
1734
1735void
1736fs_visitor::visit(ir_loop *ir)
1737{
1738   fs_reg counter = reg_undef;
1739
1740   if (intel->gen < 6 && c->dispatch_width == 16) {
1741      fail("Can't support (non-uniform) control flow on 16-wide\n");
1742   }
1743
1744   if (ir->counter) {
1745      this->base_ir = ir->counter;
1746      ir->counter->accept(this);
1747      counter = *(variable_storage(ir->counter));
1748
1749      if (ir->from) {
1750	 this->base_ir = ir->from;
1751	 ir->from->accept(this);
1752
1753	 emit(BRW_OPCODE_MOV, counter, this->result);
1754      }
1755   }
1756
1757   this->base_ir = NULL;
1758   emit(BRW_OPCODE_DO);
1759
1760   if (ir->to) {
1761      this->base_ir = ir->to;
1762      ir->to->accept(this);
1763
1764      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1765      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1766
1767      inst = emit(BRW_OPCODE_BREAK);
1768      inst->predicated = true;
1769   }
1770
1771   foreach_list(node, &ir->body_instructions) {
1772      ir_instruction *ir = (ir_instruction *)node;
1773
1774      this->base_ir = ir;
1775      ir->accept(this);
1776   }
1777
1778   if (ir->increment) {
1779      this->base_ir = ir->increment;
1780      ir->increment->accept(this);
1781      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1782   }
1783
1784   this->base_ir = NULL;
1785   emit(BRW_OPCODE_WHILE);
1786}
1787
1788void
1789fs_visitor::visit(ir_loop_jump *ir)
1790{
1791   switch (ir->mode) {
1792   case ir_loop_jump::jump_break:
1793      emit(BRW_OPCODE_BREAK);
1794      break;
1795   case ir_loop_jump::jump_continue:
1796      emit(BRW_OPCODE_CONTINUE);
1797      break;
1798   }
1799}
1800
1801void
1802fs_visitor::visit(ir_call *ir)
1803{
1804   assert(!"FINISHME");
1805}
1806
1807void
1808fs_visitor::visit(ir_return *ir)
1809{
1810   assert(!"FINISHME");
1811}
1812
1813void
1814fs_visitor::visit(ir_function *ir)
1815{
1816   /* Ignore function bodies other than main() -- we shouldn't see calls to
1817    * them since they should all be inlined before we get to ir_to_mesa.
1818    */
1819   if (strcmp(ir->name, "main") == 0) {
1820      const ir_function_signature *sig;
1821      exec_list empty;
1822
1823      sig = ir->matching_signature(&empty);
1824
1825      assert(sig);
1826
1827      foreach_list(node, &sig->body) {
1828	 ir_instruction *ir = (ir_instruction *)node;
1829	 this->base_ir = ir;
1830
1831	 ir->accept(this);
1832      }
1833   }
1834}
1835
1836void
1837fs_visitor::visit(ir_function_signature *ir)
1838{
1839   assert(!"not reached");
1840   (void)ir;
1841}
1842
1843fs_inst *
1844fs_visitor::emit(fs_inst inst)
1845{
1846   fs_inst *list_inst = new(mem_ctx) fs_inst;
1847   *list_inst = inst;
1848
1849   if (force_uncompressed_stack > 0)
1850      list_inst->force_uncompressed = true;
1851   else if (force_sechalf_stack > 0)
1852      list_inst->force_sechalf = true;
1853
1854   list_inst->annotation = this->current_annotation;
1855   list_inst->ir = this->base_ir;
1856
1857   this->instructions.push_tail(list_inst);
1858
1859   return list_inst;
1860}
1861
1862/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1863void
1864fs_visitor::emit_dummy_fs()
1865{
1866   int reg_width = c->dispatch_width / 8;
1867
1868   /* Everyone's favorite color. */
1869   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1870   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1871   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1872   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1873
1874   fs_inst *write;
1875   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1876   write->base_mrf = 2;
1877   write->mlen = 4 * reg_width;
1878   write->eot = true;
1879}
1880
1881/* The register location here is relative to the start of the URB
1882 * data.  It will get adjusted to be a real location before
1883 * generate_code() time.
1884 */
1885struct brw_reg
1886fs_visitor::interp_reg(int location, int channel)
1887{
1888   int regnr = urb_setup[location] * 2 + channel / 2;
1889   int stride = (channel & 1) * 4;
1890
1891   assert(urb_setup[location] != -1);
1892
1893   return brw_vec1_grf(regnr, stride);
1894}
1895
1896/** Emits the interpolation for the varying inputs. */
1897void
1898fs_visitor::emit_interpolation_setup_gen4()
1899{
1900   this->current_annotation = "compute pixel centers";
1901   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1902   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1903   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1904   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1905
1906   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1907   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1908
1909   this->current_annotation = "compute pixel deltas from v0";
1910   if (brw->has_pln) {
1911      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1912         fs_reg(this, glsl_type::vec2_type);
1913      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1914         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1915      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1916   } else {
1917      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1918         fs_reg(this, glsl_type::float_type);
1919      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1920         fs_reg(this, glsl_type::float_type);
1921   }
1922   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1923	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1924   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1925	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1926
1927   this->current_annotation = "compute pos.w and 1/pos.w";
1928   /* Compute wpos.w.  It's always in our setup, since it's needed to
1929    * interpolate the other attributes.
1930    */
1931   this->wpos_w = fs_reg(this, glsl_type::float_type);
1932   emit(FS_OPCODE_LINTERP, wpos_w,
1933        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1934        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1935	interp_reg(FRAG_ATTRIB_WPOS, 3));
1936   /* Compute the pixel 1/W value from wpos.w. */
1937   this->pixel_w = fs_reg(this, glsl_type::float_type);
1938   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1939   this->current_annotation = NULL;
1940}
1941
1942/** Emits the interpolation for the varying inputs. */
1943void
1944fs_visitor::emit_interpolation_setup_gen6()
1945{
1946   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1947
1948   /* If the pixel centers end up used, the setup is the same as for gen4. */
1949   this->current_annotation = "compute pixel centers";
1950   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1951   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1952   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1953   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1954   emit(BRW_OPCODE_ADD,
1955	int_pixel_x,
1956	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1957	fs_reg(brw_imm_v(0x10101010)));
1958   emit(BRW_OPCODE_ADD,
1959	int_pixel_y,
1960	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1961	fs_reg(brw_imm_v(0x11001100)));
1962
1963   /* As of gen6, we can no longer mix float and int sources.  We have
1964    * to turn the integer pixel centers into floats for their actual
1965    * use.
1966    */
1967   this->pixel_x = fs_reg(this, glsl_type::float_type);
1968   this->pixel_y = fs_reg(this, glsl_type::float_type);
1969   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1970   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1971
1972   this->current_annotation = "compute pos.w";
1973   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1974   this->wpos_w = fs_reg(this, glsl_type::float_type);
1975   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1976
1977   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1978      uint8_t reg = c->barycentric_coord_reg[i];
1979      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1980      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1981   }
1982
1983   this->current_annotation = NULL;
1984}
1985
1986void
1987fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1988{
1989   int reg_width = c->dispatch_width / 8;
1990   fs_inst *inst;
1991   fs_reg color = outputs[target];
1992   fs_reg mrf;
1993
1994   /* If there's no color data to be written, skip it. */
1995   if (color.file == BAD_FILE)
1996      return;
1997
1998   color.reg_offset += index;
1999
2000   if (c->dispatch_width == 8 || intel->gen >= 6) {
2001      /* SIMD8 write looks like:
2002       * m + 0: r0
2003       * m + 1: r1
2004       * m + 2: g0
2005       * m + 3: g1
2006       *
2007       * gen6 SIMD16 DP write looks like:
2008       * m + 0: r0
2009       * m + 1: r1
2010       * m + 2: g0
2011       * m + 3: g1
2012       * m + 4: b0
2013       * m + 5: b1
2014       * m + 6: a0
2015       * m + 7: a1
2016       */
2017      inst = emit(BRW_OPCODE_MOV,
2018		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
2019		  color);
2020      inst->saturate = c->key.clamp_fragment_color;
2021   } else {
2022      /* pre-gen6 SIMD16 single source DP write looks like:
2023       * m + 0: r0
2024       * m + 1: g0
2025       * m + 2: b0
2026       * m + 3: a0
2027       * m + 4: r1
2028       * m + 5: g1
2029       * m + 6: b1
2030       * m + 7: a1
2031       */
2032      if (brw->has_compr4) {
2033	 /* By setting the high bit of the MRF register number, we
2034	  * indicate that we want COMPR4 mode - instead of doing the
2035	  * usual destination + 1 for the second half we get
2036	  * destination + 4.
2037	  */
2038	 inst = emit(BRW_OPCODE_MOV,
2039		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2040			    color.type),
2041		     color);
2042	 inst->saturate = c->key.clamp_fragment_color;
2043      } else {
2044	 push_force_uncompressed();
2045	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
2046					    color.type),
2047		     color);
2048	 inst->saturate = c->key.clamp_fragment_color;
2049	 pop_force_uncompressed();
2050
2051	 push_force_sechalf();
2052	 color.sechalf = true;
2053	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
2054					    color.type),
2055		     color);
2056	 inst->saturate = c->key.clamp_fragment_color;
2057	 pop_force_sechalf();
2058	 color.sechalf = false;
2059      }
2060   }
2061}
2062
2063void
2064fs_visitor::emit_fb_writes()
2065{
2066   this->current_annotation = "FB write header";
2067   bool header_present = true;
2068   /* We can potentially have a message length of up to 15, so we have to set
2069    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2070    */
2071   int base_mrf = 1;
2072   int nr = base_mrf;
2073   int reg_width = c->dispatch_width / 8;
2074   bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2075
2076   if (c->dispatch_width == 16 && do_dual_src) {
2077      fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2078      do_dual_src = false;
2079   }
2080
2081   /* From the Sandy Bridge PRM, volume 4, page 198:
2082    *
2083    *     "Dispatched Pixel Enables. One bit per pixel indicating
2084    *      which pixels were originally enabled when the thread was
2085    *      dispatched. This field is only required for the end-of-
2086    *      thread message and on all dual-source messages."
2087    */
2088   if (intel->gen >= 6 &&
2089       !this->kill_emitted &&
2090       !do_dual_src &&
2091       c->key.nr_color_regions == 1) {
2092      header_present = false;
2093   }
2094
2095   if (header_present) {
2096      /* m2, m3 header */
2097      nr += 2;
2098   }
2099
2100   if (c->aa_dest_stencil_reg) {
2101      push_force_uncompressed();
2102      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2103	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2104      pop_force_uncompressed();
2105   }
2106
2107   /* Reserve space for color. It'll be filled in per MRT below. */
2108   int color_mrf = nr;
2109   nr += 4 * reg_width;
2110   if (do_dual_src)
2111      nr += 4;
2112
2113   if (c->source_depth_to_render_target) {
2114      if (intel->gen == 6 && c->dispatch_width == 16) {
2115	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2116	  * used.  This would require 8-wide moves of each half to
2117	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2118	  * Just bail on doing so for now.
2119	  */
2120	 fail("Missing support for simd16 depth writes on gen6\n");
2121      }
2122
2123      if (c->computes_depth) {
2124	 /* Hand over gl_FragDepth. */
2125	 assert(this->frag_depth);
2126	 fs_reg depth = *(variable_storage(this->frag_depth));
2127
2128	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2129      } else {
2130	 /* Pass through the payload depth. */
2131	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2132	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2133      }
2134      nr += reg_width;
2135   }
2136
2137   if (c->dest_depth_reg) {
2138      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2139	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2140      nr += reg_width;
2141   }
2142
2143   if (do_dual_src) {
2144      fs_reg src0 = this->outputs[0];
2145      fs_reg src1 = this->dual_src_output;
2146
2147      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2148						 "FB write src0");
2149      for (int i = 0; i < 4; i++) {
2150	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2151			      fs_reg(MRF, color_mrf + i, src0.type),
2152			      src0);
2153	 src0.reg_offset++;
2154	 inst->saturate = c->key.clamp_fragment_color;
2155      }
2156
2157      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2158						 "FB write src1");
2159      for (int i = 0; i < 4; i++) {
2160	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2161			      fs_reg(MRF, color_mrf + 4 + i, src1.type),
2162			      src1);
2163	 src1.reg_offset++;
2164	 inst->saturate = c->key.clamp_fragment_color;
2165      }
2166
2167      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2168      inst->target = 0;
2169      inst->base_mrf = base_mrf;
2170      inst->mlen = nr - base_mrf;
2171      inst->eot = true;
2172      inst->header_present = header_present;
2173
2174      c->prog_data.dual_src_blend = true;
2175      this->current_annotation = NULL;
2176      return;
2177   }
2178
2179   for (int target = 0; target < c->key.nr_color_regions; target++) {
2180      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2181						 "FB write target %d",
2182						 target);
2183      for (unsigned i = 0; i < this->output_components[target]; i++)
2184	 emit_color_write(target, i, color_mrf);
2185
2186      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2187      inst->target = target;
2188      inst->base_mrf = base_mrf;
2189      inst->mlen = nr - base_mrf;
2190      if (target == c->key.nr_color_regions - 1)
2191	 inst->eot = true;
2192      inst->header_present = header_present;
2193   }
2194
2195   if (c->key.nr_color_regions == 0) {
2196      if (c->key.alpha_test) {
2197	 /* If the alpha test is enabled but there's no color buffer,
2198	  * we still need to send alpha out the pipeline to our null
2199	  * renderbuffer.
2200	  */
2201	 emit_color_write(0, 3, color_mrf);
2202      }
2203
2204      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2205      inst->base_mrf = base_mrf;
2206      inst->mlen = nr - base_mrf;
2207      inst->eot = true;
2208      inst->header_present = header_present;
2209   }
2210
2211   this->current_annotation = NULL;
2212}
2213
2214void
2215fs_visitor::resolve_ud_negate(fs_reg *reg)
2216{
2217   if (reg->type != BRW_REGISTER_TYPE_UD ||
2218       !reg->negate)
2219      return;
2220
2221   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2222   emit(BRW_OPCODE_MOV, temp, *reg);
2223   *reg = temp;
2224}
2225
2226void
2227fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2228{
2229   if (rvalue->type != glsl_type::bool_type)
2230      return;
2231
2232   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2233   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2234   *reg = temp;
2235}
2236