brw_fs_visitor.cpp revision 27bf9c1997b77f85c2099436e9ad5dfc0f1608c7
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->index > 0) {
76	 assert(ir->location == FRAG_RESULT_DATA0);
77	 assert(ir->index == 1);
78	 this->dual_src_output = *reg;
79      } else if (ir->location == FRAG_RESULT_COLOR) {
80	 /* Writing gl_FragColor outputs to all color regions. */
81	 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
82	    this->outputs[i] = *reg;
83	    this->output_components[i] = 4;
84	 }
85      } else if (ir->location == FRAG_RESULT_DEPTH) {
86	 this->frag_depth = ir;
87      } else {
88	 /* gl_FragData or a user-defined FS output */
89	 assert(ir->location >= FRAG_RESULT_DATA0 &&
90		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92	 int vector_elements =
93	    ir->type->is_array() ? ir->type->fields.array->vector_elements
94				 : ir->type->vector_elements;
95
96	 /* General color output. */
97	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98	    int output = ir->location - FRAG_RESULT_DATA0 + i;
99	    this->outputs[output] = *reg;
100	    this->outputs[output].reg_offset += vector_elements * i;
101	    this->output_components[output] = vector_elements;
102	 }
103      }
104   } else if (ir->mode == ir_var_uniform) {
105      int param_index = c->prog_data.nr_params;
106
107      if (c->dispatch_width == 16) {
108	 if (!variable_storage(ir)) {
109	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
110	 }
111	 return;
112      }
113
114      if (!strncmp(ir->name, "gl_", 3)) {
115	 setup_builtin_uniform_values(ir);
116      } else {
117	 setup_uniform_values(ir->location, ir->type);
118      }
119
120      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
121      reg->type = brw_type_for_base_type(ir->type);
122   }
123
124   if (!reg)
125      reg = new(this->mem_ctx) fs_reg(this, ir->type);
126
127   hash_table_insert(this->variable_ht, reg, ir);
128}
129
130void
131fs_visitor::visit(ir_dereference_variable *ir)
132{
133   fs_reg *reg = variable_storage(ir->var);
134   this->result = *reg;
135}
136
137void
138fs_visitor::visit(ir_dereference_record *ir)
139{
140   const glsl_type *struct_type = ir->record->type;
141
142   ir->record->accept(this);
143
144   unsigned int offset = 0;
145   for (unsigned int i = 0; i < struct_type->length; i++) {
146      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
147	 break;
148      offset += type_size(struct_type->fields.structure[i].type);
149   }
150   this->result.reg_offset += offset;
151   this->result.type = brw_type_for_base_type(ir->type);
152}
153
154void
155fs_visitor::visit(ir_dereference_array *ir)
156{
157   ir_constant *index;
158   int element_size;
159
160   ir->array->accept(this);
161   index = ir->array_index->as_constant();
162
163   element_size = type_size(ir->type);
164   this->result.type = brw_type_for_base_type(ir->type);
165
166   if (index) {
167      assert(this->result.file == UNIFORM || this->result.file == GRF);
168      this->result.reg_offset += index->value.i[0] * element_size;
169   } else {
170      assert(!"FINISHME: non-constant array element");
171   }
172}
173
174/* Instruction selection: Produce a MOV.sat instead of
175 * MIN(MAX(val, 0), 1) when possible.
176 */
177bool
178fs_visitor::try_emit_saturate(ir_expression *ir)
179{
180   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
181
182   if (!sat_val)
183      return false;
184
185   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
186
187   sat_val->accept(this);
188   fs_reg src = this->result;
189
190   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
191
192   /* If the last instruction from our accept() didn't generate our
193    * src, generate a saturated MOV
194    */
195   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
196   if (!modify || modify->regs_written() != 1) {
197      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
198      inst->saturate = true;
199   } else {
200      modify->saturate = true;
201      this->result = src;
202   }
203
204
205   return true;
206}
207
208bool
209fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
210{
211   /* 3-src instructions were introduced in gen6. */
212   if (intel->gen < 6)
213      return false;
214
215   /* MAD can only handle floating-point data. */
216   if (ir->type != glsl_type::float_type)
217      return false;
218
219   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
220   ir_expression *mul = ir->operands[mul_arg]->as_expression();
221
222   if (!mul || mul->operation != ir_binop_mul)
223      return false;
224
225   if (nonmul->as_constant() ||
226       mul->operands[0]->as_constant() ||
227       mul->operands[1]->as_constant())
228      return false;
229
230   nonmul->accept(this);
231   fs_reg src0 = this->result;
232
233   mul->operands[0]->accept(this);
234   fs_reg src1 = this->result;
235
236   mul->operands[1]->accept(this);
237   fs_reg src2 = this->result;
238
239   this->result = fs_reg(this, ir->type);
240   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
241
242   return true;
243}
244
245void
246fs_visitor::visit(ir_expression *ir)
247{
248   unsigned int operand;
249   fs_reg op[2], temp;
250   fs_inst *inst;
251
252   assert(ir->get_num_operands() <= 2);
253
254   if (try_emit_saturate(ir))
255      return;
256   if (ir->operation == ir_binop_add) {
257      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
258	 return;
259   }
260
261   for (operand = 0; operand < ir->get_num_operands(); operand++) {
262      ir->operands[operand]->accept(this);
263      if (this->result.file == BAD_FILE) {
264	 ir_print_visitor v;
265	 fail("Failed to get tree for expression operand:\n");
266	 ir->operands[operand]->accept(&v);
267      }
268      op[operand] = this->result;
269
270      /* Matrix expression operands should have been broken down to vector
271       * operations already.
272       */
273      assert(!ir->operands[operand]->type->is_matrix());
274      /* And then those vector operands should have been broken down to scalar.
275       */
276      assert(!ir->operands[operand]->type->is_vector());
277   }
278
279   /* Storage for our result.  If our result goes into an assignment, it will
280    * just get copy-propagated out, so no worries.
281    */
282   this->result = fs_reg(this, ir->type);
283
284   switch (ir->operation) {
285   case ir_unop_logic_not:
286      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
287       * ones complement of the whole register, not just bit 0.
288       */
289      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
290      break;
291   case ir_unop_neg:
292      op[0].negate = !op[0].negate;
293      this->result = op[0];
294      break;
295   case ir_unop_abs:
296      op[0].abs = true;
297      op[0].negate = false;
298      this->result = op[0];
299      break;
300   case ir_unop_sign:
301      temp = fs_reg(this, ir->type);
302
303      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
304
305      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
306      inst->conditional_mod = BRW_CONDITIONAL_G;
307      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
308      inst->predicated = true;
309
310      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
311      inst->conditional_mod = BRW_CONDITIONAL_L;
312      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
313      inst->predicated = true;
314
315      break;
316   case ir_unop_rcp:
317      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
318      break;
319
320   case ir_unop_exp2:
321      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
322      break;
323   case ir_unop_log2:
324      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
325      break;
326   case ir_unop_exp:
327   case ir_unop_log:
328      assert(!"not reached: should be handled by ir_explog_to_explog2");
329      break;
330   case ir_unop_sin:
331   case ir_unop_sin_reduced:
332      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
333      break;
334   case ir_unop_cos:
335   case ir_unop_cos_reduced:
336      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
337      break;
338
339   case ir_unop_dFdx:
340      emit(FS_OPCODE_DDX, this->result, op[0]);
341      break;
342   case ir_unop_dFdy:
343      emit(FS_OPCODE_DDY, this->result, op[0]);
344      break;
345
346   case ir_binop_add:
347      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
348      break;
349   case ir_binop_sub:
350      assert(!"not reached: should be handled by ir_sub_to_add_neg");
351      break;
352
353   case ir_binop_mul:
354      if (ir->type->is_integer()) {
355	 /* For integer multiplication, the MUL uses the low 16 bits
356	  * of one of the operands (src0 on gen6, src1 on gen7).  The
357	  * MACH accumulates in the contribution of the upper 16 bits
358	  * of that operand.
359	  *
360	  * FINISHME: Emit just the MUL if we know an operand is small
361	  * enough.
362	  */
363	 if (intel->gen >= 7 && c->dispatch_width == 16)
364	    fail("16-wide explicit accumulator operands unsupported\n");
365
366	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
367
368	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
369	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
370	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
371      } else {
372	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
373      }
374      break;
375   case ir_binop_div:
376      if (intel->gen >= 7 && c->dispatch_width == 16)
377	 fail("16-wide INTDIV unsupported\n");
378
379      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
380      assert(ir->type->is_integer());
381      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
382      break;
383   case ir_binop_mod:
384      if (intel->gen >= 7 && c->dispatch_width == 16)
385	 fail("16-wide INTDIV unsupported\n");
386
387      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
388      assert(ir->type->is_integer());
389      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
390      break;
391
392   case ir_binop_less:
393   case ir_binop_greater:
394   case ir_binop_lequal:
395   case ir_binop_gequal:
396   case ir_binop_equal:
397   case ir_binop_all_equal:
398   case ir_binop_nequal:
399   case ir_binop_any_nequal:
400      temp = this->result;
401      /* original gen4 does implicit conversion before comparison. */
402      if (intel->gen < 5)
403	 temp.type = op[0].type;
404
405      resolve_ud_negate(&op[0]);
406      resolve_ud_negate(&op[1]);
407
408      resolve_bool_comparison(ir->operands[0], &op[0]);
409      resolve_bool_comparison(ir->operands[1], &op[1]);
410
411      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
412      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
413      break;
414
415   case ir_binop_logic_xor:
416      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
417      break;
418
419   case ir_binop_logic_or:
420      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
421      break;
422
423   case ir_binop_logic_and:
424      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
425      break;
426
427   case ir_binop_dot:
428   case ir_unop_any:
429      assert(!"not reached: should be handled by brw_fs_channel_expressions");
430      break;
431
432   case ir_unop_noise:
433      assert(!"not reached: should be handled by lower_noise");
434      break;
435
436   case ir_quadop_vector:
437      assert(!"not reached: should be handled by lower_quadop_vector");
438      break;
439
440   case ir_unop_sqrt:
441      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
442      break;
443
444   case ir_unop_rsq:
445      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
446      break;
447
448   case ir_unop_bitcast_i2f:
449   case ir_unop_bitcast_u2f:
450      op[0].type = BRW_REGISTER_TYPE_F;
451      this->result = op[0];
452      break;
453   case ir_unop_i2u:
454   case ir_unop_bitcast_f2u:
455      op[0].type = BRW_REGISTER_TYPE_UD;
456      this->result = op[0];
457      break;
458   case ir_unop_u2i:
459   case ir_unop_bitcast_f2i:
460      op[0].type = BRW_REGISTER_TYPE_D;
461      this->result = op[0];
462      break;
463   case ir_unop_i2f:
464   case ir_unop_u2f:
465   case ir_unop_f2i:
466   case ir_unop_f2u:
467      emit(BRW_OPCODE_MOV, this->result, op[0]);
468      break;
469
470   case ir_unop_b2i:
471      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
472      break;
473   case ir_unop_b2f:
474      temp = fs_reg(this, glsl_type::int_type);
475      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
476      emit(BRW_OPCODE_MOV, this->result, temp);
477      break;
478
479   case ir_unop_f2b:
480      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f));
481      inst->conditional_mod = BRW_CONDITIONAL_NZ;
482      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
483      break;
484   case ir_unop_i2b:
485      assert(op[0].type == BRW_REGISTER_TYPE_D);
486
487      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0));
488      inst->conditional_mod = BRW_CONDITIONAL_NZ;
489      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
490      break;
491
492   case ir_unop_trunc:
493      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
494      break;
495   case ir_unop_ceil:
496      op[0].negate = !op[0].negate;
497      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
498      this->result.negate = true;
499      break;
500   case ir_unop_floor:
501      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
502      break;
503   case ir_unop_fract:
504      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
505      break;
506   case ir_unop_round_even:
507      emit(BRW_OPCODE_RNDE, this->result, op[0]);
508      break;
509
510   case ir_binop_min:
511      resolve_ud_negate(&op[0]);
512      resolve_ud_negate(&op[1]);
513
514      if (intel->gen >= 6) {
515	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
516	 inst->conditional_mod = BRW_CONDITIONAL_L;
517      } else {
518	 /* Unalias the destination */
519	 this->result = fs_reg(this, ir->type);
520
521	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
522	 inst->conditional_mod = BRW_CONDITIONAL_L;
523
524	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
525	 inst->predicated = true;
526      }
527      break;
528   case ir_binop_max:
529      resolve_ud_negate(&op[0]);
530      resolve_ud_negate(&op[1]);
531
532      if (intel->gen >= 6) {
533	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
534	 inst->conditional_mod = BRW_CONDITIONAL_GE;
535      } else {
536	 /* Unalias the destination */
537	 this->result = fs_reg(this, ir->type);
538
539	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
540	 inst->conditional_mod = BRW_CONDITIONAL_G;
541
542	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
543	 inst->predicated = true;
544      }
545      break;
546
547   case ir_binop_pow:
548      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
549      break;
550
551   case ir_unop_bit_not:
552      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
553      break;
554   case ir_binop_bit_and:
555      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
556      break;
557   case ir_binop_bit_xor:
558      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
559      break;
560   case ir_binop_bit_or:
561      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
562      break;
563
564   case ir_binop_lshift:
565      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
566      break;
567
568   case ir_binop_rshift:
569      if (ir->type->base_type == GLSL_TYPE_INT)
570	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
571      else
572	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
573      break;
574   }
575}
576
577void
578fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
579				   const glsl_type *type, bool predicated)
580{
581   switch (type->base_type) {
582   case GLSL_TYPE_FLOAT:
583   case GLSL_TYPE_UINT:
584   case GLSL_TYPE_INT:
585   case GLSL_TYPE_BOOL:
586      for (unsigned int i = 0; i < type->components(); i++) {
587	 l.type = brw_type_for_base_type(type);
588	 r.type = brw_type_for_base_type(type);
589
590	 if (predicated || !l.equals(r)) {
591	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
592	    inst->predicated = predicated;
593	 }
594
595	 l.reg_offset++;
596	 r.reg_offset++;
597      }
598      break;
599   case GLSL_TYPE_ARRAY:
600      for (unsigned int i = 0; i < type->length; i++) {
601	 emit_assignment_writes(l, r, type->fields.array, predicated);
602      }
603      break;
604
605   case GLSL_TYPE_STRUCT:
606      for (unsigned int i = 0; i < type->length; i++) {
607	 emit_assignment_writes(l, r, type->fields.structure[i].type,
608				predicated);
609      }
610      break;
611
612   case GLSL_TYPE_SAMPLER:
613      break;
614
615   default:
616      assert(!"not reached");
617      break;
618   }
619}
620
621/* If the RHS processing resulted in an instruction generating a
622 * temporary value, and it would be easy to rewrite the instruction to
623 * generate its result right into the LHS instead, do so.  This ends
624 * up reliably removing instructions where it can be tricky to do so
625 * later without real UD chain information.
626 */
627bool
628fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
629                                   fs_reg dst,
630                                   fs_reg src,
631                                   fs_inst *pre_rhs_inst,
632                                   fs_inst *last_rhs_inst)
633{
634   /* Only attempt if we're doing a direct assignment. */
635   if (ir->condition ||
636       !(ir->lhs->type->is_scalar() ||
637        (ir->lhs->type->is_vector() &&
638         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
639      return false;
640
641   /* Make sure the last instruction generated our source reg. */
642   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
643						    last_rhs_inst,
644						    src);
645   if (!modify)
646      return false;
647
648   /* If last_rhs_inst wrote a different number of components than our LHS,
649    * we can't safely rewrite it.
650    */
651   if (ir->lhs->type->vector_elements != modify->regs_written())
652      return false;
653
654   /* Success!  Rewrite the instruction. */
655   modify->dst = dst;
656
657   return true;
658}
659
660void
661fs_visitor::visit(ir_assignment *ir)
662{
663   fs_reg l, r;
664   fs_inst *inst;
665
666   /* FINISHME: arrays on the lhs */
667   ir->lhs->accept(this);
668   l = this->result;
669
670   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
671
672   ir->rhs->accept(this);
673   r = this->result;
674
675   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
676
677   assert(l.file != BAD_FILE);
678   assert(r.file != BAD_FILE);
679
680   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
681      return;
682
683   if (ir->condition) {
684      emit_bool_to_cond_code(ir->condition);
685   }
686
687   if (ir->lhs->type->is_scalar() ||
688       ir->lhs->type->is_vector()) {
689      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
690	 if (ir->write_mask & (1 << i)) {
691	    inst = emit(BRW_OPCODE_MOV, l, r);
692	    if (ir->condition)
693	       inst->predicated = true;
694	    r.reg_offset++;
695	 }
696	 l.reg_offset++;
697      }
698   } else {
699      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
700   }
701}
702
703fs_inst *
704fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
705			      int sampler)
706{
707   int mlen;
708   int base_mrf = 1;
709   bool simd16 = false;
710   fs_reg orig_dst;
711
712   /* g0 header. */
713   mlen = 1;
714
715   if (ir->shadow_comparitor) {
716      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
717	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
718	 coordinate.reg_offset++;
719      }
720      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
721      mlen += 3;
722
723      if (ir->op == ir_tex) {
724	 /* There's no plain shadow compare message, so we use shadow
725	  * compare with a bias of 0.0.
726	  */
727	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
728	 mlen++;
729      } else if (ir->op == ir_txb) {
730	 ir->lod_info.bias->accept(this);
731	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
732	 mlen++;
733      } else {
734	 assert(ir->op == ir_txl);
735	 ir->lod_info.lod->accept(this);
736	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
737	 mlen++;
738      }
739
740      ir->shadow_comparitor->accept(this);
741      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
742      mlen++;
743   } else if (ir->op == ir_tex) {
744      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
745	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
746	 coordinate.reg_offset++;
747      }
748      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
749      mlen += 3;
750   } else if (ir->op == ir_txd) {
751      ir->lod_info.grad.dPdx->accept(this);
752      fs_reg dPdx = this->result;
753
754      ir->lod_info.grad.dPdy->accept(this);
755      fs_reg dPdy = this->result;
756
757      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
758	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
759	 coordinate.reg_offset++;
760      }
761      /* the slots for u and v are always present, but r is optional */
762      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
763
764      /*  P   = u, v, r
765       * dPdx = dudx, dvdx, drdx
766       * dPdy = dudy, dvdy, drdy
767       *
768       * 1-arg: Does not exist.
769       *
770       * 2-arg: dudx   dvdx   dudy   dvdy
771       *        dPdx.x dPdx.y dPdy.x dPdy.y
772       *        m4     m5     m6     m7
773       *
774       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
775       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
776       *        m5     m6     m7     m8     m9     m10
777       */
778      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
779	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
780	 dPdx.reg_offset++;
781      }
782      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
783
784      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
785	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
786	 dPdy.reg_offset++;
787      }
788      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
789   } else if (ir->op == ir_txs) {
790      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
791      simd16 = true;
792      ir->lod_info.lod->accept(this);
793      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
794      mlen += 2;
795   } else {
796      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
797       * instructions.  We'll need to do SIMD16 here.
798       */
799      simd16 = true;
800      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
801
802      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
803	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
804	      coordinate);
805	 coordinate.reg_offset++;
806      }
807
808      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
809       * be necessary for TXF (ld), but seems wise to do for all messages.
810       */
811      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
812	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
813      }
814
815      /* lod/bias appears after u/v/r. */
816      mlen += 6;
817
818      if (ir->op == ir_txb) {
819	 ir->lod_info.bias->accept(this);
820	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
821	 mlen++;
822      } else {
823	 ir->lod_info.lod->accept(this);
824	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
825			      this->result);
826	 mlen++;
827      }
828
829      /* The unused upper half. */
830      mlen++;
831   }
832
833   if (simd16) {
834      /* Now, since we're doing simd16, the return is 2 interleaved
835       * vec4s where the odd-indexed ones are junk. We'll need to move
836       * this weirdness around to the expected layout.
837       */
838      orig_dst = dst;
839      const glsl_type *vec_type =
840	 glsl_type::get_instance(ir->type->base_type, 4, 1);
841      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
842      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
843			       : BRW_REGISTER_TYPE_F;
844   }
845
846   fs_inst *inst = NULL;
847   switch (ir->op) {
848   case ir_tex:
849      inst = emit(SHADER_OPCODE_TEX, dst);
850      break;
851   case ir_txb:
852      inst = emit(FS_OPCODE_TXB, dst);
853      break;
854   case ir_txl:
855      inst = emit(SHADER_OPCODE_TXL, dst);
856      break;
857   case ir_txd:
858      inst = emit(SHADER_OPCODE_TXD, dst);
859      break;
860   case ir_txs:
861      inst = emit(SHADER_OPCODE_TXS, dst);
862      break;
863   case ir_txf:
864      inst = emit(SHADER_OPCODE_TXF, dst);
865      break;
866   }
867   inst->base_mrf = base_mrf;
868   inst->mlen = mlen;
869   inst->header_present = true;
870
871   if (simd16) {
872      for (int i = 0; i < 4; i++) {
873	 emit(BRW_OPCODE_MOV, orig_dst, dst);
874	 orig_dst.reg_offset++;
875	 dst.reg_offset += 2;
876      }
877   }
878
879   return inst;
880}
881
882/* gen5's sampler has slots for u, v, r, array index, then optional
883 * parameters like shadow comparitor or LOD bias.  If optional
884 * parameters aren't present, those base slots are optional and don't
885 * need to be included in the message.
886 *
887 * We don't fill in the unnecessary slots regardless, which may look
888 * surprising in the disassembly.
889 */
890fs_inst *
891fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
892			      int sampler)
893{
894   int mlen = 0;
895   int base_mrf = 2;
896   int reg_width = c->dispatch_width / 8;
897   bool header_present = false;
898   const int vector_elements =
899      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
900
901   if (ir->offset != NULL && ir->op == ir_txf) {
902      /* It appears that the ld instruction used for txf does its
903       * address bounds check before adding in the offset.  To work
904       * around this, just add the integer offset to the integer texel
905       * coordinate, and don't put the offset in the header.
906       */
907      ir_constant *offset = ir->offset->as_constant();
908      for (int i = 0; i < vector_elements; i++) {
909	 emit(BRW_OPCODE_ADD,
910	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
911	      coordinate,
912	      offset->value.i[i]);
913	 coordinate.reg_offset++;
914      }
915   } else {
916      if (ir->offset) {
917	 /* The offsets set up by the ir_texture visitor are in the
918	  * m1 header, so we can't go headerless.
919	  */
920	 header_present = true;
921	 mlen++;
922	 base_mrf--;
923      }
924
925      for (int i = 0; i < vector_elements; i++) {
926	 emit(BRW_OPCODE_MOV,
927	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
928	      coordinate);
929	 coordinate.reg_offset++;
930      }
931   }
932   mlen += vector_elements * reg_width;
933
934   if (ir->shadow_comparitor) {
935      mlen = MAX2(mlen, header_present + 4 * reg_width);
936
937      ir->shadow_comparitor->accept(this);
938      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
939      mlen += reg_width;
940   }
941
942   fs_inst *inst = NULL;
943   switch (ir->op) {
944   case ir_tex:
945      inst = emit(SHADER_OPCODE_TEX, dst);
946      break;
947   case ir_txb:
948      ir->lod_info.bias->accept(this);
949      mlen = MAX2(mlen, header_present + 4 * reg_width);
950      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
951      mlen += reg_width;
952
953      inst = emit(FS_OPCODE_TXB, dst);
954
955      break;
956   case ir_txl:
957      ir->lod_info.lod->accept(this);
958      mlen = MAX2(mlen, header_present + 4 * reg_width);
959      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
960      mlen += reg_width;
961
962      inst = emit(SHADER_OPCODE_TXL, dst);
963      break;
964   case ir_txd: {
965      ir->lod_info.grad.dPdx->accept(this);
966      fs_reg dPdx = this->result;
967
968      ir->lod_info.grad.dPdy->accept(this);
969      fs_reg dPdy = this->result;
970
971      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
972
973      /**
974       *  P   =  u,    v,    r
975       * dPdx = dudx, dvdx, drdx
976       * dPdy = dudy, dvdy, drdy
977       *
978       * Load up these values:
979       * - dudx   dudy   dvdx   dvdy   drdx   drdy
980       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
981       */
982      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
983	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
984	 dPdx.reg_offset++;
985	 mlen += reg_width;
986
987	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
988	 dPdy.reg_offset++;
989	 mlen += reg_width;
990      }
991
992      inst = emit(SHADER_OPCODE_TXD, dst);
993      break;
994   }
995   case ir_txs:
996      ir->lod_info.lod->accept(this);
997      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
998      mlen += reg_width;
999      inst = emit(SHADER_OPCODE_TXS, dst);
1000      break;
1001   case ir_txf:
1002      mlen = header_present + 4 * reg_width;
1003
1004      ir->lod_info.lod->accept(this);
1005      emit(BRW_OPCODE_MOV,
1006	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
1007	   this->result);
1008      inst = emit(SHADER_OPCODE_TXF, dst);
1009      break;
1010   }
1011   inst->base_mrf = base_mrf;
1012   inst->mlen = mlen;
1013   inst->header_present = header_present;
1014
1015   if (mlen > 11) {
1016      fail("Message length >11 disallowed by hardware\n");
1017   }
1018
1019   return inst;
1020}
1021
1022fs_inst *
1023fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1024			      int sampler)
1025{
1026   int mlen = 0;
1027   int base_mrf = 2;
1028   int reg_width = c->dispatch_width / 8;
1029   bool header_present = false;
1030   int offsets[3];
1031
1032   if (ir->offset && ir->op != ir_txf) {
1033      /* The offsets set up by the ir_texture visitor are in the
1034       * m1 header, so we can't go headerless.
1035       */
1036      header_present = true;
1037      mlen++;
1038      base_mrf--;
1039   }
1040
1041   if (ir->shadow_comparitor) {
1042      ir->shadow_comparitor->accept(this);
1043      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1044      mlen += reg_width;
1045   }
1046
1047   /* Set up the LOD info */
1048   switch (ir->op) {
1049   case ir_tex:
1050      break;
1051   case ir_txb:
1052      ir->lod_info.bias->accept(this);
1053      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1054      mlen += reg_width;
1055      break;
1056   case ir_txl:
1057      ir->lod_info.lod->accept(this);
1058      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1059      mlen += reg_width;
1060      break;
1061   case ir_txd: {
1062      if (c->dispatch_width == 16)
1063	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1064
1065      ir->lod_info.grad.dPdx->accept(this);
1066      fs_reg dPdx = this->result;
1067
1068      ir->lod_info.grad.dPdy->accept(this);
1069      fs_reg dPdy = this->result;
1070
1071      /* Load dPdx and the coordinate together:
1072       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1073       */
1074      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1075	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1076	 coordinate.reg_offset++;
1077	 mlen += reg_width;
1078
1079	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1080	 dPdx.reg_offset++;
1081	 mlen += reg_width;
1082
1083	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1084	 dPdy.reg_offset++;
1085	 mlen += reg_width;
1086      }
1087      break;
1088   }
1089   case ir_txs:
1090      ir->lod_info.lod->accept(this);
1091      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1092      mlen += reg_width;
1093      break;
1094   case ir_txf:
1095      /* It appears that the ld instruction used for txf does its
1096       * address bounds check before adding in the offset.  To work
1097       * around this, just add the integer offset to the integer texel
1098       * coordinate, and don't put the offset in the header.
1099       */
1100      if (ir->offset) {
1101	 ir_constant *offset = ir->offset->as_constant();
1102	 offsets[0] = offset->value.i[0];
1103	 offsets[1] = offset->value.i[1];
1104	 offsets[2] = offset->value.i[2];
1105      } else {
1106	 memset(offsets, 0, sizeof(offsets));
1107      }
1108
1109      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1110      emit(BRW_OPCODE_ADD,
1111	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1112      coordinate.reg_offset++;
1113      mlen += reg_width;
1114
1115      ir->lod_info.lod->accept(this);
1116      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1117      mlen += reg_width;
1118
1119      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1120	 emit(BRW_OPCODE_ADD,
1121	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1122	 coordinate.reg_offset++;
1123	 mlen += reg_width;
1124      }
1125      break;
1126   }
1127
1128   /* Set up the coordinate (except for cases where it was done above) */
1129   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1130      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1131	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1132	 coordinate.reg_offset++;
1133	 mlen += reg_width;
1134      }
1135   }
1136
1137   /* Generate the SEND */
1138   fs_inst *inst = NULL;
1139   switch (ir->op) {
1140   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1141   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1142   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1143   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1144   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1145   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1146   }
1147   inst->base_mrf = base_mrf;
1148   inst->mlen = mlen;
1149   inst->header_present = header_present;
1150
1151   if (mlen > 11) {
1152      fail("Message length >11 disallowed by hardware\n");
1153   }
1154
1155   return inst;
1156}
1157
1158/**
1159 * Emit code to produce the coordinates for a texture lookup.
1160 *
1161 * Returns the fs_reg containing the texture coordinate (as opposed to
1162 * setting this->result).
1163 */
1164fs_reg
1165fs_visitor::emit_texcoord(ir_texture *ir, int sampler)
1166{
1167   fs_inst *inst = NULL;
1168
1169   if (!ir->coordinate)
1170      return fs_reg(); /* Return the default BAD_FILE register. */
1171
1172   ir->coordinate->accept(this);
1173   fs_reg coordinate = this->result;
1174
1175   bool needs_gl_clamp = true;
1176
1177   fs_reg scale_x, scale_y;
1178
1179   /* The 965 requires the EU to do the normalization of GL rectangle
1180    * texture coordinates.  We use the program parameter state
1181    * tracking to get the scaling factor.
1182    */
1183   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1184       (intel->gen < 6 ||
1185	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1186			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1187      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1188      int tokens[STATE_LENGTH] = {
1189	 STATE_INTERNAL,
1190	 STATE_TEXRECT_SCALE,
1191	 sampler,
1192	 0,
1193	 0
1194      };
1195
1196      if (c->dispatch_width == 16) {
1197	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1198	 return fs_reg(this, ir->type);
1199      }
1200
1201      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1202      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1203
1204      GLuint index = _mesa_add_state_reference(params,
1205					       (gl_state_index *)tokens);
1206
1207      this->param_index[c->prog_data.nr_params] = index;
1208      this->param_offset[c->prog_data.nr_params] = 0;
1209      c->prog_data.nr_params++;
1210      this->param_index[c->prog_data.nr_params] = index;
1211      this->param_offset[c->prog_data.nr_params] = 1;
1212      c->prog_data.nr_params++;
1213   }
1214
1215   /* The 965 requires the EU to do the normalization of GL rectangle
1216    * texture coordinates.  We use the program parameter state
1217    * tracking to get the scaling factor.
1218    */
1219   if (intel->gen < 6 &&
1220       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1221      fs_reg dst = fs_reg(this, ir->coordinate->type);
1222      fs_reg src = coordinate;
1223      coordinate = dst;
1224
1225      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1226      dst.reg_offset++;
1227      src.reg_offset++;
1228      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1229   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1230      /* On gen6+, the sampler handles the rectangle coordinates
1231       * natively, without needing rescaling.  But that means we have
1232       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1233       * not [0, 1] like the default case below.
1234       */
1235      needs_gl_clamp = false;
1236
1237      for (int i = 0; i < 2; i++) {
1238	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1239	    fs_reg chan = coordinate;
1240	    chan.reg_offset += i;
1241
1242	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1243	    inst->conditional_mod = BRW_CONDITIONAL_G;
1244
1245	    /* Our parameter comes in as 1.0/width or 1.0/height,
1246	     * because that's what people normally want for doing
1247	     * texture rectangle handling.  We need width or height
1248	     * for clamping, but we don't care enough to make a new
1249	     * parameter type, so just invert back.
1250	     */
1251	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1252	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1253	    emit(SHADER_OPCODE_RCP, limit, limit);
1254
1255	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1256	    inst->conditional_mod = BRW_CONDITIONAL_L;
1257	 }
1258      }
1259   }
1260
1261   if (ir->coordinate && needs_gl_clamp) {
1262      for (unsigned int i = 0;
1263	   i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1264	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1265	    fs_reg chan = coordinate;
1266	    chan.reg_offset += i;
1267
1268	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1269	    inst->saturate = true;
1270	 }
1271      }
1272   }
1273   return coordinate;
1274}
1275
1276void
1277fs_visitor::visit(ir_texture *ir)
1278{
1279   fs_inst *inst = NULL;
1280
1281   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1282   sampler = fp->Base.SamplerUnits[sampler];
1283
1284   /* Should be lowered by do_lower_texture_projection */
1285   assert(!ir->projector);
1286
1287   fs_reg coordinate = emit_texcoord(ir, sampler);
1288
1289   /* Writemasking doesn't eliminate channels on SIMD8 texture
1290    * samples, so don't worry about them.
1291    */
1292   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1293
1294   if (intel->gen >= 7) {
1295      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1296   } else if (intel->gen >= 5) {
1297      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1298   } else {
1299      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1300   }
1301
1302   /* The header is set up by generate_tex() when necessary. */
1303   inst->src[0] = reg_undef;
1304
1305   if (ir->offset != NULL && ir->op != ir_txf)
1306      inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1307
1308   inst->sampler = sampler;
1309
1310   if (ir->shadow_comparitor)
1311      inst->shadow_compare = true;
1312
1313   swizzle_result(ir, dst, sampler);
1314}
1315
1316/**
1317 * Swizzle the result of a texture result.  This is necessary for
1318 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1319 */
1320void
1321fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1322{
1323   this->result = orig_val;
1324
1325   if (ir->op == ir_txs)
1326      return;
1327
1328   if (ir->type == glsl_type::float_type) {
1329      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1330      assert(ir->sampler->type->sampler_shadow);
1331   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1332      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1333
1334      for (int i = 0; i < 4; i++) {
1335	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1336	 fs_reg l = swizzled_result;
1337	 l.reg_offset += i;
1338
1339	 if (swiz == SWIZZLE_ZERO) {
1340	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1341	 } else if (swiz == SWIZZLE_ONE) {
1342	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1343	 } else {
1344	    fs_reg r = orig_val;
1345	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1346	    emit(BRW_OPCODE_MOV, l, r);
1347	 }
1348      }
1349      this->result = swizzled_result;
1350   }
1351}
1352
1353void
1354fs_visitor::visit(ir_swizzle *ir)
1355{
1356   ir->val->accept(this);
1357   fs_reg val = this->result;
1358
1359   if (ir->type->vector_elements == 1) {
1360      this->result.reg_offset += ir->mask.x;
1361      return;
1362   }
1363
1364   fs_reg result = fs_reg(this, ir->type);
1365   this->result = result;
1366
1367   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1368      fs_reg channel = val;
1369      int swiz = 0;
1370
1371      switch (i) {
1372      case 0:
1373	 swiz = ir->mask.x;
1374	 break;
1375      case 1:
1376	 swiz = ir->mask.y;
1377	 break;
1378      case 2:
1379	 swiz = ir->mask.z;
1380	 break;
1381      case 3:
1382	 swiz = ir->mask.w;
1383	 break;
1384      }
1385
1386      channel.reg_offset += swiz;
1387      emit(BRW_OPCODE_MOV, result, channel);
1388      result.reg_offset++;
1389   }
1390}
1391
1392void
1393fs_visitor::visit(ir_discard *ir)
1394{
1395   assert(ir->condition == NULL); /* FINISHME */
1396
1397   emit(FS_OPCODE_DISCARD);
1398}
1399
1400void
1401fs_visitor::visit(ir_constant *ir)
1402{
1403   /* Set this->result to reg at the bottom of the function because some code
1404    * paths will cause this visitor to be applied to other fields.  This will
1405    * cause the value stored in this->result to be modified.
1406    *
1407    * Make reg constant so that it doesn't get accidentally modified along the
1408    * way.  Yes, I actually had this problem. :(
1409    */
1410   const fs_reg reg(this, ir->type);
1411   fs_reg dst_reg = reg;
1412
1413   if (ir->type->is_array()) {
1414      const unsigned size = type_size(ir->type->fields.array);
1415
1416      for (unsigned i = 0; i < ir->type->length; i++) {
1417	 ir->array_elements[i]->accept(this);
1418	 fs_reg src_reg = this->result;
1419
1420	 dst_reg.type = src_reg.type;
1421	 for (unsigned j = 0; j < size; j++) {
1422	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1423	    src_reg.reg_offset++;
1424	    dst_reg.reg_offset++;
1425	 }
1426      }
1427   } else if (ir->type->is_record()) {
1428      foreach_list(node, &ir->components) {
1429	 ir_constant *const field = (ir_constant *) node;
1430	 const unsigned size = type_size(field->type);
1431
1432	 field->accept(this);
1433	 fs_reg src_reg = this->result;
1434
1435	 dst_reg.type = src_reg.type;
1436	 for (unsigned j = 0; j < size; j++) {
1437	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1438	    src_reg.reg_offset++;
1439	    dst_reg.reg_offset++;
1440	 }
1441      }
1442   } else {
1443      const unsigned size = type_size(ir->type);
1444
1445      for (unsigned i = 0; i < size; i++) {
1446	 switch (ir->type->base_type) {
1447	 case GLSL_TYPE_FLOAT:
1448	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1449	    break;
1450	 case GLSL_TYPE_UINT:
1451	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1452	    break;
1453	 case GLSL_TYPE_INT:
1454	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1455	    break;
1456	 case GLSL_TYPE_BOOL:
1457	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1458	    break;
1459	 default:
1460	    assert(!"Non-float/uint/int/bool constant");
1461	 }
1462	 dst_reg.reg_offset++;
1463      }
1464   }
1465
1466   this->result = reg;
1467}
1468
1469void
1470fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1471{
1472   ir_expression *expr = ir->as_expression();
1473
1474   if (expr) {
1475      fs_reg op[2];
1476      fs_inst *inst;
1477
1478      assert(expr->get_num_operands() <= 2);
1479      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1480	 assert(expr->operands[i]->type->is_scalar());
1481
1482	 expr->operands[i]->accept(this);
1483	 op[i] = this->result;
1484
1485	 resolve_ud_negate(&op[i]);
1486      }
1487
1488      switch (expr->operation) {
1489      case ir_unop_logic_not:
1490	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1491	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1492	 break;
1493
1494      case ir_binop_logic_xor:
1495      case ir_binop_logic_or:
1496      case ir_binop_logic_and:
1497	 goto out;
1498
1499      case ir_unop_f2b:
1500	 if (intel->gen >= 6) {
1501	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1502	 } else {
1503	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1504	 }
1505	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1506	 break;
1507
1508      case ir_unop_i2b:
1509	 if (intel->gen >= 6) {
1510	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1511	 } else {
1512	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1513	 }
1514	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1515	 break;
1516
1517      case ir_binop_greater:
1518      case ir_binop_gequal:
1519      case ir_binop_less:
1520      case ir_binop_lequal:
1521      case ir_binop_equal:
1522      case ir_binop_all_equal:
1523      case ir_binop_nequal:
1524      case ir_binop_any_nequal:
1525	 resolve_bool_comparison(expr->operands[0], &op[0]);
1526	 resolve_bool_comparison(expr->operands[1], &op[1]);
1527
1528	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1529	 inst->conditional_mod =
1530	    brw_conditional_for_comparison(expr->operation);
1531	 break;
1532
1533      default:
1534	 assert(!"not reached");
1535	 fail("bad cond code\n");
1536	 break;
1537      }
1538      return;
1539   }
1540
1541out:
1542   ir->accept(this);
1543
1544   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1545   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1546}
1547
1548/**
1549 * Emit a gen6 IF statement with the comparison folded into the IF
1550 * instruction.
1551 */
1552void
1553fs_visitor::emit_if_gen6(ir_if *ir)
1554{
1555   ir_expression *expr = ir->condition->as_expression();
1556
1557   if (expr) {
1558      fs_reg op[2];
1559      fs_inst *inst;
1560      fs_reg temp;
1561
1562      assert(expr->get_num_operands() <= 2);
1563      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1564	 assert(expr->operands[i]->type->is_scalar());
1565
1566	 expr->operands[i]->accept(this);
1567	 op[i] = this->result;
1568      }
1569
1570      switch (expr->operation) {
1571      case ir_unop_logic_not:
1572	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1573	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1574	 return;
1575
1576      case ir_binop_logic_xor:
1577	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1578	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1579	 return;
1580
1581      case ir_binop_logic_or:
1582	 temp = fs_reg(this, glsl_type::bool_type);
1583	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1584	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1585	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1586	 return;
1587
1588      case ir_binop_logic_and:
1589	 temp = fs_reg(this, glsl_type::bool_type);
1590	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1591	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1592	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1593	 return;
1594
1595      case ir_unop_f2b:
1596	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1597	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1598	 return;
1599
1600      case ir_unop_i2b:
1601	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1602	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1603	 return;
1604
1605      case ir_binop_greater:
1606      case ir_binop_gequal:
1607      case ir_binop_less:
1608      case ir_binop_lequal:
1609      case ir_binop_equal:
1610      case ir_binop_all_equal:
1611      case ir_binop_nequal:
1612      case ir_binop_any_nequal:
1613	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1614	 inst->conditional_mod =
1615	    brw_conditional_for_comparison(expr->operation);
1616	 return;
1617      default:
1618	 assert(!"not reached");
1619	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1620	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1621	 fail("bad condition\n");
1622	 return;
1623      }
1624      return;
1625   }
1626
1627   ir->condition->accept(this);
1628
1629   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1630   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1631}
1632
1633void
1634fs_visitor::visit(ir_if *ir)
1635{
1636   fs_inst *inst;
1637
1638   if (intel->gen < 6 && c->dispatch_width == 16) {
1639      fail("Can't support (non-uniform) control flow on 16-wide\n");
1640   }
1641
1642   /* Don't point the annotation at the if statement, because then it plus
1643    * the then and else blocks get printed.
1644    */
1645   this->base_ir = ir->condition;
1646
1647   if (intel->gen == 6) {
1648      emit_if_gen6(ir);
1649   } else {
1650      emit_bool_to_cond_code(ir->condition);
1651
1652      inst = emit(BRW_OPCODE_IF);
1653      inst->predicated = true;
1654   }
1655
1656   foreach_list(node, &ir->then_instructions) {
1657      ir_instruction *ir = (ir_instruction *)node;
1658      this->base_ir = ir;
1659
1660      ir->accept(this);
1661   }
1662
1663   if (!ir->else_instructions.is_empty()) {
1664      emit(BRW_OPCODE_ELSE);
1665
1666      foreach_list(node, &ir->else_instructions) {
1667	 ir_instruction *ir = (ir_instruction *)node;
1668	 this->base_ir = ir;
1669
1670	 ir->accept(this);
1671      }
1672   }
1673
1674   emit(BRW_OPCODE_ENDIF);
1675}
1676
1677void
1678fs_visitor::visit(ir_loop *ir)
1679{
1680   fs_reg counter = reg_undef;
1681
1682   if (intel->gen < 6 && c->dispatch_width == 16) {
1683      fail("Can't support (non-uniform) control flow on 16-wide\n");
1684   }
1685
1686   if (ir->counter) {
1687      this->base_ir = ir->counter;
1688      ir->counter->accept(this);
1689      counter = *(variable_storage(ir->counter));
1690
1691      if (ir->from) {
1692	 this->base_ir = ir->from;
1693	 ir->from->accept(this);
1694
1695	 emit(BRW_OPCODE_MOV, counter, this->result);
1696      }
1697   }
1698
1699   this->base_ir = NULL;
1700   emit(BRW_OPCODE_DO);
1701
1702   if (ir->to) {
1703      this->base_ir = ir->to;
1704      ir->to->accept(this);
1705
1706      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1707      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1708
1709      inst = emit(BRW_OPCODE_BREAK);
1710      inst->predicated = true;
1711   }
1712
1713   foreach_list(node, &ir->body_instructions) {
1714      ir_instruction *ir = (ir_instruction *)node;
1715
1716      this->base_ir = ir;
1717      ir->accept(this);
1718   }
1719
1720   if (ir->increment) {
1721      this->base_ir = ir->increment;
1722      ir->increment->accept(this);
1723      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1724   }
1725
1726   this->base_ir = NULL;
1727   emit(BRW_OPCODE_WHILE);
1728}
1729
1730void
1731fs_visitor::visit(ir_loop_jump *ir)
1732{
1733   switch (ir->mode) {
1734   case ir_loop_jump::jump_break:
1735      emit(BRW_OPCODE_BREAK);
1736      break;
1737   case ir_loop_jump::jump_continue:
1738      emit(BRW_OPCODE_CONTINUE);
1739      break;
1740   }
1741}
1742
1743void
1744fs_visitor::visit(ir_call *ir)
1745{
1746   assert(!"FINISHME");
1747}
1748
1749void
1750fs_visitor::visit(ir_return *ir)
1751{
1752   assert(!"FINISHME");
1753}
1754
1755void
1756fs_visitor::visit(ir_function *ir)
1757{
1758   /* Ignore function bodies other than main() -- we shouldn't see calls to
1759    * them since they should all be inlined before we get to ir_to_mesa.
1760    */
1761   if (strcmp(ir->name, "main") == 0) {
1762      const ir_function_signature *sig;
1763      exec_list empty;
1764
1765      sig = ir->matching_signature(&empty);
1766
1767      assert(sig);
1768
1769      foreach_list(node, &sig->body) {
1770	 ir_instruction *ir = (ir_instruction *)node;
1771	 this->base_ir = ir;
1772
1773	 ir->accept(this);
1774      }
1775   }
1776}
1777
1778void
1779fs_visitor::visit(ir_function_signature *ir)
1780{
1781   assert(!"not reached");
1782   (void)ir;
1783}
1784
1785fs_inst *
1786fs_visitor::emit(fs_inst inst)
1787{
1788   fs_inst *list_inst = new(mem_ctx) fs_inst;
1789   *list_inst = inst;
1790
1791   if (force_uncompressed_stack > 0)
1792      list_inst->force_uncompressed = true;
1793   else if (force_sechalf_stack > 0)
1794      list_inst->force_sechalf = true;
1795
1796   list_inst->annotation = this->current_annotation;
1797   list_inst->ir = this->base_ir;
1798
1799   this->instructions.push_tail(list_inst);
1800
1801   return list_inst;
1802}
1803
1804/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1805void
1806fs_visitor::emit_dummy_fs()
1807{
1808   int reg_width = c->dispatch_width / 8;
1809
1810   /* Everyone's favorite color. */
1811   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1812   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1813   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1814   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1815
1816   fs_inst *write;
1817   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1818   write->base_mrf = 2;
1819   write->mlen = 4 * reg_width;
1820   write->eot = true;
1821}
1822
1823/* The register location here is relative to the start of the URB
1824 * data.  It will get adjusted to be a real location before
1825 * generate_code() time.
1826 */
1827struct brw_reg
1828fs_visitor::interp_reg(int location, int channel)
1829{
1830   int regnr = urb_setup[location] * 2 + channel / 2;
1831   int stride = (channel & 1) * 4;
1832
1833   assert(urb_setup[location] != -1);
1834
1835   return brw_vec1_grf(regnr, stride);
1836}
1837
1838/** Emits the interpolation for the varying inputs. */
1839void
1840fs_visitor::emit_interpolation_setup_gen4()
1841{
1842   this->current_annotation = "compute pixel centers";
1843   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1844   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1845   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1846   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1847
1848   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1849   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1850
1851   this->current_annotation = "compute pixel deltas from v0";
1852   if (brw->has_pln) {
1853      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1854         fs_reg(this, glsl_type::vec2_type);
1855      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1856         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1857      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1858   } else {
1859      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1860         fs_reg(this, glsl_type::float_type);
1861      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1862         fs_reg(this, glsl_type::float_type);
1863   }
1864   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1865	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1866   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1867	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1868
1869   this->current_annotation = "compute pos.w and 1/pos.w";
1870   /* Compute wpos.w.  It's always in our setup, since it's needed to
1871    * interpolate the other attributes.
1872    */
1873   this->wpos_w = fs_reg(this, glsl_type::float_type);
1874   emit(FS_OPCODE_LINTERP, wpos_w,
1875        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1876        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1877	interp_reg(FRAG_ATTRIB_WPOS, 3));
1878   /* Compute the pixel 1/W value from wpos.w. */
1879   this->pixel_w = fs_reg(this, glsl_type::float_type);
1880   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1881   this->current_annotation = NULL;
1882}
1883
1884/** Emits the interpolation for the varying inputs. */
1885void
1886fs_visitor::emit_interpolation_setup_gen6()
1887{
1888   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1889
1890   /* If the pixel centers end up used, the setup is the same as for gen4. */
1891   this->current_annotation = "compute pixel centers";
1892   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1893   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1894   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1895   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1896   emit(BRW_OPCODE_ADD,
1897	int_pixel_x,
1898	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1899	fs_reg(brw_imm_v(0x10101010)));
1900   emit(BRW_OPCODE_ADD,
1901	int_pixel_y,
1902	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1903	fs_reg(brw_imm_v(0x11001100)));
1904
1905   /* As of gen6, we can no longer mix float and int sources.  We have
1906    * to turn the integer pixel centers into floats for their actual
1907    * use.
1908    */
1909   this->pixel_x = fs_reg(this, glsl_type::float_type);
1910   this->pixel_y = fs_reg(this, glsl_type::float_type);
1911   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1912   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1913
1914   this->current_annotation = "compute pos.w";
1915   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1916   this->wpos_w = fs_reg(this, glsl_type::float_type);
1917   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1918
1919   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1920      uint8_t reg = c->barycentric_coord_reg[i];
1921      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1922      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1923   }
1924
1925   this->current_annotation = NULL;
1926}
1927
1928void
1929fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1930{
1931   int reg_width = c->dispatch_width / 8;
1932   fs_inst *inst;
1933   fs_reg color = outputs[target];
1934   fs_reg mrf;
1935
1936   /* If there's no color data to be written, skip it. */
1937   if (color.file == BAD_FILE)
1938      return;
1939
1940   color.reg_offset += index;
1941
1942   if (c->dispatch_width == 8 || intel->gen >= 6) {
1943      /* SIMD8 write looks like:
1944       * m + 0: r0
1945       * m + 1: r1
1946       * m + 2: g0
1947       * m + 3: g1
1948       *
1949       * gen6 SIMD16 DP write looks like:
1950       * m + 0: r0
1951       * m + 1: r1
1952       * m + 2: g0
1953       * m + 3: g1
1954       * m + 4: b0
1955       * m + 5: b1
1956       * m + 6: a0
1957       * m + 7: a1
1958       */
1959      inst = emit(BRW_OPCODE_MOV,
1960		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1961		  color);
1962      inst->saturate = c->key.clamp_fragment_color;
1963   } else {
1964      /* pre-gen6 SIMD16 single source DP write looks like:
1965       * m + 0: r0
1966       * m + 1: g0
1967       * m + 2: b0
1968       * m + 3: a0
1969       * m + 4: r1
1970       * m + 5: g1
1971       * m + 6: b1
1972       * m + 7: a1
1973       */
1974      if (brw->has_compr4) {
1975	 /* By setting the high bit of the MRF register number, we
1976	  * indicate that we want COMPR4 mode - instead of doing the
1977	  * usual destination + 1 for the second half we get
1978	  * destination + 4.
1979	  */
1980	 inst = emit(BRW_OPCODE_MOV,
1981		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1982			    color.type),
1983		     color);
1984	 inst->saturate = c->key.clamp_fragment_color;
1985      } else {
1986	 push_force_uncompressed();
1987	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1988					    color.type),
1989		     color);
1990	 inst->saturate = c->key.clamp_fragment_color;
1991	 pop_force_uncompressed();
1992
1993	 push_force_sechalf();
1994	 color.sechalf = true;
1995	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1996					    color.type),
1997		     color);
1998	 inst->saturate = c->key.clamp_fragment_color;
1999	 pop_force_sechalf();
2000	 color.sechalf = false;
2001      }
2002   }
2003}
2004
2005void
2006fs_visitor::emit_fb_writes()
2007{
2008   this->current_annotation = "FB write header";
2009   bool header_present = true;
2010   /* We can potentially have a message length of up to 15, so we have to set
2011    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2012    */
2013   int base_mrf = 1;
2014   int nr = base_mrf;
2015   int reg_width = c->dispatch_width / 8;
2016   bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2017
2018   if (c->dispatch_width == 16 && do_dual_src) {
2019      fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2020      do_dual_src = false;
2021   }
2022
2023   /* From the Sandy Bridge PRM, volume 4, page 198:
2024    *
2025    *     "Dispatched Pixel Enables. One bit per pixel indicating
2026    *      which pixels were originally enabled when the thread was
2027    *      dispatched. This field is only required for the end-of-
2028    *      thread message and on all dual-source messages."
2029    */
2030   if (intel->gen >= 6 &&
2031       !this->fp->UsesKill &&
2032       !do_dual_src &&
2033       c->key.nr_color_regions == 1) {
2034      header_present = false;
2035   }
2036
2037   if (header_present) {
2038      /* m2, m3 header */
2039      nr += 2;
2040   }
2041
2042   if (c->aa_dest_stencil_reg) {
2043      push_force_uncompressed();
2044      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2045	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2046      pop_force_uncompressed();
2047   }
2048
2049   /* Reserve space for color. It'll be filled in per MRT below. */
2050   int color_mrf = nr;
2051   nr += 4 * reg_width;
2052   if (do_dual_src)
2053      nr += 4;
2054
2055   if (c->source_depth_to_render_target) {
2056      if (intel->gen == 6 && c->dispatch_width == 16) {
2057	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2058	  * used.  This would require 8-wide moves of each half to
2059	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2060	  * Just bail on doing so for now.
2061	  */
2062	 fail("Missing support for simd16 depth writes on gen6\n");
2063      }
2064
2065      if (c->computes_depth) {
2066	 /* Hand over gl_FragDepth. */
2067	 assert(this->frag_depth);
2068	 fs_reg depth = *(variable_storage(this->frag_depth));
2069
2070	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2071      } else {
2072	 /* Pass through the payload depth. */
2073	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2074	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2075      }
2076      nr += reg_width;
2077   }
2078
2079   if (c->dest_depth_reg) {
2080      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2081	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2082      nr += reg_width;
2083   }
2084
2085   if (do_dual_src) {
2086      fs_reg src0 = this->outputs[0];
2087      fs_reg src1 = this->dual_src_output;
2088
2089      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2090						 "FB write src0");
2091      for (int i = 0; i < 4; i++) {
2092	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2093			      fs_reg(MRF, color_mrf + i, src0.type),
2094			      src0);
2095	 src0.reg_offset++;
2096	 inst->saturate = c->key.clamp_fragment_color;
2097      }
2098
2099      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2100						 "FB write src1");
2101      for (int i = 0; i < 4; i++) {
2102	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2103			      fs_reg(MRF, color_mrf + 4 + i, src1.type),
2104			      src1);
2105	 src1.reg_offset++;
2106	 inst->saturate = c->key.clamp_fragment_color;
2107      }
2108
2109      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2110      inst->target = 0;
2111      inst->base_mrf = base_mrf;
2112      inst->mlen = nr - base_mrf;
2113      inst->eot = true;
2114      inst->header_present = header_present;
2115
2116      c->prog_data.dual_src_blend = true;
2117      this->current_annotation = NULL;
2118      return;
2119   }
2120
2121   for (int target = 0; target < c->key.nr_color_regions; target++) {
2122      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2123						 "FB write target %d",
2124						 target);
2125      for (unsigned i = 0; i < this->output_components[target]; i++)
2126	 emit_color_write(target, i, color_mrf);
2127
2128      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2129      inst->target = target;
2130      inst->base_mrf = base_mrf;
2131      inst->mlen = nr - base_mrf;
2132      if (target == c->key.nr_color_regions - 1)
2133	 inst->eot = true;
2134      inst->header_present = header_present;
2135   }
2136
2137   if (c->key.nr_color_regions == 0) {
2138      /* Even if there's no color buffers enabled, we still need to send
2139       * alpha out the pipeline to our null renderbuffer to support
2140       * alpha-testing, alpha-to-coverage, and so on.
2141       */
2142      emit_color_write(0, 3, color_mrf);
2143
2144      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2145      inst->base_mrf = base_mrf;
2146      inst->mlen = nr - base_mrf;
2147      inst->eot = true;
2148      inst->header_present = header_present;
2149   }
2150
2151   this->current_annotation = NULL;
2152}
2153
2154void
2155fs_visitor::resolve_ud_negate(fs_reg *reg)
2156{
2157   if (reg->type != BRW_REGISTER_TYPE_UD ||
2158       !reg->negate)
2159      return;
2160
2161   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2162   emit(BRW_OPCODE_MOV, temp, *reg);
2163   *reg = temp;
2164}
2165
2166void
2167fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2168{
2169   if (rvalue->type != glsl_type::bool_type)
2170      return;
2171
2172   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2173   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2174   *reg = temp;
2175}
2176
2177fs_visitor::fs_visitor(struct brw_wm_compile *c, struct gl_shader_program *prog,
2178                       struct brw_shader *shader)
2179{
2180   this->c = c;
2181   this->p = &c->func;
2182   this->brw = p->brw;
2183   this->fp = (struct gl_fragment_program *)
2184      prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2185   this->prog = prog;
2186   this->intel = &brw->intel;
2187   this->ctx = &intel->ctx;
2188   this->mem_ctx = ralloc_context(NULL);
2189   this->shader = shader;
2190   this->failed = false;
2191   this->variable_ht = hash_table_ctor(0,
2192                                       hash_table_pointer_hash,
2193                                       hash_table_pointer_compare);
2194
2195   /* There's a question that appears to be left open in the spec:
2196    * How do implicit dst conversions interact with the CMP
2197    * instruction or conditional mods?  On gen6, the instruction:
2198    *
2199    * CMP null<d> src0<f> src1<f>
2200    *
2201    * will do src1 - src0 and compare that result as if it was an
2202    * integer.  On gen4, it will do src1 - src0 as float, convert
2203    * the result to int, and compare as int.  In between, it
2204    * appears that it does src1 - src0 and does the compare in the
2205    * execution type so dst type doesn't matter.
2206    */
2207   if (this->intel->gen > 4)
2208      this->reg_null_cmp = reg_null_d;
2209   else
2210      this->reg_null_cmp = reg_null_f;
2211
2212   this->frag_depth = NULL;
2213   memset(this->outputs, 0, sizeof(this->outputs));
2214   this->first_non_payload_grf = 0;
2215   this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2216
2217   this->current_annotation = NULL;
2218   this->base_ir = NULL;
2219
2220   this->virtual_grf_sizes = NULL;
2221   this->virtual_grf_count = 0;
2222   this->virtual_grf_array_size = 0;
2223   this->virtual_grf_def = NULL;
2224   this->virtual_grf_use = NULL;
2225   this->live_intervals_valid = false;
2226
2227   this->force_uncompressed_stack = 0;
2228   this->force_sechalf_stack = 0;
2229}
2230
2231fs_visitor::~fs_visitor()
2232{
2233   ralloc_free(this->mem_ctx);
2234   hash_table_dtor(this->variable_ht);
2235}
2236