brw_fs_visitor.cpp revision 2ea3ab14f2182978f471674c9dfce029d37f70a7
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->index > 0) {
76	 assert(ir->location == FRAG_RESULT_DATA0);
77	 assert(ir->index == 1);
78	 this->dual_src_output = *reg;
79      } else if (ir->location == FRAG_RESULT_COLOR) {
80	 /* Writing gl_FragColor outputs to all color regions. */
81	 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
82	    this->outputs[i] = *reg;
83	    this->output_components[i] = 4;
84	 }
85      } else if (ir->location == FRAG_RESULT_DEPTH) {
86	 this->frag_depth = ir;
87      } else {
88	 /* gl_FragData or a user-defined FS output */
89	 assert(ir->location >= FRAG_RESULT_DATA0 &&
90		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92	 int vector_elements =
93	    ir->type->is_array() ? ir->type->fields.array->vector_elements
94				 : ir->type->vector_elements;
95
96	 /* General color output. */
97	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98	    int output = ir->location - FRAG_RESULT_DATA0 + i;
99	    this->outputs[output] = *reg;
100	    this->outputs[output].reg_offset += vector_elements * i;
101	    this->output_components[output] = vector_elements;
102	 }
103      }
104   } else if (ir->mode == ir_var_uniform) {
105      int param_index = c->prog_data.nr_params;
106
107      if (c->dispatch_width == 16) {
108	 if (!variable_storage(ir)) {
109	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
110	 }
111	 return;
112      }
113
114      if (!strncmp(ir->name, "gl_", 3)) {
115	 setup_builtin_uniform_values(ir);
116      } else {
117	 setup_uniform_values(ir->location, ir->type);
118      }
119
120      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
121      reg->type = brw_type_for_base_type(ir->type);
122   }
123
124   if (!reg)
125      reg = new(this->mem_ctx) fs_reg(this, ir->type);
126
127   hash_table_insert(this->variable_ht, reg, ir);
128}
129
130void
131fs_visitor::visit(ir_dereference_variable *ir)
132{
133   fs_reg *reg = variable_storage(ir->var);
134   this->result = *reg;
135}
136
137void
138fs_visitor::visit(ir_dereference_record *ir)
139{
140   const glsl_type *struct_type = ir->record->type;
141
142   ir->record->accept(this);
143
144   unsigned int offset = 0;
145   for (unsigned int i = 0; i < struct_type->length; i++) {
146      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
147	 break;
148      offset += type_size(struct_type->fields.structure[i].type);
149   }
150   this->result.reg_offset += offset;
151   this->result.type = brw_type_for_base_type(ir->type);
152}
153
154void
155fs_visitor::visit(ir_dereference_array *ir)
156{
157   ir_constant *index;
158   int element_size;
159
160   ir->array->accept(this);
161   index = ir->array_index->as_constant();
162
163   element_size = type_size(ir->type);
164   this->result.type = brw_type_for_base_type(ir->type);
165
166   if (index) {
167      assert(this->result.file == UNIFORM || this->result.file == GRF);
168      this->result.reg_offset += index->value.i[0] * element_size;
169   } else {
170      assert(!"FINISHME: non-constant array element");
171   }
172}
173
174/* Instruction selection: Produce a MOV.sat instead of
175 * MIN(MAX(val, 0), 1) when possible.
176 */
177bool
178fs_visitor::try_emit_saturate(ir_expression *ir)
179{
180   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
181
182   if (!sat_val)
183      return false;
184
185   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
186
187   sat_val->accept(this);
188   fs_reg src = this->result;
189
190   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
191
192   /* If the last instruction from our accept() didn't generate our
193    * src, generate a saturated MOV
194    */
195   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
196   if (!modify || modify->regs_written() != 1) {
197      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
198      inst->saturate = true;
199   } else {
200      modify->saturate = true;
201      this->result = src;
202   }
203
204
205   return true;
206}
207
208bool
209fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
210{
211   /* 3-src instructions were introduced in gen6. */
212   if (intel->gen < 6)
213      return false;
214
215   /* MAD can only handle floating-point data. */
216   if (ir->type != glsl_type::float_type)
217      return false;
218
219   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
220   ir_expression *mul = ir->operands[mul_arg]->as_expression();
221
222   if (!mul || mul->operation != ir_binop_mul)
223      return false;
224
225   if (nonmul->as_constant() ||
226       mul->operands[0]->as_constant() ||
227       mul->operands[1]->as_constant())
228      return false;
229
230   nonmul->accept(this);
231   fs_reg src0 = this->result;
232
233   mul->operands[0]->accept(this);
234   fs_reg src1 = this->result;
235
236   mul->operands[1]->accept(this);
237   fs_reg src2 = this->result;
238
239   this->result = fs_reg(this, ir->type);
240   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
241
242   return true;
243}
244
245void
246fs_visitor::visit(ir_expression *ir)
247{
248   unsigned int operand;
249   fs_reg op[2], temp;
250   fs_inst *inst;
251
252   assert(ir->get_num_operands() <= 2);
253
254   if (try_emit_saturate(ir))
255      return;
256   if (ir->operation == ir_binop_add) {
257      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
258	 return;
259   }
260
261   for (operand = 0; operand < ir->get_num_operands(); operand++) {
262      ir->operands[operand]->accept(this);
263      if (this->result.file == BAD_FILE) {
264	 ir_print_visitor v;
265	 fail("Failed to get tree for expression operand:\n");
266	 ir->operands[operand]->accept(&v);
267      }
268      op[operand] = this->result;
269
270      /* Matrix expression operands should have been broken down to vector
271       * operations already.
272       */
273      assert(!ir->operands[operand]->type->is_matrix());
274      /* And then those vector operands should have been broken down to scalar.
275       */
276      assert(!ir->operands[operand]->type->is_vector());
277   }
278
279   /* Storage for our result.  If our result goes into an assignment, it will
280    * just get copy-propagated out, so no worries.
281    */
282   this->result = fs_reg(this, ir->type);
283
284   switch (ir->operation) {
285   case ir_unop_logic_not:
286      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
287       * ones complement of the whole register, not just bit 0.
288       */
289      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
290      break;
291   case ir_unop_neg:
292      op[0].negate = !op[0].negate;
293      this->result = op[0];
294      break;
295   case ir_unop_abs:
296      op[0].abs = true;
297      op[0].negate = false;
298      this->result = op[0];
299      break;
300   case ir_unop_sign:
301      temp = fs_reg(this, ir->type);
302
303      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
304
305      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
306      inst->conditional_mod = BRW_CONDITIONAL_G;
307      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
308      inst->predicated = true;
309
310      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
311      inst->conditional_mod = BRW_CONDITIONAL_L;
312      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
313      inst->predicated = true;
314
315      break;
316   case ir_unop_rcp:
317      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
318      break;
319
320   case ir_unop_exp2:
321      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
322      break;
323   case ir_unop_log2:
324      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
325      break;
326   case ir_unop_exp:
327   case ir_unop_log:
328      assert(!"not reached: should be handled by ir_explog_to_explog2");
329      break;
330   case ir_unop_sin:
331   case ir_unop_sin_reduced:
332      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
333      break;
334   case ir_unop_cos:
335   case ir_unop_cos_reduced:
336      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
337      break;
338
339   case ir_unop_dFdx:
340      emit(FS_OPCODE_DDX, this->result, op[0]);
341      break;
342   case ir_unop_dFdy:
343      emit(FS_OPCODE_DDY, this->result, op[0]);
344      break;
345
346   case ir_binop_add:
347      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
348      break;
349   case ir_binop_sub:
350      assert(!"not reached: should be handled by ir_sub_to_add_neg");
351      break;
352
353   case ir_binop_mul:
354      if (ir->type->is_integer()) {
355	 /* For integer multiplication, the MUL uses the low 16 bits
356	  * of one of the operands (src0 on gen6, src1 on gen7).  The
357	  * MACH accumulates in the contribution of the upper 16 bits
358	  * of that operand.
359	  *
360	  * FINISHME: Emit just the MUL if we know an operand is small
361	  * enough.
362	  */
363	 if (intel->gen >= 7 && c->dispatch_width == 16)
364	    fail("16-wide explicit accumulator operands unsupported\n");
365
366	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
367
368	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
369	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
370	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
371      } else {
372	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
373      }
374      break;
375   case ir_binop_div:
376      if (intel->gen >= 7 && c->dispatch_width == 16)
377	 fail("16-wide INTDIV unsupported\n");
378
379      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
380      assert(ir->type->is_integer());
381      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
382      break;
383   case ir_binop_mod:
384      if (intel->gen >= 7 && c->dispatch_width == 16)
385	 fail("16-wide INTDIV unsupported\n");
386
387      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
388      assert(ir->type->is_integer());
389      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
390      break;
391
392   case ir_binop_less:
393   case ir_binop_greater:
394   case ir_binop_lequal:
395   case ir_binop_gequal:
396   case ir_binop_equal:
397   case ir_binop_all_equal:
398   case ir_binop_nequal:
399   case ir_binop_any_nequal:
400      temp = this->result;
401      /* original gen4 does implicit conversion before comparison. */
402      if (intel->gen < 5)
403	 temp.type = op[0].type;
404
405      resolve_ud_negate(&op[0]);
406      resolve_ud_negate(&op[1]);
407
408      resolve_bool_comparison(ir->operands[0], &op[0]);
409      resolve_bool_comparison(ir->operands[1], &op[1]);
410
411      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
412      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
413      break;
414
415   case ir_binop_logic_xor:
416      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
417      break;
418
419   case ir_binop_logic_or:
420      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
421      break;
422
423   case ir_binop_logic_and:
424      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
425      break;
426
427   case ir_binop_dot:
428   case ir_unop_any:
429      assert(!"not reached: should be handled by brw_fs_channel_expressions");
430      break;
431
432   case ir_unop_noise:
433      assert(!"not reached: should be handled by lower_noise");
434      break;
435
436   case ir_quadop_vector:
437      assert(!"not reached: should be handled by lower_quadop_vector");
438      break;
439
440   case ir_unop_sqrt:
441      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
442      break;
443
444   case ir_unop_rsq:
445      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
446      break;
447
448   case ir_unop_bitcast_i2f:
449   case ir_unop_bitcast_u2f:
450      op[0].type = BRW_REGISTER_TYPE_F;
451      this->result = op[0];
452      break;
453   case ir_unop_i2u:
454   case ir_unop_bitcast_f2u:
455      op[0].type = BRW_REGISTER_TYPE_UD;
456      this->result = op[0];
457      break;
458   case ir_unop_u2i:
459   case ir_unop_bitcast_f2i:
460      op[0].type = BRW_REGISTER_TYPE_D;
461      this->result = op[0];
462      break;
463   case ir_unop_i2f:
464   case ir_unop_u2f:
465   case ir_unop_f2i:
466   case ir_unop_f2u:
467      emit(BRW_OPCODE_MOV, this->result, op[0]);
468      break;
469
470   case ir_unop_b2i:
471      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
472      break;
473   case ir_unop_b2f:
474      temp = fs_reg(this, glsl_type::int_type);
475      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
476      emit(BRW_OPCODE_MOV, this->result, temp);
477      break;
478
479   case ir_unop_f2b:
480      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f));
481      inst->conditional_mod = BRW_CONDITIONAL_NZ;
482      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
483      break;
484   case ir_unop_i2b:
485      assert(op[0].type == BRW_REGISTER_TYPE_D);
486
487      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0));
488      inst->conditional_mod = BRW_CONDITIONAL_NZ;
489      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
490      break;
491
492   case ir_unop_trunc:
493      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
494      break;
495   case ir_unop_ceil:
496      op[0].negate = !op[0].negate;
497      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
498      this->result.negate = true;
499      break;
500   case ir_unop_floor:
501      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
502      break;
503   case ir_unop_fract:
504      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
505      break;
506   case ir_unop_round_even:
507      emit(BRW_OPCODE_RNDE, this->result, op[0]);
508      break;
509
510   case ir_binop_min:
511      resolve_ud_negate(&op[0]);
512      resolve_ud_negate(&op[1]);
513
514      if (intel->gen >= 6) {
515	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
516	 inst->conditional_mod = BRW_CONDITIONAL_L;
517      } else {
518	 /* Unalias the destination */
519	 this->result = fs_reg(this, ir->type);
520
521	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
522	 inst->conditional_mod = BRW_CONDITIONAL_L;
523
524	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
525	 inst->predicated = true;
526      }
527      break;
528   case ir_binop_max:
529      resolve_ud_negate(&op[0]);
530      resolve_ud_negate(&op[1]);
531
532      if (intel->gen >= 6) {
533	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
534	 inst->conditional_mod = BRW_CONDITIONAL_GE;
535      } else {
536	 /* Unalias the destination */
537	 this->result = fs_reg(this, ir->type);
538
539	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
540	 inst->conditional_mod = BRW_CONDITIONAL_G;
541
542	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
543	 inst->predicated = true;
544      }
545      break;
546
547   case ir_binop_pow:
548      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
549      break;
550
551   case ir_unop_bit_not:
552      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
553      break;
554   case ir_binop_bit_and:
555      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
556      break;
557   case ir_binop_bit_xor:
558      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
559      break;
560   case ir_binop_bit_or:
561      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
562      break;
563
564   case ir_binop_lshift:
565      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
566      break;
567
568   case ir_binop_rshift:
569      if (ir->type->base_type == GLSL_TYPE_INT)
570	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
571      else
572	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
573      break;
574
575   case ir_binop_ubo_load:
576      assert(!"not yet supported");
577      break;
578   }
579}
580
581void
582fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
583				   const glsl_type *type, bool predicated)
584{
585   switch (type->base_type) {
586   case GLSL_TYPE_FLOAT:
587   case GLSL_TYPE_UINT:
588   case GLSL_TYPE_INT:
589   case GLSL_TYPE_BOOL:
590      for (unsigned int i = 0; i < type->components(); i++) {
591	 l.type = brw_type_for_base_type(type);
592	 r.type = brw_type_for_base_type(type);
593
594	 if (predicated || !l.equals(r)) {
595	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
596	    inst->predicated = predicated;
597	 }
598
599	 l.reg_offset++;
600	 r.reg_offset++;
601      }
602      break;
603   case GLSL_TYPE_ARRAY:
604      for (unsigned int i = 0; i < type->length; i++) {
605	 emit_assignment_writes(l, r, type->fields.array, predicated);
606      }
607      break;
608
609   case GLSL_TYPE_STRUCT:
610      for (unsigned int i = 0; i < type->length; i++) {
611	 emit_assignment_writes(l, r, type->fields.structure[i].type,
612				predicated);
613      }
614      break;
615
616   case GLSL_TYPE_SAMPLER:
617      break;
618
619   default:
620      assert(!"not reached");
621      break;
622   }
623}
624
625/* If the RHS processing resulted in an instruction generating a
626 * temporary value, and it would be easy to rewrite the instruction to
627 * generate its result right into the LHS instead, do so.  This ends
628 * up reliably removing instructions where it can be tricky to do so
629 * later without real UD chain information.
630 */
631bool
632fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
633                                   fs_reg dst,
634                                   fs_reg src,
635                                   fs_inst *pre_rhs_inst,
636                                   fs_inst *last_rhs_inst)
637{
638   /* Only attempt if we're doing a direct assignment. */
639   if (ir->condition ||
640       !(ir->lhs->type->is_scalar() ||
641        (ir->lhs->type->is_vector() &&
642         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
643      return false;
644
645   /* Make sure the last instruction generated our source reg. */
646   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
647						    last_rhs_inst,
648						    src);
649   if (!modify)
650      return false;
651
652   /* If last_rhs_inst wrote a different number of components than our LHS,
653    * we can't safely rewrite it.
654    */
655   if (ir->lhs->type->vector_elements != modify->regs_written())
656      return false;
657
658   /* Success!  Rewrite the instruction. */
659   modify->dst = dst;
660
661   return true;
662}
663
664void
665fs_visitor::visit(ir_assignment *ir)
666{
667   fs_reg l, r;
668   fs_inst *inst;
669
670   /* FINISHME: arrays on the lhs */
671   ir->lhs->accept(this);
672   l = this->result;
673
674   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
675
676   ir->rhs->accept(this);
677   r = this->result;
678
679   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
680
681   assert(l.file != BAD_FILE);
682   assert(r.file != BAD_FILE);
683
684   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
685      return;
686
687   if (ir->condition) {
688      emit_bool_to_cond_code(ir->condition);
689   }
690
691   if (ir->lhs->type->is_scalar() ||
692       ir->lhs->type->is_vector()) {
693      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
694	 if (ir->write_mask & (1 << i)) {
695	    inst = emit(BRW_OPCODE_MOV, l, r);
696	    if (ir->condition)
697	       inst->predicated = true;
698	    r.reg_offset++;
699	 }
700	 l.reg_offset++;
701      }
702   } else {
703      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
704   }
705}
706
707fs_inst *
708fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
709			      fs_reg shadow_c, fs_reg lod, fs_reg dPdy,
710			      int sampler)
711{
712   int mlen;
713   int base_mrf = 1;
714   bool simd16 = false;
715   fs_reg orig_dst;
716
717   /* g0 header. */
718   mlen = 1;
719
720   if (ir->shadow_comparitor) {
721      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
722	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
723	 coordinate.reg_offset++;
724      }
725      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
726      mlen += 3;
727
728      if (ir->op == ir_tex) {
729	 /* There's no plain shadow compare message, so we use shadow
730	  * compare with a bias of 0.0.
731	  */
732	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
733	 mlen++;
734      } else if (ir->op == ir_txb || ir->op == ir_txl) {
735	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
736	 mlen++;
737      } else {
738         assert(!"Should not get here.");
739      }
740
741      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
742      mlen++;
743   } else if (ir->op == ir_tex) {
744      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
745	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
746	 coordinate.reg_offset++;
747      }
748      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
749      mlen += 3;
750   } else if (ir->op == ir_txd) {
751      fs_reg &dPdx = lod;
752
753      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
754	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
755	 coordinate.reg_offset++;
756      }
757      /* the slots for u and v are always present, but r is optional */
758      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
759
760      /*  P   = u, v, r
761       * dPdx = dudx, dvdx, drdx
762       * dPdy = dudy, dvdy, drdy
763       *
764       * 1-arg: Does not exist.
765       *
766       * 2-arg: dudx   dvdx   dudy   dvdy
767       *        dPdx.x dPdx.y dPdy.x dPdy.y
768       *        m4     m5     m6     m7
769       *
770       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
771       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
772       *        m5     m6     m7     m8     m9     m10
773       */
774      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
775	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
776	 dPdx.reg_offset++;
777      }
778      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
779
780      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
781	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
782	 dPdy.reg_offset++;
783      }
784      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
785   } else if (ir->op == ir_txs) {
786      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
787      simd16 = true;
788      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
789      mlen += 2;
790   } else {
791      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
792       * instructions.  We'll need to do SIMD16 here.
793       */
794      simd16 = true;
795      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
796
797      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
798	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
799	      coordinate);
800	 coordinate.reg_offset++;
801      }
802
803      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
804       * be necessary for TXF (ld), but seems wise to do for all messages.
805       */
806      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
807	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
808      }
809
810      /* lod/bias appears after u/v/r. */
811      mlen += 6;
812
813      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, lod.type), lod);
814      mlen++;
815
816      /* The unused upper half. */
817      mlen++;
818   }
819
820   if (simd16) {
821      /* Now, since we're doing simd16, the return is 2 interleaved
822       * vec4s where the odd-indexed ones are junk. We'll need to move
823       * this weirdness around to the expected layout.
824       */
825      orig_dst = dst;
826      const glsl_type *vec_type =
827	 glsl_type::get_instance(ir->type->base_type, 4, 1);
828      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
829      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
830			       : BRW_REGISTER_TYPE_F;
831   }
832
833   fs_inst *inst = NULL;
834   switch (ir->op) {
835   case ir_tex:
836      inst = emit(SHADER_OPCODE_TEX, dst);
837      break;
838   case ir_txb:
839      inst = emit(FS_OPCODE_TXB, dst);
840      break;
841   case ir_txl:
842      inst = emit(SHADER_OPCODE_TXL, dst);
843      break;
844   case ir_txd:
845      inst = emit(SHADER_OPCODE_TXD, dst);
846      break;
847   case ir_txs:
848      inst = emit(SHADER_OPCODE_TXS, dst);
849      break;
850   case ir_txf:
851      inst = emit(SHADER_OPCODE_TXF, dst);
852      break;
853   }
854   inst->base_mrf = base_mrf;
855   inst->mlen = mlen;
856   inst->header_present = true;
857
858   if (simd16) {
859      for (int i = 0; i < 4; i++) {
860	 emit(BRW_OPCODE_MOV, orig_dst, dst);
861	 orig_dst.reg_offset++;
862	 dst.reg_offset += 2;
863      }
864   }
865
866   return inst;
867}
868
869/* gen5's sampler has slots for u, v, r, array index, then optional
870 * parameters like shadow comparitor or LOD bias.  If optional
871 * parameters aren't present, those base slots are optional and don't
872 * need to be included in the message.
873 *
874 * We don't fill in the unnecessary slots regardless, which may look
875 * surprising in the disassembly.
876 */
877fs_inst *
878fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
879			      fs_reg shadow_c, fs_reg lod, fs_reg lod2,
880			      int sampler)
881{
882   int mlen = 0;
883   int base_mrf = 2;
884   int reg_width = c->dispatch_width / 8;
885   bool header_present = false;
886   const int vector_elements =
887      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
888
889   if (ir->offset != NULL && ir->op == ir_txf) {
890      /* It appears that the ld instruction used for txf does its
891       * address bounds check before adding in the offset.  To work
892       * around this, just add the integer offset to the integer texel
893       * coordinate, and don't put the offset in the header.
894       */
895      ir_constant *offset = ir->offset->as_constant();
896      for (int i = 0; i < vector_elements; i++) {
897	 emit(BRW_OPCODE_ADD,
898	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
899	      coordinate,
900	      offset->value.i[i]);
901	 coordinate.reg_offset++;
902      }
903   } else {
904      if (ir->offset) {
905	 /* The offsets set up by the ir_texture visitor are in the
906	  * m1 header, so we can't go headerless.
907	  */
908	 header_present = true;
909	 mlen++;
910	 base_mrf--;
911      }
912
913      for (int i = 0; i < vector_elements; i++) {
914	 emit(BRW_OPCODE_MOV,
915	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
916	      coordinate);
917	 coordinate.reg_offset++;
918      }
919   }
920   mlen += vector_elements * reg_width;
921
922   if (ir->shadow_comparitor) {
923      mlen = MAX2(mlen, header_present + 4 * reg_width);
924
925      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
926      mlen += reg_width;
927   }
928
929   fs_inst *inst = NULL;
930   switch (ir->op) {
931   case ir_tex:
932      inst = emit(SHADER_OPCODE_TEX, dst);
933      break;
934   case ir_txb:
935      mlen = MAX2(mlen, header_present + 4 * reg_width);
936      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
937      mlen += reg_width;
938
939      inst = emit(FS_OPCODE_TXB, dst);
940      break;
941   case ir_txl:
942      mlen = MAX2(mlen, header_present + 4 * reg_width);
943      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
944      mlen += reg_width;
945
946      inst = emit(SHADER_OPCODE_TXL, dst);
947      break;
948   case ir_txd: {
949      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
950
951      /**
952       *  P   =  u,    v,    r
953       * dPdx = dudx, dvdx, drdx
954       * dPdy = dudy, dvdy, drdy
955       *
956       * Load up these values:
957       * - dudx   dudy   dvdx   dvdy   drdx   drdy
958       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
959       */
960      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
961	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
962	 lod.reg_offset++;
963	 mlen += reg_width;
964
965	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod2);
966	 lod2.reg_offset++;
967	 mlen += reg_width;
968      }
969
970      inst = emit(SHADER_OPCODE_TXD, dst);
971      break;
972   }
973   case ir_txs:
974      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
975      mlen += reg_width;
976      inst = emit(SHADER_OPCODE_TXS, dst);
977      break;
978   case ir_txf:
979      mlen = header_present + 4 * reg_width;
980
981      emit(BRW_OPCODE_MOV,
982	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
983	   lod);
984      inst = emit(SHADER_OPCODE_TXF, dst);
985      break;
986   }
987   inst->base_mrf = base_mrf;
988   inst->mlen = mlen;
989   inst->header_present = header_present;
990
991   if (mlen > 11) {
992      fail("Message length >11 disallowed by hardware\n");
993   }
994
995   return inst;
996}
997
998fs_inst *
999fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1000			      fs_reg shadow_c, fs_reg lod, fs_reg lod2,
1001			      int sampler)
1002{
1003   int mlen = 0;
1004   int base_mrf = 2;
1005   int reg_width = c->dispatch_width / 8;
1006   bool header_present = false;
1007   int offsets[3];
1008
1009   if (ir->offset && ir->op != ir_txf) {
1010      /* The offsets set up by the ir_texture visitor are in the
1011       * m1 header, so we can't go headerless.
1012       */
1013      header_present = true;
1014      mlen++;
1015      base_mrf--;
1016   }
1017
1018   if (ir->shadow_comparitor) {
1019      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
1020      mlen += reg_width;
1021   }
1022
1023   /* Set up the LOD info */
1024   switch (ir->op) {
1025   case ir_tex:
1026      break;
1027   case ir_txb:
1028      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1029      mlen += reg_width;
1030      break;
1031   case ir_txl:
1032      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1033      mlen += reg_width;
1034      break;
1035   case ir_txd: {
1036      if (c->dispatch_width == 16)
1037	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1038
1039      /* Load dPdx and the coordinate together:
1040       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1041       */
1042      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1043	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1044	 coordinate.reg_offset++;
1045	 mlen += reg_width;
1046
1047	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1048	 lod.reg_offset++;
1049	 mlen += reg_width;
1050
1051	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod2);
1052	 lod2.reg_offset++;
1053	 mlen += reg_width;
1054      }
1055      break;
1056   }
1057   case ir_txs:
1058      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
1059      mlen += reg_width;
1060      break;
1061   case ir_txf:
1062      /* It appears that the ld instruction used for txf does its
1063       * address bounds check before adding in the offset.  To work
1064       * around this, just add the integer offset to the integer texel
1065       * coordinate, and don't put the offset in the header.
1066       */
1067      if (ir->offset) {
1068	 ir_constant *offset = ir->offset->as_constant();
1069	 offsets[0] = offset->value.i[0];
1070	 offsets[1] = offset->value.i[1];
1071	 offsets[2] = offset->value.i[2];
1072      } else {
1073	 memset(offsets, 0, sizeof(offsets));
1074      }
1075
1076      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1077      emit(BRW_OPCODE_ADD,
1078	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1079      coordinate.reg_offset++;
1080      mlen += reg_width;
1081
1082      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod);
1083      mlen += reg_width;
1084
1085      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1086	 emit(BRW_OPCODE_ADD,
1087	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1088	 coordinate.reg_offset++;
1089	 mlen += reg_width;
1090      }
1091      break;
1092   }
1093
1094   /* Set up the coordinate (except for cases where it was done above) */
1095   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1096      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1097	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1098	 coordinate.reg_offset++;
1099	 mlen += reg_width;
1100      }
1101   }
1102
1103   /* Generate the SEND */
1104   fs_inst *inst = NULL;
1105   switch (ir->op) {
1106   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1107   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1108   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1109   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1110   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1111   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1112   }
1113   inst->base_mrf = base_mrf;
1114   inst->mlen = mlen;
1115   inst->header_present = header_present;
1116
1117   if (mlen > 11) {
1118      fail("Message length >11 disallowed by hardware\n");
1119   }
1120
1121   return inst;
1122}
1123
1124/**
1125 * Emit code to produce the coordinates for a texture lookup.
1126 *
1127 * Returns the fs_reg containing the texture coordinate (as opposed to
1128 * setting this->result).
1129 */
1130fs_reg
1131fs_visitor::emit_texcoord(ir_texture *ir, int sampler)
1132{
1133   fs_inst *inst = NULL;
1134
1135   if (!ir->coordinate)
1136      return fs_reg(); /* Return the default BAD_FILE register. */
1137
1138   ir->coordinate->accept(this);
1139   fs_reg coordinate = this->result;
1140
1141   bool needs_gl_clamp = true;
1142
1143   fs_reg scale_x, scale_y;
1144
1145   /* The 965 requires the EU to do the normalization of GL rectangle
1146    * texture coordinates.  We use the program parameter state
1147    * tracking to get the scaling factor.
1148    */
1149   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1150       (intel->gen < 6 ||
1151	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1152			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1153      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1154      int tokens[STATE_LENGTH] = {
1155	 STATE_INTERNAL,
1156	 STATE_TEXRECT_SCALE,
1157	 sampler,
1158	 0,
1159	 0
1160      };
1161
1162      if (c->dispatch_width == 16) {
1163	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1164	 return fs_reg(this, ir->type);
1165      }
1166
1167      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1168      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1169
1170      GLuint index = _mesa_add_state_reference(params,
1171					       (gl_state_index *)tokens);
1172
1173      this->param_index[c->prog_data.nr_params] = index;
1174      this->param_offset[c->prog_data.nr_params] = 0;
1175      c->prog_data.nr_params++;
1176      this->param_index[c->prog_data.nr_params] = index;
1177      this->param_offset[c->prog_data.nr_params] = 1;
1178      c->prog_data.nr_params++;
1179   }
1180
1181   /* The 965 requires the EU to do the normalization of GL rectangle
1182    * texture coordinates.  We use the program parameter state
1183    * tracking to get the scaling factor.
1184    */
1185   if (intel->gen < 6 &&
1186       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1187      fs_reg dst = fs_reg(this, ir->coordinate->type);
1188      fs_reg src = coordinate;
1189      coordinate = dst;
1190
1191      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1192      dst.reg_offset++;
1193      src.reg_offset++;
1194      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1195   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1196      /* On gen6+, the sampler handles the rectangle coordinates
1197       * natively, without needing rescaling.  But that means we have
1198       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1199       * not [0, 1] like the default case below.
1200       */
1201      needs_gl_clamp = false;
1202
1203      for (int i = 0; i < 2; i++) {
1204	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1205	    fs_reg chan = coordinate;
1206	    chan.reg_offset += i;
1207
1208	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1209	    inst->conditional_mod = BRW_CONDITIONAL_G;
1210
1211	    /* Our parameter comes in as 1.0/width or 1.0/height,
1212	     * because that's what people normally want for doing
1213	     * texture rectangle handling.  We need width or height
1214	     * for clamping, but we don't care enough to make a new
1215	     * parameter type, so just invert back.
1216	     */
1217	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1218	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1219	    emit(SHADER_OPCODE_RCP, limit, limit);
1220
1221	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1222	    inst->conditional_mod = BRW_CONDITIONAL_L;
1223	 }
1224      }
1225   }
1226
1227   if (ir->coordinate && needs_gl_clamp) {
1228      for (unsigned int i = 0;
1229	   i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1230	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1231	    fs_reg chan = coordinate;
1232	    chan.reg_offset += i;
1233
1234	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1235	    inst->saturate = true;
1236	 }
1237      }
1238   }
1239   return coordinate;
1240}
1241
1242void
1243fs_visitor::visit(ir_texture *ir)
1244{
1245   fs_inst *inst = NULL;
1246
1247   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1248   sampler = fp->Base.SamplerUnits[sampler];
1249
1250   /* Should be lowered by do_lower_texture_projection */
1251   assert(!ir->projector);
1252
1253   /* Generate code to compute all the subexpression trees.  This has to be
1254    * done before loading any values into MRFs for the sampler message since
1255    * generating these values may involve SEND messages that need the MRFs.
1256    */
1257   fs_reg coordinate = emit_texcoord(ir, sampler);
1258
1259   fs_reg shadow_comparitor;
1260   if (ir->shadow_comparitor) {
1261      ir->shadow_comparitor->accept(this);
1262      shadow_comparitor = this->result;
1263   }
1264
1265   fs_reg lod, lod2;
1266   switch (ir->op) {
1267   case ir_tex:
1268      break;
1269   case ir_txb:
1270      ir->lod_info.bias->accept(this);
1271      lod = this->result;
1272      break;
1273   case ir_txd:
1274      ir->lod_info.grad.dPdx->accept(this);
1275      lod = this->result;
1276
1277      ir->lod_info.grad.dPdy->accept(this);
1278      lod2 = this->result;
1279      break;
1280   case ir_txf:
1281   case ir_txl:
1282   case ir_txs:
1283      ir->lod_info.lod->accept(this);
1284      lod = this->result;
1285      break;
1286   };
1287
1288   /* Writemasking doesn't eliminate channels on SIMD8 texture
1289    * samples, so don't worry about them.
1290    */
1291   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1292
1293   if (intel->gen >= 7) {
1294      inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1295                               lod, lod2, sampler);
1296   } else if (intel->gen >= 5) {
1297      inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1298                               lod, lod2, sampler);
1299   } else {
1300      inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1301                               lod, lod2, sampler);
1302   }
1303
1304   /* The header is set up by generate_tex() when necessary. */
1305   inst->src[0] = reg_undef;
1306
1307   if (ir->offset != NULL && ir->op != ir_txf)
1308      inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1309
1310   inst->sampler = sampler;
1311
1312   if (ir->shadow_comparitor)
1313      inst->shadow_compare = true;
1314
1315   swizzle_result(ir, dst, sampler);
1316}
1317
1318/**
1319 * Swizzle the result of a texture result.  This is necessary for
1320 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1321 */
1322void
1323fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1324{
1325   this->result = orig_val;
1326
1327   if (ir->op == ir_txs)
1328      return;
1329
1330   if (ir->type == glsl_type::float_type) {
1331      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1332      assert(ir->sampler->type->sampler_shadow);
1333   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1334      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1335
1336      for (int i = 0; i < 4; i++) {
1337	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1338	 fs_reg l = swizzled_result;
1339	 l.reg_offset += i;
1340
1341	 if (swiz == SWIZZLE_ZERO) {
1342	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1343	 } else if (swiz == SWIZZLE_ONE) {
1344	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1345	 } else {
1346	    fs_reg r = orig_val;
1347	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1348	    emit(BRW_OPCODE_MOV, l, r);
1349	 }
1350      }
1351      this->result = swizzled_result;
1352   }
1353}
1354
1355void
1356fs_visitor::visit(ir_swizzle *ir)
1357{
1358   ir->val->accept(this);
1359   fs_reg val = this->result;
1360
1361   if (ir->type->vector_elements == 1) {
1362      this->result.reg_offset += ir->mask.x;
1363      return;
1364   }
1365
1366   fs_reg result = fs_reg(this, ir->type);
1367   this->result = result;
1368
1369   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1370      fs_reg channel = val;
1371      int swiz = 0;
1372
1373      switch (i) {
1374      case 0:
1375	 swiz = ir->mask.x;
1376	 break;
1377      case 1:
1378	 swiz = ir->mask.y;
1379	 break;
1380      case 2:
1381	 swiz = ir->mask.z;
1382	 break;
1383      case 3:
1384	 swiz = ir->mask.w;
1385	 break;
1386      }
1387
1388      channel.reg_offset += swiz;
1389      emit(BRW_OPCODE_MOV, result, channel);
1390      result.reg_offset++;
1391   }
1392}
1393
1394void
1395fs_visitor::visit(ir_discard *ir)
1396{
1397   assert(ir->condition == NULL); /* FINISHME */
1398
1399   emit(FS_OPCODE_DISCARD);
1400}
1401
1402void
1403fs_visitor::visit(ir_constant *ir)
1404{
1405   /* Set this->result to reg at the bottom of the function because some code
1406    * paths will cause this visitor to be applied to other fields.  This will
1407    * cause the value stored in this->result to be modified.
1408    *
1409    * Make reg constant so that it doesn't get accidentally modified along the
1410    * way.  Yes, I actually had this problem. :(
1411    */
1412   const fs_reg reg(this, ir->type);
1413   fs_reg dst_reg = reg;
1414
1415   if (ir->type->is_array()) {
1416      const unsigned size = type_size(ir->type->fields.array);
1417
1418      for (unsigned i = 0; i < ir->type->length; i++) {
1419	 ir->array_elements[i]->accept(this);
1420	 fs_reg src_reg = this->result;
1421
1422	 dst_reg.type = src_reg.type;
1423	 for (unsigned j = 0; j < size; j++) {
1424	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1425	    src_reg.reg_offset++;
1426	    dst_reg.reg_offset++;
1427	 }
1428      }
1429   } else if (ir->type->is_record()) {
1430      foreach_list(node, &ir->components) {
1431	 ir_constant *const field = (ir_constant *) node;
1432	 const unsigned size = type_size(field->type);
1433
1434	 field->accept(this);
1435	 fs_reg src_reg = this->result;
1436
1437	 dst_reg.type = src_reg.type;
1438	 for (unsigned j = 0; j < size; j++) {
1439	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1440	    src_reg.reg_offset++;
1441	    dst_reg.reg_offset++;
1442	 }
1443      }
1444   } else {
1445      const unsigned size = type_size(ir->type);
1446
1447      for (unsigned i = 0; i < size; i++) {
1448	 switch (ir->type->base_type) {
1449	 case GLSL_TYPE_FLOAT:
1450	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1451	    break;
1452	 case GLSL_TYPE_UINT:
1453	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1454	    break;
1455	 case GLSL_TYPE_INT:
1456	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1457	    break;
1458	 case GLSL_TYPE_BOOL:
1459	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1460	    break;
1461	 default:
1462	    assert(!"Non-float/uint/int/bool constant");
1463	 }
1464	 dst_reg.reg_offset++;
1465      }
1466   }
1467
1468   this->result = reg;
1469}
1470
1471void
1472fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1473{
1474   ir_expression *expr = ir->as_expression();
1475
1476   if (expr) {
1477      fs_reg op[2];
1478      fs_inst *inst;
1479
1480      assert(expr->get_num_operands() <= 2);
1481      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1482	 assert(expr->operands[i]->type->is_scalar());
1483
1484	 expr->operands[i]->accept(this);
1485	 op[i] = this->result;
1486
1487	 resolve_ud_negate(&op[i]);
1488      }
1489
1490      switch (expr->operation) {
1491      case ir_unop_logic_not:
1492	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1493	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1494	 break;
1495
1496      case ir_binop_logic_xor:
1497      case ir_binop_logic_or:
1498      case ir_binop_logic_and:
1499	 goto out;
1500
1501      case ir_unop_f2b:
1502	 if (intel->gen >= 6) {
1503	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1504	 } else {
1505	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1506	 }
1507	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1508	 break;
1509
1510      case ir_unop_i2b:
1511	 if (intel->gen >= 6) {
1512	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1513	 } else {
1514	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1515	 }
1516	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1517	 break;
1518
1519      case ir_binop_greater:
1520      case ir_binop_gequal:
1521      case ir_binop_less:
1522      case ir_binop_lequal:
1523      case ir_binop_equal:
1524      case ir_binop_all_equal:
1525      case ir_binop_nequal:
1526      case ir_binop_any_nequal:
1527	 resolve_bool_comparison(expr->operands[0], &op[0]);
1528	 resolve_bool_comparison(expr->operands[1], &op[1]);
1529
1530	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1531	 inst->conditional_mod =
1532	    brw_conditional_for_comparison(expr->operation);
1533	 break;
1534
1535      default:
1536	 assert(!"not reached");
1537	 fail("bad cond code\n");
1538	 break;
1539      }
1540      return;
1541   }
1542
1543out:
1544   ir->accept(this);
1545
1546   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1547   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1548}
1549
1550/**
1551 * Emit a gen6 IF statement with the comparison folded into the IF
1552 * instruction.
1553 */
1554void
1555fs_visitor::emit_if_gen6(ir_if *ir)
1556{
1557   ir_expression *expr = ir->condition->as_expression();
1558
1559   if (expr) {
1560      fs_reg op[2];
1561      fs_inst *inst;
1562      fs_reg temp;
1563
1564      assert(expr->get_num_operands() <= 2);
1565      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1566	 assert(expr->operands[i]->type->is_scalar());
1567
1568	 expr->operands[i]->accept(this);
1569	 op[i] = this->result;
1570      }
1571
1572      switch (expr->operation) {
1573      case ir_unop_logic_not:
1574	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1575	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1576	 return;
1577
1578      case ir_binop_logic_xor:
1579	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1580	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1581	 return;
1582
1583      case ir_binop_logic_or:
1584	 temp = fs_reg(this, glsl_type::bool_type);
1585	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1586	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1587	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1588	 return;
1589
1590      case ir_binop_logic_and:
1591	 temp = fs_reg(this, glsl_type::bool_type);
1592	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1593	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1594	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1595	 return;
1596
1597      case ir_unop_f2b:
1598	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1599	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1600	 return;
1601
1602      case ir_unop_i2b:
1603	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1604	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1605	 return;
1606
1607      case ir_binop_greater:
1608      case ir_binop_gequal:
1609      case ir_binop_less:
1610      case ir_binop_lequal:
1611      case ir_binop_equal:
1612      case ir_binop_all_equal:
1613      case ir_binop_nequal:
1614      case ir_binop_any_nequal:
1615	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1616	 inst->conditional_mod =
1617	    brw_conditional_for_comparison(expr->operation);
1618	 return;
1619      default:
1620	 assert(!"not reached");
1621	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1622	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1623	 fail("bad condition\n");
1624	 return;
1625      }
1626      return;
1627   }
1628
1629   ir->condition->accept(this);
1630
1631   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1632   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1633}
1634
1635void
1636fs_visitor::visit(ir_if *ir)
1637{
1638   fs_inst *inst;
1639
1640   if (intel->gen < 6 && c->dispatch_width == 16) {
1641      fail("Can't support (non-uniform) control flow on 16-wide\n");
1642   }
1643
1644   /* Don't point the annotation at the if statement, because then it plus
1645    * the then and else blocks get printed.
1646    */
1647   this->base_ir = ir->condition;
1648
1649   if (intel->gen == 6) {
1650      emit_if_gen6(ir);
1651   } else {
1652      emit_bool_to_cond_code(ir->condition);
1653
1654      inst = emit(BRW_OPCODE_IF);
1655      inst->predicated = true;
1656   }
1657
1658   foreach_list(node, &ir->then_instructions) {
1659      ir_instruction *ir = (ir_instruction *)node;
1660      this->base_ir = ir;
1661
1662      ir->accept(this);
1663   }
1664
1665   if (!ir->else_instructions.is_empty()) {
1666      emit(BRW_OPCODE_ELSE);
1667
1668      foreach_list(node, &ir->else_instructions) {
1669	 ir_instruction *ir = (ir_instruction *)node;
1670	 this->base_ir = ir;
1671
1672	 ir->accept(this);
1673      }
1674   }
1675
1676   emit(BRW_OPCODE_ENDIF);
1677}
1678
1679void
1680fs_visitor::visit(ir_loop *ir)
1681{
1682   fs_reg counter = reg_undef;
1683
1684   if (intel->gen < 6 && c->dispatch_width == 16) {
1685      fail("Can't support (non-uniform) control flow on 16-wide\n");
1686   }
1687
1688   if (ir->counter) {
1689      this->base_ir = ir->counter;
1690      ir->counter->accept(this);
1691      counter = *(variable_storage(ir->counter));
1692
1693      if (ir->from) {
1694	 this->base_ir = ir->from;
1695	 ir->from->accept(this);
1696
1697	 emit(BRW_OPCODE_MOV, counter, this->result);
1698      }
1699   }
1700
1701   this->base_ir = NULL;
1702   emit(BRW_OPCODE_DO);
1703
1704   if (ir->to) {
1705      this->base_ir = ir->to;
1706      ir->to->accept(this);
1707
1708      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1709      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1710
1711      inst = emit(BRW_OPCODE_BREAK);
1712      inst->predicated = true;
1713   }
1714
1715   foreach_list(node, &ir->body_instructions) {
1716      ir_instruction *ir = (ir_instruction *)node;
1717
1718      this->base_ir = ir;
1719      ir->accept(this);
1720   }
1721
1722   if (ir->increment) {
1723      this->base_ir = ir->increment;
1724      ir->increment->accept(this);
1725      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1726   }
1727
1728   this->base_ir = NULL;
1729   emit(BRW_OPCODE_WHILE);
1730}
1731
1732void
1733fs_visitor::visit(ir_loop_jump *ir)
1734{
1735   switch (ir->mode) {
1736   case ir_loop_jump::jump_break:
1737      emit(BRW_OPCODE_BREAK);
1738      break;
1739   case ir_loop_jump::jump_continue:
1740      emit(BRW_OPCODE_CONTINUE);
1741      break;
1742   }
1743}
1744
1745void
1746fs_visitor::visit(ir_call *ir)
1747{
1748   assert(!"FINISHME");
1749}
1750
1751void
1752fs_visitor::visit(ir_return *ir)
1753{
1754   assert(!"FINISHME");
1755}
1756
1757void
1758fs_visitor::visit(ir_function *ir)
1759{
1760   /* Ignore function bodies other than main() -- we shouldn't see calls to
1761    * them since they should all be inlined before we get to ir_to_mesa.
1762    */
1763   if (strcmp(ir->name, "main") == 0) {
1764      const ir_function_signature *sig;
1765      exec_list empty;
1766
1767      sig = ir->matching_signature(&empty);
1768
1769      assert(sig);
1770
1771      foreach_list(node, &sig->body) {
1772	 ir_instruction *ir = (ir_instruction *)node;
1773	 this->base_ir = ir;
1774
1775	 ir->accept(this);
1776      }
1777   }
1778}
1779
1780void
1781fs_visitor::visit(ir_function_signature *ir)
1782{
1783   assert(!"not reached");
1784   (void)ir;
1785}
1786
1787fs_inst *
1788fs_visitor::emit(fs_inst inst)
1789{
1790   fs_inst *list_inst = new(mem_ctx) fs_inst;
1791   *list_inst = inst;
1792
1793   if (force_uncompressed_stack > 0)
1794      list_inst->force_uncompressed = true;
1795   else if (force_sechalf_stack > 0)
1796      list_inst->force_sechalf = true;
1797
1798   list_inst->annotation = this->current_annotation;
1799   list_inst->ir = this->base_ir;
1800
1801   this->instructions.push_tail(list_inst);
1802
1803   return list_inst;
1804}
1805
1806/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1807void
1808fs_visitor::emit_dummy_fs()
1809{
1810   int reg_width = c->dispatch_width / 8;
1811
1812   /* Everyone's favorite color. */
1813   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1814   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1815   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1816   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1817
1818   fs_inst *write;
1819   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1820   write->base_mrf = 2;
1821   write->mlen = 4 * reg_width;
1822   write->eot = true;
1823}
1824
1825/* The register location here is relative to the start of the URB
1826 * data.  It will get adjusted to be a real location before
1827 * generate_code() time.
1828 */
1829struct brw_reg
1830fs_visitor::interp_reg(int location, int channel)
1831{
1832   int regnr = urb_setup[location] * 2 + channel / 2;
1833   int stride = (channel & 1) * 4;
1834
1835   assert(urb_setup[location] != -1);
1836
1837   return brw_vec1_grf(regnr, stride);
1838}
1839
1840/** Emits the interpolation for the varying inputs. */
1841void
1842fs_visitor::emit_interpolation_setup_gen4()
1843{
1844   this->current_annotation = "compute pixel centers";
1845   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1846   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1847   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1848   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1849
1850   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1851   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1852
1853   this->current_annotation = "compute pixel deltas from v0";
1854   if (brw->has_pln) {
1855      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1856         fs_reg(this, glsl_type::vec2_type);
1857      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1858         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1859      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1860   } else {
1861      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1862         fs_reg(this, glsl_type::float_type);
1863      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1864         fs_reg(this, glsl_type::float_type);
1865   }
1866   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1867	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1868   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1869	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1870
1871   this->current_annotation = "compute pos.w and 1/pos.w";
1872   /* Compute wpos.w.  It's always in our setup, since it's needed to
1873    * interpolate the other attributes.
1874    */
1875   this->wpos_w = fs_reg(this, glsl_type::float_type);
1876   emit(FS_OPCODE_LINTERP, wpos_w,
1877        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1878        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1879	interp_reg(FRAG_ATTRIB_WPOS, 3));
1880   /* Compute the pixel 1/W value from wpos.w. */
1881   this->pixel_w = fs_reg(this, glsl_type::float_type);
1882   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1883   this->current_annotation = NULL;
1884}
1885
1886/** Emits the interpolation for the varying inputs. */
1887void
1888fs_visitor::emit_interpolation_setup_gen6()
1889{
1890   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1891
1892   /* If the pixel centers end up used, the setup is the same as for gen4. */
1893   this->current_annotation = "compute pixel centers";
1894   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1895   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1896   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1897   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1898   emit(BRW_OPCODE_ADD,
1899	int_pixel_x,
1900	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1901	fs_reg(brw_imm_v(0x10101010)));
1902   emit(BRW_OPCODE_ADD,
1903	int_pixel_y,
1904	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1905	fs_reg(brw_imm_v(0x11001100)));
1906
1907   /* As of gen6, we can no longer mix float and int sources.  We have
1908    * to turn the integer pixel centers into floats for their actual
1909    * use.
1910    */
1911   this->pixel_x = fs_reg(this, glsl_type::float_type);
1912   this->pixel_y = fs_reg(this, glsl_type::float_type);
1913   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1914   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1915
1916   this->current_annotation = "compute pos.w";
1917   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1918   this->wpos_w = fs_reg(this, glsl_type::float_type);
1919   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1920
1921   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1922      uint8_t reg = c->barycentric_coord_reg[i];
1923      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1924      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1925   }
1926
1927   this->current_annotation = NULL;
1928}
1929
1930void
1931fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1932{
1933   int reg_width = c->dispatch_width / 8;
1934   fs_inst *inst;
1935   fs_reg color = outputs[target];
1936   fs_reg mrf;
1937
1938   /* If there's no color data to be written, skip it. */
1939   if (color.file == BAD_FILE)
1940      return;
1941
1942   color.reg_offset += index;
1943
1944   if (c->dispatch_width == 8 || intel->gen >= 6) {
1945      /* SIMD8 write looks like:
1946       * m + 0: r0
1947       * m + 1: r1
1948       * m + 2: g0
1949       * m + 3: g1
1950       *
1951       * gen6 SIMD16 DP write looks like:
1952       * m + 0: r0
1953       * m + 1: r1
1954       * m + 2: g0
1955       * m + 3: g1
1956       * m + 4: b0
1957       * m + 5: b1
1958       * m + 6: a0
1959       * m + 7: a1
1960       */
1961      inst = emit(BRW_OPCODE_MOV,
1962		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1963		  color);
1964      inst->saturate = c->key.clamp_fragment_color;
1965   } else {
1966      /* pre-gen6 SIMD16 single source DP write looks like:
1967       * m + 0: r0
1968       * m + 1: g0
1969       * m + 2: b0
1970       * m + 3: a0
1971       * m + 4: r1
1972       * m + 5: g1
1973       * m + 6: b1
1974       * m + 7: a1
1975       */
1976      if (brw->has_compr4) {
1977	 /* By setting the high bit of the MRF register number, we
1978	  * indicate that we want COMPR4 mode - instead of doing the
1979	  * usual destination + 1 for the second half we get
1980	  * destination + 4.
1981	  */
1982	 inst = emit(BRW_OPCODE_MOV,
1983		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1984			    color.type),
1985		     color);
1986	 inst->saturate = c->key.clamp_fragment_color;
1987      } else {
1988	 push_force_uncompressed();
1989	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1990					    color.type),
1991		     color);
1992	 inst->saturate = c->key.clamp_fragment_color;
1993	 pop_force_uncompressed();
1994
1995	 push_force_sechalf();
1996	 color.sechalf = true;
1997	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1998					    color.type),
1999		     color);
2000	 inst->saturate = c->key.clamp_fragment_color;
2001	 pop_force_sechalf();
2002	 color.sechalf = false;
2003      }
2004   }
2005}
2006
2007void
2008fs_visitor::emit_fb_writes()
2009{
2010   this->current_annotation = "FB write header";
2011   bool header_present = true;
2012   /* We can potentially have a message length of up to 15, so we have to set
2013    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2014    */
2015   int base_mrf = 1;
2016   int nr = base_mrf;
2017   int reg_width = c->dispatch_width / 8;
2018   bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2019
2020   if (c->dispatch_width == 16 && do_dual_src) {
2021      fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2022      do_dual_src = false;
2023   }
2024
2025   /* From the Sandy Bridge PRM, volume 4, page 198:
2026    *
2027    *     "Dispatched Pixel Enables. One bit per pixel indicating
2028    *      which pixels were originally enabled when the thread was
2029    *      dispatched. This field is only required for the end-of-
2030    *      thread message and on all dual-source messages."
2031    */
2032   if (intel->gen >= 6 &&
2033       !this->fp->UsesKill &&
2034       !do_dual_src &&
2035       c->key.nr_color_regions == 1) {
2036      header_present = false;
2037   }
2038
2039   if (header_present) {
2040      /* m2, m3 header */
2041      nr += 2;
2042   }
2043
2044   if (c->aa_dest_stencil_reg) {
2045      push_force_uncompressed();
2046      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2047	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2048      pop_force_uncompressed();
2049   }
2050
2051   /* Reserve space for color. It'll be filled in per MRT below. */
2052   int color_mrf = nr;
2053   nr += 4 * reg_width;
2054   if (do_dual_src)
2055      nr += 4;
2056
2057   if (c->source_depth_to_render_target) {
2058      if (intel->gen == 6 && c->dispatch_width == 16) {
2059	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2060	  * used.  This would require 8-wide moves of each half to
2061	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2062	  * Just bail on doing so for now.
2063	  */
2064	 fail("Missing support for simd16 depth writes on gen6\n");
2065      }
2066
2067      if (c->computes_depth) {
2068	 /* Hand over gl_FragDepth. */
2069	 assert(this->frag_depth);
2070	 fs_reg depth = *(variable_storage(this->frag_depth));
2071
2072	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2073      } else {
2074	 /* Pass through the payload depth. */
2075	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2076	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2077      }
2078      nr += reg_width;
2079   }
2080
2081   if (c->dest_depth_reg) {
2082      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2083	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2084      nr += reg_width;
2085   }
2086
2087   if (do_dual_src) {
2088      fs_reg src0 = this->outputs[0];
2089      fs_reg src1 = this->dual_src_output;
2090
2091      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2092						 "FB write src0");
2093      for (int i = 0; i < 4; i++) {
2094	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2095			      fs_reg(MRF, color_mrf + i, src0.type),
2096			      src0);
2097	 src0.reg_offset++;
2098	 inst->saturate = c->key.clamp_fragment_color;
2099      }
2100
2101      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2102						 "FB write src1");
2103      for (int i = 0; i < 4; i++) {
2104	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2105			      fs_reg(MRF, color_mrf + 4 + i, src1.type),
2106			      src1);
2107	 src1.reg_offset++;
2108	 inst->saturate = c->key.clamp_fragment_color;
2109      }
2110
2111      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2112      inst->target = 0;
2113      inst->base_mrf = base_mrf;
2114      inst->mlen = nr - base_mrf;
2115      inst->eot = true;
2116      inst->header_present = header_present;
2117
2118      c->prog_data.dual_src_blend = true;
2119      this->current_annotation = NULL;
2120      return;
2121   }
2122
2123   for (int target = 0; target < c->key.nr_color_regions; target++) {
2124      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2125						 "FB write target %d",
2126						 target);
2127      for (unsigned i = 0; i < this->output_components[target]; i++)
2128	 emit_color_write(target, i, color_mrf);
2129
2130      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2131      inst->target = target;
2132      inst->base_mrf = base_mrf;
2133      inst->mlen = nr - base_mrf;
2134      if (target == c->key.nr_color_regions - 1)
2135	 inst->eot = true;
2136      inst->header_present = header_present;
2137   }
2138
2139   if (c->key.nr_color_regions == 0) {
2140      /* Even if there's no color buffers enabled, we still need to send
2141       * alpha out the pipeline to our null renderbuffer to support
2142       * alpha-testing, alpha-to-coverage, and so on.
2143       */
2144      emit_color_write(0, 3, color_mrf);
2145
2146      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2147      inst->base_mrf = base_mrf;
2148      inst->mlen = nr - base_mrf;
2149      inst->eot = true;
2150      inst->header_present = header_present;
2151   }
2152
2153   this->current_annotation = NULL;
2154}
2155
2156void
2157fs_visitor::resolve_ud_negate(fs_reg *reg)
2158{
2159   if (reg->type != BRW_REGISTER_TYPE_UD ||
2160       !reg->negate)
2161      return;
2162
2163   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2164   emit(BRW_OPCODE_MOV, temp, *reg);
2165   *reg = temp;
2166}
2167
2168void
2169fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2170{
2171   if (rvalue->type != glsl_type::bool_type)
2172      return;
2173
2174   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2175   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2176   *reg = temp;
2177}
2178
2179fs_visitor::fs_visitor(struct brw_wm_compile *c, struct gl_shader_program *prog,
2180                       struct brw_shader *shader)
2181{
2182   this->c = c;
2183   this->p = &c->func;
2184   this->brw = p->brw;
2185   this->fp = (struct gl_fragment_program *)
2186      prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2187   this->prog = prog;
2188   this->intel = &brw->intel;
2189   this->ctx = &intel->ctx;
2190   this->mem_ctx = ralloc_context(NULL);
2191   this->shader = shader;
2192   this->failed = false;
2193   this->variable_ht = hash_table_ctor(0,
2194                                       hash_table_pointer_hash,
2195                                       hash_table_pointer_compare);
2196
2197   /* There's a question that appears to be left open in the spec:
2198    * How do implicit dst conversions interact with the CMP
2199    * instruction or conditional mods?  On gen6, the instruction:
2200    *
2201    * CMP null<d> src0<f> src1<f>
2202    *
2203    * will do src1 - src0 and compare that result as if it was an
2204    * integer.  On gen4, it will do src1 - src0 as float, convert
2205    * the result to int, and compare as int.  In between, it
2206    * appears that it does src1 - src0 and does the compare in the
2207    * execution type so dst type doesn't matter.
2208    */
2209   if (this->intel->gen > 4)
2210      this->reg_null_cmp = reg_null_d;
2211   else
2212      this->reg_null_cmp = reg_null_f;
2213
2214   this->frag_depth = NULL;
2215   memset(this->outputs, 0, sizeof(this->outputs));
2216   this->first_non_payload_grf = 0;
2217   this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2218
2219   this->current_annotation = NULL;
2220   this->base_ir = NULL;
2221
2222   this->virtual_grf_sizes = NULL;
2223   this->virtual_grf_count = 0;
2224   this->virtual_grf_array_size = 0;
2225   this->virtual_grf_def = NULL;
2226   this->virtual_grf_use = NULL;
2227   this->live_intervals_valid = false;
2228
2229   this->force_uncompressed_stack = 0;
2230   this->force_sechalf_stack = 0;
2231}
2232
2233fs_visitor::~fs_visitor()
2234{
2235   ralloc_free(this->mem_ctx);
2236   hash_table_dtor(this->variable_ht);
2237}
2238