brw_fs_visitor.cpp revision 3fa910fff9f72d1adf33f0f4dea3d790a9ce04ab
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM ||
146	     (this->result.file == GRF &&
147	      this->result.reg != 0));
148      this->result.reg_offset += index->value.i[0] * element_size;
149   } else {
150      assert(!"FINISHME: non-constant array element");
151   }
152}
153
154/* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157bool
158fs_visitor::try_emit_saturate(ir_expression *ir)
159{
160   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162   if (!sat_val)
163      return false;
164
165   this->result = reg_undef;
166   sat_val->accept(this);
167   fs_reg src = this->result;
168
169   this->result = fs_reg(this, ir->type);
170   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171   inst->saturate = true;
172
173   return true;
174}
175
176void
177fs_visitor::visit(ir_expression *ir)
178{
179   unsigned int operand;
180   fs_reg op[2], temp;
181   fs_inst *inst;
182
183   assert(ir->get_num_operands() <= 2);
184
185   if (try_emit_saturate(ir))
186      return;
187
188   /* This is where our caller would like us to put the result, if possible. */
189   fs_reg saved_result_storage = this->result;
190
191   for (operand = 0; operand < ir->get_num_operands(); operand++) {
192      this->result = reg_undef;
193      ir->operands[operand]->accept(this);
194      if (this->result.file == BAD_FILE) {
195	 ir_print_visitor v;
196	 fail("Failed to get tree for expression operand:\n");
197	 ir->operands[operand]->accept(&v);
198      }
199      op[operand] = this->result;
200
201      /* Matrix expression operands should have been broken down to vector
202       * operations already.
203       */
204      assert(!ir->operands[operand]->type->is_matrix());
205      /* And then those vector operands should have been broken down to scalar.
206       */
207      assert(!ir->operands[operand]->type->is_vector());
208   }
209
210   /* Inherit storage from our parent if possible, and otherwise we
211    * alloc a temporary.
212    */
213   if (saved_result_storage.file == BAD_FILE) {
214      this->result = fs_reg(this, ir->type);
215   } else {
216      this->result = saved_result_storage;
217   }
218
219   switch (ir->operation) {
220   case ir_unop_logic_not:
221      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222       * ones complement of the whole register, not just bit 0.
223       */
224      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225      break;
226   case ir_unop_neg:
227      op[0].negate = !op[0].negate;
228      this->result = op[0];
229      break;
230   case ir_unop_abs:
231      op[0].abs = true;
232      op[0].negate = false;
233      this->result = op[0];
234      break;
235   case ir_unop_sign:
236      temp = fs_reg(this, ir->type);
237
238      /* Unalias the destination.  (imagine a = sign(a)) */
239      this->result = fs_reg(this, ir->type);
240
241      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244      inst->conditional_mod = BRW_CONDITIONAL_G;
245      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246      inst->predicated = true;
247
248      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249      inst->conditional_mod = BRW_CONDITIONAL_L;
250      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251      inst->predicated = true;
252
253      break;
254   case ir_unop_rcp:
255      emit_math(FS_OPCODE_RCP, this->result, op[0]);
256      break;
257
258   case ir_unop_exp2:
259      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260      break;
261   case ir_unop_log2:
262      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263      break;
264   case ir_unop_exp:
265   case ir_unop_log:
266      assert(!"not reached: should be handled by ir_explog_to_explog2");
267      break;
268   case ir_unop_sin:
269   case ir_unop_sin_reduced:
270      emit_math(FS_OPCODE_SIN, this->result, op[0]);
271      break;
272   case ir_unop_cos:
273   case ir_unop_cos_reduced:
274      emit_math(FS_OPCODE_COS, this->result, op[0]);
275      break;
276
277   case ir_unop_dFdx:
278      emit(FS_OPCODE_DDX, this->result, op[0]);
279      break;
280   case ir_unop_dFdy:
281      emit(FS_OPCODE_DDY, this->result, op[0]);
282      break;
283
284   case ir_binop_add:
285      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286      break;
287   case ir_binop_sub:
288      assert(!"not reached: should be handled by ir_sub_to_add_neg");
289      break;
290
291   case ir_binop_mul:
292      emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293      break;
294   case ir_binop_div:
295      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296      break;
297   case ir_binop_mod:
298      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299      break;
300
301   case ir_binop_less:
302   case ir_binop_greater:
303   case ir_binop_lequal:
304   case ir_binop_gequal:
305   case ir_binop_equal:
306   case ir_binop_all_equal:
307   case ir_binop_nequal:
308   case ir_binop_any_nequal:
309      temp = this->result;
310      /* original gen4 does implicit conversion before comparison. */
311      if (intel->gen < 5)
312	 temp.type = op[0].type;
313
314      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317      break;
318
319   case ir_binop_logic_xor:
320      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321      break;
322
323   case ir_binop_logic_or:
324      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325      break;
326
327   case ir_binop_logic_and:
328      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329      break;
330
331   case ir_binop_dot:
332   case ir_unop_any:
333      assert(!"not reached: should be handled by brw_fs_channel_expressions");
334      break;
335
336   case ir_unop_noise:
337      assert(!"not reached: should be handled by lower_noise");
338      break;
339
340   case ir_quadop_vector:
341      assert(!"not reached: should be handled by lower_quadop_vector");
342      break;
343
344   case ir_unop_sqrt:
345      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346      break;
347
348   case ir_unop_rsq:
349      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350      break;
351
352   case ir_unop_i2f:
353   case ir_unop_b2f:
354   case ir_unop_b2i:
355   case ir_unop_f2i:
356      emit(BRW_OPCODE_MOV, this->result, op[0]);
357      break;
358   case ir_unop_f2b:
359   case ir_unop_i2b:
360      temp = this->result;
361      /* original gen4 does implicit conversion before comparison. */
362      if (intel->gen < 5)
363	 temp.type = op[0].type;
364
365      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
366      inst->conditional_mod = BRW_CONDITIONAL_NZ;
367      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
368      break;
369
370   case ir_unop_trunc:
371      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
372      break;
373   case ir_unop_ceil:
374      op[0].negate = !op[0].negate;
375      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
376      this->result.negate = true;
377      break;
378   case ir_unop_floor:
379      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
380      break;
381   case ir_unop_fract:
382      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
383      break;
384   case ir_unop_round_even:
385      emit(BRW_OPCODE_RNDE, this->result, op[0]);
386      break;
387
388   case ir_binop_min:
389      if (intel->gen >= 6) {
390	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
391	 inst->conditional_mod = BRW_CONDITIONAL_L;
392      } else {
393	 /* Unalias the destination */
394	 this->result = fs_reg(this, ir->type);
395
396	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
397	 inst->conditional_mod = BRW_CONDITIONAL_L;
398
399	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
400	 inst->predicated = true;
401      }
402      break;
403   case ir_binop_max:
404      if (intel->gen >= 6) {
405	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
406	 inst->conditional_mod = BRW_CONDITIONAL_GE;
407      } else {
408	 /* Unalias the destination */
409	 this->result = fs_reg(this, ir->type);
410
411	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
412	 inst->conditional_mod = BRW_CONDITIONAL_G;
413
414	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
415	 inst->predicated = true;
416      }
417      break;
418
419   case ir_binop_pow:
420      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
421      break;
422
423   case ir_unop_bit_not:
424      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
425      break;
426   case ir_binop_bit_and:
427      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
428      break;
429   case ir_binop_bit_xor:
430      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
431      break;
432   case ir_binop_bit_or:
433      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
434      break;
435
436   case ir_unop_u2f:
437   case ir_binop_lshift:
438   case ir_binop_rshift:
439      assert(!"GLSL 1.30 features unsupported");
440      break;
441   }
442}
443
444void
445fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
446				   const glsl_type *type, bool predicated)
447{
448   switch (type->base_type) {
449   case GLSL_TYPE_FLOAT:
450   case GLSL_TYPE_UINT:
451   case GLSL_TYPE_INT:
452   case GLSL_TYPE_BOOL:
453      for (unsigned int i = 0; i < type->components(); i++) {
454	 l.type = brw_type_for_base_type(type);
455	 r.type = brw_type_for_base_type(type);
456
457	 if (predicated || !l.equals(&r)) {
458	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
459	    inst->predicated = predicated;
460	 }
461
462	 l.reg_offset++;
463	 r.reg_offset++;
464      }
465      break;
466   case GLSL_TYPE_ARRAY:
467      for (unsigned int i = 0; i < type->length; i++) {
468	 emit_assignment_writes(l, r, type->fields.array, predicated);
469      }
470      break;
471
472   case GLSL_TYPE_STRUCT:
473      for (unsigned int i = 0; i < type->length; i++) {
474	 emit_assignment_writes(l, r, type->fields.structure[i].type,
475				predicated);
476      }
477      break;
478
479   case GLSL_TYPE_SAMPLER:
480      break;
481
482   default:
483      assert(!"not reached");
484      break;
485   }
486}
487
488void
489fs_visitor::visit(ir_assignment *ir)
490{
491   struct fs_reg l, r;
492   fs_inst *inst;
493
494   /* FINISHME: arrays on the lhs */
495   this->result = reg_undef;
496   ir->lhs->accept(this);
497   l = this->result;
498
499   /* If we're doing a direct assignment, an RHS expression could
500    * drop its result right into our destination.  Otherwise, tell it
501    * not to.
502    */
503   if (ir->condition ||
504       !(ir->lhs->type->is_scalar() ||
505	 (ir->lhs->type->is_vector() &&
506	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
507      this->result = reg_undef;
508   }
509
510   ir->rhs->accept(this);
511   r = this->result;
512
513   assert(l.file != BAD_FILE);
514   assert(r.file != BAD_FILE);
515
516   if (ir->condition) {
517      emit_bool_to_cond_code(ir->condition);
518   }
519
520   if (ir->lhs->type->is_scalar() ||
521       ir->lhs->type->is_vector()) {
522      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
523	 if (ir->write_mask & (1 << i)) {
524	    if (ir->condition) {
525	       inst = emit(BRW_OPCODE_MOV, l, r);
526	       inst->predicated = true;
527	    } else if (!l.equals(&r)) {
528	       inst = emit(BRW_OPCODE_MOV, l, r);
529	    }
530
531	    r.reg_offset++;
532	 }
533	 l.reg_offset++;
534      }
535   } else {
536      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
537   }
538}
539
540fs_inst *
541fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
542			      int sampler)
543{
544   int mlen;
545   int base_mrf = 1;
546   bool simd16 = false;
547   fs_reg orig_dst;
548
549   /* g0 header. */
550   mlen = 1;
551
552   if (ir->shadow_comparitor) {
553      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
554	 fs_inst *inst = emit(BRW_OPCODE_MOV,
555			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
556	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
557	    inst->saturate = true;
558
559	 coordinate.reg_offset++;
560      }
561      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
562      mlen += 3;
563
564      if (ir->op == ir_tex) {
565	 /* There's no plain shadow compare message, so we use shadow
566	  * compare with a bias of 0.0.
567	  */
568	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
569	 mlen++;
570      } else if (ir->op == ir_txb) {
571	 this->result = reg_undef;
572	 ir->lod_info.bias->accept(this);
573	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
574	 mlen++;
575      } else {
576	 assert(ir->op == ir_txl);
577	 this->result = reg_undef;
578	 ir->lod_info.lod->accept(this);
579	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
580	 mlen++;
581      }
582
583      this->result = reg_undef;
584      ir->shadow_comparitor->accept(this);
585      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
586      mlen++;
587   } else if (ir->op == ir_tex) {
588      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
589	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
590			      coordinate);
591	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
592	    inst->saturate = true;
593	 coordinate.reg_offset++;
594      }
595      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
596      mlen += 3;
597   } else if (ir->op == ir_txd) {
598      assert(!"TXD isn't supported on gen4 yet.");
599   } else {
600      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
601       * instructions.  We'll need to do SIMD16 here.
602       */
603      assert(ir->op == ir_txb || ir->op == ir_txl);
604
605      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
606	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
607						     base_mrf + mlen + i * 2),
608			      coordinate);
609	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
610	    inst->saturate = true;
611	 coordinate.reg_offset++;
612      }
613
614      /* lod/bias appears after u/v/r. */
615      mlen += 6;
616
617      if (ir->op == ir_txb) {
618	 this->result = reg_undef;
619	 ir->lod_info.bias->accept(this);
620	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
621	 mlen++;
622      } else {
623	 this->result = reg_undef;
624	 ir->lod_info.lod->accept(this);
625	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
626	 mlen++;
627      }
628
629      /* The unused upper half. */
630      mlen++;
631
632      /* Now, since we're doing simd16, the return is 2 interleaved
633       * vec4s where the odd-indexed ones are junk. We'll need to move
634       * this weirdness around to the expected layout.
635       */
636      simd16 = true;
637      orig_dst = dst;
638      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
639						       2));
640      dst.type = BRW_REGISTER_TYPE_F;
641   }
642
643   fs_inst *inst = NULL;
644   switch (ir->op) {
645   case ir_tex:
646      inst = emit(FS_OPCODE_TEX, dst);
647      break;
648   case ir_txb:
649      inst = emit(FS_OPCODE_TXB, dst);
650      break;
651   case ir_txl:
652      inst = emit(FS_OPCODE_TXL, dst);
653      break;
654   case ir_txd:
655      inst = emit(FS_OPCODE_TXD, dst);
656      break;
657   case ir_txf:
658      assert(!"GLSL 1.30 features unsupported");
659      break;
660   }
661   inst->base_mrf = base_mrf;
662   inst->mlen = mlen;
663   inst->header_present = true;
664
665   if (simd16) {
666      for (int i = 0; i < 4; i++) {
667	 emit(BRW_OPCODE_MOV, orig_dst, dst);
668	 orig_dst.reg_offset++;
669	 dst.reg_offset += 2;
670      }
671   }
672
673   return inst;
674}
675
676/* gen5's sampler has slots for u, v, r, array index, then optional
677 * parameters like shadow comparitor or LOD bias.  If optional
678 * parameters aren't present, those base slots are optional and don't
679 * need to be included in the message.
680 *
681 * We don't fill in the unnecessary slots regardless, which may look
682 * surprising in the disassembly.
683 */
684fs_inst *
685fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
686			      int sampler)
687{
688   int mlen = 0;
689   int base_mrf = 2;
690   int reg_width = c->dispatch_width / 8;
691   bool header_present = false;
692
693   if (ir->offset) {
694      /* The offsets set up by the ir_texture visitor are in the
695       * m1 header, so we can't go headerless.
696       */
697      header_present = true;
698      mlen++;
699      base_mrf--;
700   }
701
702   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
703      fs_inst *inst = emit(BRW_OPCODE_MOV,
704			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
705			   coordinate);
706      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
707	 inst->saturate = true;
708      coordinate.reg_offset++;
709   }
710   mlen += ir->coordinate->type->vector_elements * reg_width;
711
712   if (ir->shadow_comparitor) {
713      mlen = MAX2(mlen, header_present + 4 * reg_width);
714
715      this->result = reg_undef;
716      ir->shadow_comparitor->accept(this);
717      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
718      mlen += reg_width;
719   }
720
721   fs_inst *inst = NULL;
722   switch (ir->op) {
723   case ir_tex:
724      inst = emit(FS_OPCODE_TEX, dst);
725      break;
726   case ir_txb:
727      this->result = reg_undef;
728      ir->lod_info.bias->accept(this);
729      mlen = MAX2(mlen, header_present + 4 * reg_width);
730      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
731      mlen += reg_width;
732
733      inst = emit(FS_OPCODE_TXB, dst);
734
735      break;
736   case ir_txl:
737      this->result = reg_undef;
738      ir->lod_info.lod->accept(this);
739      mlen = MAX2(mlen, header_present + 4 * reg_width);
740      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
741      mlen += reg_width;
742
743      inst = emit(FS_OPCODE_TXL, dst);
744      break;
745   case ir_txd:
746   case ir_txf:
747      assert(!"GLSL 1.30 features unsupported");
748      break;
749   }
750   inst->base_mrf = base_mrf;
751   inst->mlen = mlen;
752   inst->header_present = header_present;
753
754   if (mlen > 11) {
755      fail("Message length >11 disallowed by hardware\n");
756   }
757
758   return inst;
759}
760
761fs_inst *
762fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
763			      int sampler)
764{
765   int mlen = 0;
766   int base_mrf = 2;
767   int reg_width = c->dispatch_width / 8;
768   bool header_present = false;
769
770   if (ir->offset) {
771      /* The offsets set up by the ir_texture visitor are in the
772       * m1 header, so we can't go headerless.
773       */
774      header_present = true;
775      mlen++;
776      base_mrf--;
777   }
778
779   if (ir->shadow_comparitor) {
780      ir->shadow_comparitor->accept(this);
781      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
782      mlen += reg_width;
783   }
784
785   /* Set up the LOD info */
786   switch (ir->op) {
787   case ir_tex:
788      break;
789   case ir_txb:
790      ir->lod_info.bias->accept(this);
791      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
792      mlen += reg_width;
793      break;
794   case ir_txl:
795      ir->lod_info.lod->accept(this);
796      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
797      mlen += reg_width;
798      break;
799   case ir_txd: {
800      if (c->dispatch_width == 16)
801	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
802
803      ir->lod_info.grad.dPdx->accept(this);
804      fs_reg dPdx = this->result;
805
806      ir->lod_info.grad.dPdy->accept(this);
807      fs_reg dPdy = this->result;
808
809      /* Load dPdx and the coordinate together:
810       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
811       */
812      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
813	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
814			      coordinate);
815	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
816	    inst->saturate = true;
817	 coordinate.reg_offset++;
818	 mlen += reg_width;
819
820	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
821	 dPdx.reg_offset++;
822	 mlen += reg_width;
823
824	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
825	 dPdy.reg_offset++;
826	 mlen += reg_width;
827      }
828      break;
829   }
830   case ir_txf:
831      assert(!"GLSL 1.30 features unsupported");
832      break;
833   }
834
835   /* Set up the coordinate (except for TXD where it was done earlier) */
836   if (ir->op != ir_txd) {
837      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
838	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
839			      coordinate);
840	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
841	    inst->saturate = true;
842	 coordinate.reg_offset++;
843	 mlen += reg_width;
844      }
845   }
846
847   /* Generate the SEND */
848   fs_inst *inst = NULL;
849   switch (ir->op) {
850   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
851   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
852   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
853   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
854   case ir_txf: assert(!"TXF unsupported.");
855   }
856   inst->base_mrf = base_mrf;
857   inst->mlen = mlen;
858   inst->header_present = header_present;
859
860   if (mlen > 11) {
861      fail("Message length >11 disallowed by hardware\n");
862   }
863
864   return inst;
865}
866
867void
868fs_visitor::visit(ir_texture *ir)
869{
870   int sampler;
871   fs_inst *inst = NULL;
872
873   this->result = reg_undef;
874   ir->coordinate->accept(this);
875   fs_reg coordinate = this->result;
876
877   if (ir->offset != NULL) {
878      ir_constant *offset = ir->offset->as_constant();
879      assert(offset != NULL);
880
881      signed char offsets[3];
882      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
883	 offsets[i] = (signed char) offset->value.i[i];
884
885      /* Combine all three offsets into a single unsigned dword:
886       *
887       *    bits 11:8 - U Offset (X component)
888       *    bits  7:4 - V Offset (Y component)
889       *    bits  3:0 - R Offset (Z component)
890       */
891      unsigned offset_bits = 0;
892      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
893	 const unsigned shift = 4 * (2 - i);
894	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
895      }
896
897      /* Explicitly set up the message header by copying g0 to msg reg m1. */
898      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
899	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
900
901      /* Then set the offset bits in DWord 2 of the message header. */
902      emit(BRW_OPCODE_MOV,
903	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
904			 BRW_REGISTER_TYPE_UD)),
905	   fs_reg(brw_imm_uw(offset_bits)));
906   }
907
908   /* Should be lowered by do_lower_texture_projection */
909   assert(!ir->projector);
910
911   sampler = _mesa_get_sampler_uniform_value(ir->sampler,
912					     prog,
913					     &fp->Base);
914   sampler = fp->Base.SamplerUnits[sampler];
915
916   /* The 965 requires the EU to do the normalization of GL rectangle
917    * texture coordinates.  We use the program parameter state
918    * tracking to get the scaling factor.
919    */
920   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
921      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
922      int tokens[STATE_LENGTH] = {
923	 STATE_INTERNAL,
924	 STATE_TEXRECT_SCALE,
925	 sampler,
926	 0,
927	 0
928      };
929
930      if (c->dispatch_width == 16) {
931	 fail("rectangle scale uniform setup not supported on 16-wide\n");
932	 this->result = fs_reg(this, ir->type);
933	 return;
934      }
935
936      c->prog_data.param_convert[c->prog_data.nr_params] =
937	 PARAM_NO_CONVERT;
938      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
939	 PARAM_NO_CONVERT;
940
941      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
942      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
943      GLuint index = _mesa_add_state_reference(params,
944					       (gl_state_index *)tokens);
945
946      this->param_index[c->prog_data.nr_params] = index;
947      this->param_offset[c->prog_data.nr_params] = 0;
948      c->prog_data.nr_params++;
949      this->param_index[c->prog_data.nr_params] = index;
950      this->param_offset[c->prog_data.nr_params] = 1;
951      c->prog_data.nr_params++;
952
953      fs_reg dst = fs_reg(this, ir->coordinate->type);
954      fs_reg src = coordinate;
955      coordinate = dst;
956
957      emit(BRW_OPCODE_MUL, dst, src, scale_x);
958      dst.reg_offset++;
959      src.reg_offset++;
960      emit(BRW_OPCODE_MUL, dst, src, scale_y);
961   }
962
963   /* Writemasking doesn't eliminate channels on SIMD8 texture
964    * samples, so don't worry about them.
965    */
966   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
967
968   if (intel->gen >= 7) {
969      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
970   } else if (intel->gen >= 5) {
971      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
972   } else {
973      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
974   }
975
976   /* If there's an offset, we already set up m1.  To avoid the implied move,
977    * use the null register.  Otherwise, we want an implied move from g0.
978    */
979   if (ir->offset != NULL || !inst->header_present)
980      inst->src[0] = reg_undef;
981   else
982      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
983
984   inst->sampler = sampler;
985
986   this->result = dst;
987
988   if (ir->shadow_comparitor)
989      inst->shadow_compare = true;
990
991   if (ir->type == glsl_type::float_type) {
992      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
993      assert(ir->sampler->type->sampler_shadow);
994   } else if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
995      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
996
997      for (int i = 0; i < 4; i++) {
998	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
999	 fs_reg l = swizzle_dst;
1000	 l.reg_offset += i;
1001
1002	 if (swiz == SWIZZLE_ZERO) {
1003	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1004	 } else if (swiz == SWIZZLE_ONE) {
1005	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1006	 } else {
1007	    fs_reg r = dst;
1008	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1009	    emit(BRW_OPCODE_MOV, l, r);
1010	 }
1011      }
1012      this->result = swizzle_dst;
1013   }
1014}
1015
1016void
1017fs_visitor::visit(ir_swizzle *ir)
1018{
1019   this->result = reg_undef;
1020   ir->val->accept(this);
1021   fs_reg val = this->result;
1022
1023   if (ir->type->vector_elements == 1) {
1024      this->result.reg_offset += ir->mask.x;
1025      return;
1026   }
1027
1028   fs_reg result = fs_reg(this, ir->type);
1029   this->result = result;
1030
1031   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1032      fs_reg channel = val;
1033      int swiz = 0;
1034
1035      switch (i) {
1036      case 0:
1037	 swiz = ir->mask.x;
1038	 break;
1039      case 1:
1040	 swiz = ir->mask.y;
1041	 break;
1042      case 2:
1043	 swiz = ir->mask.z;
1044	 break;
1045      case 3:
1046	 swiz = ir->mask.w;
1047	 break;
1048      }
1049
1050      channel.reg_offset += swiz;
1051      emit(BRW_OPCODE_MOV, result, channel);
1052      result.reg_offset++;
1053   }
1054}
1055
1056void
1057fs_visitor::visit(ir_discard *ir)
1058{
1059   assert(ir->condition == NULL); /* FINISHME */
1060
1061   emit(FS_OPCODE_DISCARD);
1062   kill_emitted = true;
1063}
1064
1065void
1066fs_visitor::visit(ir_constant *ir)
1067{
1068   /* Set this->result to reg at the bottom of the function because some code
1069    * paths will cause this visitor to be applied to other fields.  This will
1070    * cause the value stored in this->result to be modified.
1071    *
1072    * Make reg constant so that it doesn't get accidentally modified along the
1073    * way.  Yes, I actually had this problem. :(
1074    */
1075   const fs_reg reg(this, ir->type);
1076   fs_reg dst_reg = reg;
1077
1078   if (ir->type->is_array()) {
1079      const unsigned size = type_size(ir->type->fields.array);
1080
1081      for (unsigned i = 0; i < ir->type->length; i++) {
1082	 this->result = reg_undef;
1083	 ir->array_elements[i]->accept(this);
1084	 fs_reg src_reg = this->result;
1085
1086	 dst_reg.type = src_reg.type;
1087	 for (unsigned j = 0; j < size; j++) {
1088	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1089	    src_reg.reg_offset++;
1090	    dst_reg.reg_offset++;
1091	 }
1092      }
1093   } else if (ir->type->is_record()) {
1094      foreach_list(node, &ir->components) {
1095	 ir_instruction *const field = (ir_instruction *) node;
1096	 const unsigned size = type_size(field->type);
1097
1098	 this->result = reg_undef;
1099	 field->accept(this);
1100	 fs_reg src_reg = this->result;
1101
1102	 dst_reg.type = src_reg.type;
1103	 for (unsigned j = 0; j < size; j++) {
1104	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1105	    src_reg.reg_offset++;
1106	    dst_reg.reg_offset++;
1107	 }
1108      }
1109   } else {
1110      const unsigned size = type_size(ir->type);
1111
1112      for (unsigned i = 0; i < size; i++) {
1113	 switch (ir->type->base_type) {
1114	 case GLSL_TYPE_FLOAT:
1115	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1116	    break;
1117	 case GLSL_TYPE_UINT:
1118	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1119	    break;
1120	 case GLSL_TYPE_INT:
1121	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1122	    break;
1123	 case GLSL_TYPE_BOOL:
1124	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1125	    break;
1126	 default:
1127	    assert(!"Non-float/uint/int/bool constant");
1128	 }
1129	 dst_reg.reg_offset++;
1130      }
1131   }
1132
1133   this->result = reg;
1134}
1135
1136void
1137fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1138{
1139   ir_expression *expr = ir->as_expression();
1140
1141   if (expr) {
1142      fs_reg op[2];
1143      fs_inst *inst;
1144
1145      assert(expr->get_num_operands() <= 2);
1146      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1147	 assert(expr->operands[i]->type->is_scalar());
1148
1149	 this->result = reg_undef;
1150	 expr->operands[i]->accept(this);
1151	 op[i] = this->result;
1152      }
1153
1154      switch (expr->operation) {
1155      case ir_unop_logic_not:
1156	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1157	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1158	 break;
1159
1160      case ir_binop_logic_xor:
1161	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1162	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1163	 break;
1164
1165      case ir_binop_logic_or:
1166	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1167	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1168	 break;
1169
1170      case ir_binop_logic_and:
1171	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1172	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1173	 break;
1174
1175      case ir_unop_f2b:
1176	 if (intel->gen >= 6) {
1177	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1178	 } else {
1179	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1180	 }
1181	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1182	 break;
1183
1184      case ir_unop_i2b:
1185	 if (intel->gen >= 6) {
1186	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1187	 } else {
1188	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1189	 }
1190	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1191	 break;
1192
1193      case ir_binop_greater:
1194      case ir_binop_gequal:
1195      case ir_binop_less:
1196      case ir_binop_lequal:
1197      case ir_binop_equal:
1198      case ir_binop_all_equal:
1199      case ir_binop_nequal:
1200      case ir_binop_any_nequal:
1201	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1202	 inst->conditional_mod =
1203	    brw_conditional_for_comparison(expr->operation);
1204	 break;
1205
1206      default:
1207	 assert(!"not reached");
1208	 fail("bad cond code\n");
1209	 break;
1210      }
1211      return;
1212   }
1213
1214   this->result = reg_undef;
1215   ir->accept(this);
1216
1217   if (intel->gen >= 6) {
1218      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1219      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1220   } else {
1221      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1222      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1223   }
1224}
1225
1226/**
1227 * Emit a gen6 IF statement with the comparison folded into the IF
1228 * instruction.
1229 */
1230void
1231fs_visitor::emit_if_gen6(ir_if *ir)
1232{
1233   ir_expression *expr = ir->condition->as_expression();
1234
1235   if (expr) {
1236      fs_reg op[2];
1237      fs_inst *inst;
1238      fs_reg temp;
1239
1240      assert(expr->get_num_operands() <= 2);
1241      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1242	 assert(expr->operands[i]->type->is_scalar());
1243
1244	 this->result = reg_undef;
1245	 expr->operands[i]->accept(this);
1246	 op[i] = this->result;
1247      }
1248
1249      switch (expr->operation) {
1250      case ir_unop_logic_not:
1251	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1252	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1253	 return;
1254
1255      case ir_binop_logic_xor:
1256	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1257	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1258	 return;
1259
1260      case ir_binop_logic_or:
1261	 temp = fs_reg(this, glsl_type::bool_type);
1262	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1263	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1264	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1265	 return;
1266
1267      case ir_binop_logic_and:
1268	 temp = fs_reg(this, glsl_type::bool_type);
1269	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1270	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1271	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1272	 return;
1273
1274      case ir_unop_f2b:
1275	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1276	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1277	 return;
1278
1279      case ir_unop_i2b:
1280	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1281	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1282	 return;
1283
1284      case ir_binop_greater:
1285      case ir_binop_gequal:
1286      case ir_binop_less:
1287      case ir_binop_lequal:
1288      case ir_binop_equal:
1289      case ir_binop_all_equal:
1290      case ir_binop_nequal:
1291      case ir_binop_any_nequal:
1292	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1293	 inst->conditional_mod =
1294	    brw_conditional_for_comparison(expr->operation);
1295	 return;
1296      default:
1297	 assert(!"not reached");
1298	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1299	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1300	 fail("bad condition\n");
1301	 return;
1302      }
1303      return;
1304   }
1305
1306   this->result = reg_undef;
1307   ir->condition->accept(this);
1308
1309   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1310   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1311}
1312
1313void
1314fs_visitor::visit(ir_if *ir)
1315{
1316   fs_inst *inst;
1317
1318   if (intel->gen != 6 && c->dispatch_width == 16) {
1319      fail("Can't support (non-uniform) control flow on 16-wide\n");
1320   }
1321
1322   /* Don't point the annotation at the if statement, because then it plus
1323    * the then and else blocks get printed.
1324    */
1325   this->base_ir = ir->condition;
1326
1327   if (intel->gen == 6) {
1328      emit_if_gen6(ir);
1329   } else {
1330      emit_bool_to_cond_code(ir->condition);
1331
1332      inst = emit(BRW_OPCODE_IF);
1333      inst->predicated = true;
1334   }
1335
1336   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1337      ir_instruction *ir = (ir_instruction *)iter.get();
1338      this->base_ir = ir;
1339      this->result = reg_undef;
1340      ir->accept(this);
1341   }
1342
1343   if (!ir->else_instructions.is_empty()) {
1344      emit(BRW_OPCODE_ELSE);
1345
1346      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1347	 ir_instruction *ir = (ir_instruction *)iter.get();
1348	 this->base_ir = ir;
1349	 this->result = reg_undef;
1350	 ir->accept(this);
1351      }
1352   }
1353
1354   emit(BRW_OPCODE_ENDIF);
1355}
1356
1357void
1358fs_visitor::visit(ir_loop *ir)
1359{
1360   fs_reg counter = reg_undef;
1361
1362   if (c->dispatch_width == 16) {
1363      fail("Can't support (non-uniform) control flow on 16-wide\n");
1364   }
1365
1366   if (ir->counter) {
1367      this->base_ir = ir->counter;
1368      ir->counter->accept(this);
1369      counter = *(variable_storage(ir->counter));
1370
1371      if (ir->from) {
1372	 this->result = counter;
1373
1374	 this->base_ir = ir->from;
1375	 this->result = counter;
1376	 ir->from->accept(this);
1377
1378	 if (!this->result.equals(&counter))
1379	    emit(BRW_OPCODE_MOV, counter, this->result);
1380      }
1381   }
1382
1383   emit(BRW_OPCODE_DO);
1384
1385   if (ir->to) {
1386      this->base_ir = ir->to;
1387      this->result = reg_undef;
1388      ir->to->accept(this);
1389
1390      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1391      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1392
1393      inst = emit(BRW_OPCODE_BREAK);
1394      inst->predicated = true;
1395   }
1396
1397   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1398      ir_instruction *ir = (ir_instruction *)iter.get();
1399
1400      this->base_ir = ir;
1401      this->result = reg_undef;
1402      ir->accept(this);
1403   }
1404
1405   if (ir->increment) {
1406      this->base_ir = ir->increment;
1407      this->result = reg_undef;
1408      ir->increment->accept(this);
1409      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1410   }
1411
1412   emit(BRW_OPCODE_WHILE);
1413}
1414
1415void
1416fs_visitor::visit(ir_loop_jump *ir)
1417{
1418   switch (ir->mode) {
1419   case ir_loop_jump::jump_break:
1420      emit(BRW_OPCODE_BREAK);
1421      break;
1422   case ir_loop_jump::jump_continue:
1423      emit(BRW_OPCODE_CONTINUE);
1424      break;
1425   }
1426}
1427
1428void
1429fs_visitor::visit(ir_call *ir)
1430{
1431   assert(!"FINISHME");
1432}
1433
1434void
1435fs_visitor::visit(ir_return *ir)
1436{
1437   assert(!"FINISHME");
1438}
1439
1440void
1441fs_visitor::visit(ir_function *ir)
1442{
1443   /* Ignore function bodies other than main() -- we shouldn't see calls to
1444    * them since they should all be inlined before we get to ir_to_mesa.
1445    */
1446   if (strcmp(ir->name, "main") == 0) {
1447      const ir_function_signature *sig;
1448      exec_list empty;
1449
1450      sig = ir->matching_signature(&empty);
1451
1452      assert(sig);
1453
1454      foreach_iter(exec_list_iterator, iter, sig->body) {
1455	 ir_instruction *ir = (ir_instruction *)iter.get();
1456	 this->base_ir = ir;
1457	 this->result = reg_undef;
1458	 ir->accept(this);
1459      }
1460   }
1461}
1462
1463void
1464fs_visitor::visit(ir_function_signature *ir)
1465{
1466   assert(!"not reached");
1467   (void)ir;
1468}
1469
1470fs_inst *
1471fs_visitor::emit(fs_inst inst)
1472{
1473   fs_inst *list_inst = new(mem_ctx) fs_inst;
1474   *list_inst = inst;
1475
1476   if (force_uncompressed_stack > 0)
1477      list_inst->force_uncompressed = true;
1478   else if (force_sechalf_stack > 0)
1479      list_inst->force_sechalf = true;
1480
1481   list_inst->annotation = this->current_annotation;
1482   list_inst->ir = this->base_ir;
1483
1484   this->instructions.push_tail(list_inst);
1485
1486   return list_inst;
1487}
1488
1489/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1490void
1491fs_visitor::emit_dummy_fs()
1492{
1493   /* Everyone's favorite color. */
1494   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1495   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1496   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1497   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1498
1499   fs_inst *write;
1500   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1501   write->base_mrf = 0;
1502}
1503
1504/* The register location here is relative to the start of the URB
1505 * data.  It will get adjusted to be a real location before
1506 * generate_code() time.
1507 */
1508struct brw_reg
1509fs_visitor::interp_reg(int location, int channel)
1510{
1511   int regnr = urb_setup[location] * 2 + channel / 2;
1512   int stride = (channel & 1) * 4;
1513
1514   assert(urb_setup[location] != -1);
1515
1516   return brw_vec1_grf(regnr, stride);
1517}
1518
1519/** Emits the interpolation for the varying inputs. */
1520void
1521fs_visitor::emit_interpolation_setup_gen4()
1522{
1523   this->current_annotation = "compute pixel centers";
1524   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1525   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1526   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1527   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1528
1529   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1530   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1531
1532   this->current_annotation = "compute pixel deltas from v0";
1533   if (brw->has_pln) {
1534      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1535      this->delta_y = this->delta_x;
1536      this->delta_y.reg_offset++;
1537   } else {
1538      this->delta_x = fs_reg(this, glsl_type::float_type);
1539      this->delta_y = fs_reg(this, glsl_type::float_type);
1540   }
1541   emit(BRW_OPCODE_ADD, this->delta_x,
1542	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1543   emit(BRW_OPCODE_ADD, this->delta_y,
1544	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1545
1546   this->current_annotation = "compute pos.w and 1/pos.w";
1547   /* Compute wpos.w.  It's always in our setup, since it's needed to
1548    * interpolate the other attributes.
1549    */
1550   this->wpos_w = fs_reg(this, glsl_type::float_type);
1551   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1552	interp_reg(FRAG_ATTRIB_WPOS, 3));
1553   /* Compute the pixel 1/W value from wpos.w. */
1554   this->pixel_w = fs_reg(this, glsl_type::float_type);
1555   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1556   this->current_annotation = NULL;
1557}
1558
1559/** Emits the interpolation for the varying inputs. */
1560void
1561fs_visitor::emit_interpolation_setup_gen6()
1562{
1563   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1564
1565   /* If the pixel centers end up used, the setup is the same as for gen4. */
1566   this->current_annotation = "compute pixel centers";
1567   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1568   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1569   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1570   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1571   emit(BRW_OPCODE_ADD,
1572	int_pixel_x,
1573	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1574	fs_reg(brw_imm_v(0x10101010)));
1575   emit(BRW_OPCODE_ADD,
1576	int_pixel_y,
1577	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1578	fs_reg(brw_imm_v(0x11001100)));
1579
1580   /* As of gen6, we can no longer mix float and int sources.  We have
1581    * to turn the integer pixel centers into floats for their actual
1582    * use.
1583    */
1584   this->pixel_x = fs_reg(this, glsl_type::float_type);
1585   this->pixel_y = fs_reg(this, glsl_type::float_type);
1586   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1587   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1588
1589   this->current_annotation = "compute pos.w";
1590   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1591   this->wpos_w = fs_reg(this, glsl_type::float_type);
1592   emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1593
1594   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1595   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1596
1597   this->current_annotation = NULL;
1598}
1599
1600void
1601fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1602{
1603   int reg_width = c->dispatch_width / 8;
1604
1605   if (c->dispatch_width == 8 || intel->gen == 6) {
1606      /* SIMD8 write looks like:
1607       * m + 0: r0
1608       * m + 1: r1
1609       * m + 2: g0
1610       * m + 3: g1
1611       *
1612       * gen6 SIMD16 DP write looks like:
1613       * m + 0: r0
1614       * m + 1: r1
1615       * m + 2: g0
1616       * m + 3: g1
1617       * m + 4: b0
1618       * m + 5: b1
1619       * m + 6: a0
1620       * m + 7: a1
1621       */
1622      emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index * reg_width),
1623	   color);
1624   } else {
1625      /* pre-gen6 SIMD16 single source DP write looks like:
1626       * m + 0: r0
1627       * m + 1: g0
1628       * m + 2: b0
1629       * m + 3: a0
1630       * m + 4: r1
1631       * m + 5: g1
1632       * m + 6: b1
1633       * m + 7: a1
1634       */
1635      if (brw->has_compr4) {
1636	 /* By setting the high bit of the MRF register number, we
1637	  * indicate that we want COMPR4 mode - instead of doing the
1638	  * usual destination + 1 for the second half we get
1639	  * destination + 4.
1640	  */
1641	 emit(BRW_OPCODE_MOV,
1642	      fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index), color);
1643      } else {
1644	 push_force_uncompressed();
1645	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index), color);
1646	 pop_force_uncompressed();
1647
1648	 push_force_sechalf();
1649	 color.sechalf = true;
1650	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4), color);
1651	 pop_force_sechalf();
1652	 color.sechalf = false;
1653      }
1654   }
1655}
1656
1657void
1658fs_visitor::emit_fb_writes()
1659{
1660   this->current_annotation = "FB write header";
1661   GLboolean header_present = GL_TRUE;
1662   int nr = 0;
1663   int reg_width = c->dispatch_width / 8;
1664
1665   if (intel->gen >= 6 &&
1666       !this->kill_emitted &&
1667       c->key.nr_color_regions == 1) {
1668      header_present = false;
1669   }
1670
1671   if (header_present) {
1672      /* m0, m1 header */
1673      nr += 2;
1674   }
1675
1676   if (c->aa_dest_stencil_reg) {
1677      push_force_uncompressed();
1678      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1679	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1680      pop_force_uncompressed();
1681   }
1682
1683   /* Reserve space for color. It'll be filled in per MRT below. */
1684   int color_mrf = nr;
1685   nr += 4 * reg_width;
1686
1687   if (c->source_depth_to_render_target) {
1688      if (intel->gen == 6 && c->dispatch_width == 16) {
1689	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1690	  * used.  This would require 8-wide moves of each half to
1691	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1692	  * Just bail on doing so for now.
1693	  */
1694	 fail("Missing support for simd16 depth writes on gen6\n");
1695      }
1696
1697      if (c->computes_depth) {
1698	 /* Hand over gl_FragDepth. */
1699	 assert(this->frag_depth);
1700	 fs_reg depth = *(variable_storage(this->frag_depth));
1701
1702	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1703      } else {
1704	 /* Pass through the payload depth. */
1705	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1706	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1707      }
1708      nr += reg_width;
1709   }
1710
1711   if (c->dest_depth_reg) {
1712      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1713	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1714      nr += reg_width;
1715   }
1716
1717   fs_reg color = reg_undef;
1718   if (this->frag_color)
1719      color = *(variable_storage(this->frag_color));
1720   else if (this->frag_data) {
1721      color = *(variable_storage(this->frag_data));
1722      color.type = BRW_REGISTER_TYPE_F;
1723   }
1724
1725   for (int target = 0; target < c->key.nr_color_regions; target++) {
1726      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1727						 "FB write target %d",
1728						 target);
1729      if (this->frag_color || this->frag_data) {
1730	 for (int i = 0; i < 4; i++) {
1731	    emit_color_write(i, color_mrf, color);
1732	    color.reg_offset++;
1733	 }
1734      }
1735
1736      if (this->frag_color)
1737	 color.reg_offset -= 4;
1738
1739      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1740      inst->target = target;
1741      inst->base_mrf = 0;
1742      inst->mlen = nr;
1743      if (target == c->key.nr_color_regions - 1)
1744	 inst->eot = true;
1745      inst->header_present = header_present;
1746   }
1747
1748   if (c->key.nr_color_regions == 0) {
1749      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1750	 /* If the alpha test is enabled but there's no color buffer,
1751	  * we still need to send alpha out the pipeline to our null
1752	  * renderbuffer.
1753	  */
1754	 color.reg_offset += 3;
1755	 emit_color_write(3, color_mrf, color);
1756      }
1757
1758      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1759      inst->base_mrf = 0;
1760      inst->mlen = nr;
1761      inst->eot = true;
1762      inst->header_present = header_present;
1763   }
1764
1765   this->current_annotation = NULL;
1766}
1767