brw_fs_visitor.cpp revision 4fdd289805d14d4f7a234f88cd375be1b3b96764
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM ||
146	     (this->result.file == GRF &&
147	      this->result.reg != 0));
148      this->result.reg_offset += index->value.i[0] * element_size;
149   } else {
150      assert(!"FINISHME: non-constant array element");
151   }
152}
153
154/* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157bool
158fs_visitor::try_emit_saturate(ir_expression *ir)
159{
160   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162   if (!sat_val)
163      return false;
164
165   this->result = reg_undef;
166   sat_val->accept(this);
167   fs_reg src = this->result;
168
169   this->result = fs_reg(this, ir->type);
170   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171   inst->saturate = true;
172
173   return true;
174}
175
176void
177fs_visitor::visit(ir_expression *ir)
178{
179   unsigned int operand;
180   fs_reg op[2], temp;
181   fs_inst *inst;
182
183   assert(ir->get_num_operands() <= 2);
184
185   if (try_emit_saturate(ir))
186      return;
187
188   /* This is where our caller would like us to put the result, if possible. */
189   fs_reg saved_result_storage = this->result;
190
191   for (operand = 0; operand < ir->get_num_operands(); operand++) {
192      this->result = reg_undef;
193      ir->operands[operand]->accept(this);
194      if (this->result.file == BAD_FILE) {
195	 ir_print_visitor v;
196	 fail("Failed to get tree for expression operand:\n");
197	 ir->operands[operand]->accept(&v);
198      }
199      op[operand] = this->result;
200
201      /* Matrix expression operands should have been broken down to vector
202       * operations already.
203       */
204      assert(!ir->operands[operand]->type->is_matrix());
205      /* And then those vector operands should have been broken down to scalar.
206       */
207      assert(!ir->operands[operand]->type->is_vector());
208   }
209
210   /* Inherit storage from our parent if possible, and otherwise we
211    * alloc a temporary.
212    */
213   if (saved_result_storage.file == BAD_FILE) {
214      this->result = fs_reg(this, ir->type);
215   } else {
216      this->result = saved_result_storage;
217   }
218
219   switch (ir->operation) {
220   case ir_unop_logic_not:
221      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222       * ones complement of the whole register, not just bit 0.
223       */
224      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225      break;
226   case ir_unop_neg:
227      op[0].negate = !op[0].negate;
228      this->result = op[0];
229      break;
230   case ir_unop_abs:
231      op[0].abs = true;
232      op[0].negate = false;
233      this->result = op[0];
234      break;
235   case ir_unop_sign:
236      temp = fs_reg(this, ir->type);
237
238      /* Unalias the destination.  (imagine a = sign(a)) */
239      this->result = fs_reg(this, ir->type);
240
241      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244      inst->conditional_mod = BRW_CONDITIONAL_G;
245      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246      inst->predicated = true;
247
248      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249      inst->conditional_mod = BRW_CONDITIONAL_L;
250      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251      inst->predicated = true;
252
253      break;
254   case ir_unop_rcp:
255      emit_math(FS_OPCODE_RCP, this->result, op[0]);
256      break;
257
258   case ir_unop_exp2:
259      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260      break;
261   case ir_unop_log2:
262      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263      break;
264   case ir_unop_exp:
265   case ir_unop_log:
266      assert(!"not reached: should be handled by ir_explog_to_explog2");
267      break;
268   case ir_unop_sin:
269   case ir_unop_sin_reduced:
270      emit_math(FS_OPCODE_SIN, this->result, op[0]);
271      break;
272   case ir_unop_cos:
273   case ir_unop_cos_reduced:
274      emit_math(FS_OPCODE_COS, this->result, op[0]);
275      break;
276
277   case ir_unop_dFdx:
278      emit(FS_OPCODE_DDX, this->result, op[0]);
279      break;
280   case ir_unop_dFdy:
281      emit(FS_OPCODE_DDY, this->result, op[0]);
282      break;
283
284   case ir_binop_add:
285      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286      break;
287   case ir_binop_sub:
288      assert(!"not reached: should be handled by ir_sub_to_add_neg");
289      break;
290
291   case ir_binop_mul:
292      emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293      break;
294   case ir_binop_div:
295      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296      break;
297   case ir_binop_mod:
298      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299      break;
300
301   case ir_binop_less:
302   case ir_binop_greater:
303   case ir_binop_lequal:
304   case ir_binop_gequal:
305   case ir_binop_equal:
306   case ir_binop_all_equal:
307   case ir_binop_nequal:
308   case ir_binop_any_nequal:
309      temp = this->result;
310      /* original gen4 does implicit conversion before comparison. */
311      if (intel->gen < 5)
312	 temp.type = op[0].type;
313
314      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317      break;
318
319   case ir_binop_logic_xor:
320      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321      break;
322
323   case ir_binop_logic_or:
324      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325      break;
326
327   case ir_binop_logic_and:
328      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329      break;
330
331   case ir_binop_dot:
332   case ir_unop_any:
333      assert(!"not reached: should be handled by brw_fs_channel_expressions");
334      break;
335
336   case ir_unop_noise:
337      assert(!"not reached: should be handled by lower_noise");
338      break;
339
340   case ir_quadop_vector:
341      assert(!"not reached: should be handled by lower_quadop_vector");
342      break;
343
344   case ir_unop_sqrt:
345      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346      break;
347
348   case ir_unop_rsq:
349      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350      break;
351
352   case ir_unop_i2u:
353      op[0].type = BRW_REGISTER_TYPE_UD;
354      this->result = op[0];
355      break;
356   case ir_unop_u2i:
357      op[0].type = BRW_REGISTER_TYPE_D;
358      this->result = op[0];
359      break;
360   case ir_unop_i2f:
361   case ir_unop_b2f:
362   case ir_unop_b2i:
363   case ir_unop_f2i:
364      emit(BRW_OPCODE_MOV, this->result, op[0]);
365      break;
366   case ir_unop_f2b:
367   case ir_unop_i2b:
368      temp = this->result;
369      /* original gen4 does implicit conversion before comparison. */
370      if (intel->gen < 5)
371	 temp.type = op[0].type;
372
373      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
374      inst->conditional_mod = BRW_CONDITIONAL_NZ;
375      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
376      break;
377
378   case ir_unop_trunc:
379      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
380      break;
381   case ir_unop_ceil:
382      op[0].negate = !op[0].negate;
383      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
384      this->result.negate = true;
385      break;
386   case ir_unop_floor:
387      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
388      break;
389   case ir_unop_fract:
390      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
391      break;
392   case ir_unop_round_even:
393      emit(BRW_OPCODE_RNDE, this->result, op[0]);
394      break;
395
396   case ir_binop_min:
397      if (intel->gen >= 6) {
398	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
399	 inst->conditional_mod = BRW_CONDITIONAL_L;
400      } else {
401	 /* Unalias the destination */
402	 this->result = fs_reg(this, ir->type);
403
404	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
405	 inst->conditional_mod = BRW_CONDITIONAL_L;
406
407	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
408	 inst->predicated = true;
409      }
410      break;
411   case ir_binop_max:
412      if (intel->gen >= 6) {
413	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
414	 inst->conditional_mod = BRW_CONDITIONAL_GE;
415      } else {
416	 /* Unalias the destination */
417	 this->result = fs_reg(this, ir->type);
418
419	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
420	 inst->conditional_mod = BRW_CONDITIONAL_G;
421
422	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
423	 inst->predicated = true;
424      }
425      break;
426
427   case ir_binop_pow:
428      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
429      break;
430
431   case ir_unop_bit_not:
432      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
433      break;
434   case ir_binop_bit_and:
435      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
436      break;
437   case ir_binop_bit_xor:
438      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
439      break;
440   case ir_binop_bit_or:
441      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
442      break;
443
444   case ir_unop_u2f:
445   case ir_binop_lshift:
446   case ir_binop_rshift:
447      assert(!"GLSL 1.30 features unsupported");
448      break;
449   }
450}
451
452void
453fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
454				   const glsl_type *type, bool predicated)
455{
456   switch (type->base_type) {
457   case GLSL_TYPE_FLOAT:
458   case GLSL_TYPE_UINT:
459   case GLSL_TYPE_INT:
460   case GLSL_TYPE_BOOL:
461      for (unsigned int i = 0; i < type->components(); i++) {
462	 l.type = brw_type_for_base_type(type);
463	 r.type = brw_type_for_base_type(type);
464
465	 if (predicated || !l.equals(&r)) {
466	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
467	    inst->predicated = predicated;
468	 }
469
470	 l.reg_offset++;
471	 r.reg_offset++;
472      }
473      break;
474   case GLSL_TYPE_ARRAY:
475      for (unsigned int i = 0; i < type->length; i++) {
476	 emit_assignment_writes(l, r, type->fields.array, predicated);
477      }
478      break;
479
480   case GLSL_TYPE_STRUCT:
481      for (unsigned int i = 0; i < type->length; i++) {
482	 emit_assignment_writes(l, r, type->fields.structure[i].type,
483				predicated);
484      }
485      break;
486
487   case GLSL_TYPE_SAMPLER:
488      break;
489
490   default:
491      assert(!"not reached");
492      break;
493   }
494}
495
496void
497fs_visitor::visit(ir_assignment *ir)
498{
499   struct fs_reg l, r;
500   fs_inst *inst;
501
502   /* FINISHME: arrays on the lhs */
503   this->result = reg_undef;
504   ir->lhs->accept(this);
505   l = this->result;
506
507   /* If we're doing a direct assignment, an RHS expression could
508    * drop its result right into our destination.  Otherwise, tell it
509    * not to.
510    */
511   if (ir->condition ||
512       !(ir->lhs->type->is_scalar() ||
513	 (ir->lhs->type->is_vector() &&
514	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
515      this->result = reg_undef;
516   }
517
518   ir->rhs->accept(this);
519   r = this->result;
520
521   assert(l.file != BAD_FILE);
522   assert(r.file != BAD_FILE);
523
524   if (ir->condition) {
525      emit_bool_to_cond_code(ir->condition);
526   }
527
528   if (ir->lhs->type->is_scalar() ||
529       ir->lhs->type->is_vector()) {
530      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
531	 if (ir->write_mask & (1 << i)) {
532	    if (ir->condition) {
533	       inst = emit(BRW_OPCODE_MOV, l, r);
534	       inst->predicated = true;
535	    } else if (!l.equals(&r)) {
536	       inst = emit(BRW_OPCODE_MOV, l, r);
537	    }
538
539	    r.reg_offset++;
540	 }
541	 l.reg_offset++;
542      }
543   } else {
544      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
545   }
546}
547
548fs_inst *
549fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
550			      int sampler)
551{
552   int mlen;
553   int base_mrf = 1;
554   bool simd16 = false;
555   fs_reg orig_dst;
556
557   /* g0 header. */
558   mlen = 1;
559
560   if (ir->shadow_comparitor && ir->op != ir_txd) {
561      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
562	 fs_inst *inst = emit(BRW_OPCODE_MOV,
563			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
564	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
565	    inst->saturate = true;
566
567	 coordinate.reg_offset++;
568      }
569      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
570      mlen += 3;
571
572      if (ir->op == ir_tex) {
573	 /* There's no plain shadow compare message, so we use shadow
574	  * compare with a bias of 0.0.
575	  */
576	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
577	 mlen++;
578      } else if (ir->op == ir_txb) {
579	 this->result = reg_undef;
580	 ir->lod_info.bias->accept(this);
581	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
582	 mlen++;
583      } else {
584	 assert(ir->op == ir_txl);
585	 this->result = reg_undef;
586	 ir->lod_info.lod->accept(this);
587	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
588	 mlen++;
589      }
590
591      this->result = reg_undef;
592      ir->shadow_comparitor->accept(this);
593      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
594      mlen++;
595   } else if (ir->op == ir_tex) {
596      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
597	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
598			      coordinate);
599	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
600	    inst->saturate = true;
601	 coordinate.reg_offset++;
602      }
603      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
604      mlen += 3;
605   } else if (ir->op == ir_txd) {
606      this->result = reg_undef;
607      ir->lod_info.grad.dPdx->accept(this);
608      fs_reg dPdx = this->result;
609
610      this->result = reg_undef;
611      ir->lod_info.grad.dPdy->accept(this);
612      fs_reg dPdy = this->result;
613
614      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
615	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
616	 coordinate.reg_offset++;
617      }
618      /* the slots for u and v are always present, but r is optional */
619      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
620
621      /*  P   = u, v, r
622       * dPdx = dudx, dvdx, drdx
623       * dPdy = dudy, dvdy, drdy
624       *
625       * 1-arg: Does not exist.
626       *
627       * 2-arg: dudx   dvdx   dudy   dvdy
628       *        dPdx.x dPdx.y dPdy.x dPdy.y
629       *        m4     m5     m6     m7
630       *
631       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
632       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
633       *        m5     m6     m7     m8     m9     m10
634       */
635      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
636	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
637	 dPdx.reg_offset++;
638      }
639      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
640
641      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
642	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
643	 dPdy.reg_offset++;
644      }
645      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
646   } else {
647      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
648       * instructions.  We'll need to do SIMD16 here.
649       */
650      assert(ir->op == ir_txb || ir->op == ir_txl);
651
652      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
653	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
654						     base_mrf + mlen + i * 2),
655			      coordinate);
656	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
657	    inst->saturate = true;
658	 coordinate.reg_offset++;
659      }
660
661      /* lod/bias appears after u/v/r. */
662      mlen += 6;
663
664      if (ir->op == ir_txb) {
665	 this->result = reg_undef;
666	 ir->lod_info.bias->accept(this);
667	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
668	 mlen++;
669      } else {
670	 this->result = reg_undef;
671	 ir->lod_info.lod->accept(this);
672	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
673	 mlen++;
674      }
675
676      /* The unused upper half. */
677      mlen++;
678
679      /* Now, since we're doing simd16, the return is 2 interleaved
680       * vec4s where the odd-indexed ones are junk. We'll need to move
681       * this weirdness around to the expected layout.
682       */
683      simd16 = true;
684      orig_dst = dst;
685      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
686						       2));
687      dst.type = BRW_REGISTER_TYPE_F;
688   }
689
690   fs_inst *inst = NULL;
691   switch (ir->op) {
692   case ir_tex:
693      inst = emit(FS_OPCODE_TEX, dst);
694      break;
695   case ir_txb:
696      inst = emit(FS_OPCODE_TXB, dst);
697      break;
698   case ir_txl:
699      inst = emit(FS_OPCODE_TXL, dst);
700      break;
701   case ir_txd:
702      inst = emit(FS_OPCODE_TXD, dst);
703      break;
704   case ir_txf:
705      assert(!"GLSL 1.30 features unsupported");
706      break;
707   }
708   inst->base_mrf = base_mrf;
709   inst->mlen = mlen;
710   inst->header_present = true;
711
712   if (simd16) {
713      for (int i = 0; i < 4; i++) {
714	 emit(BRW_OPCODE_MOV, orig_dst, dst);
715	 orig_dst.reg_offset++;
716	 dst.reg_offset += 2;
717      }
718   }
719
720   return inst;
721}
722
723/* gen5's sampler has slots for u, v, r, array index, then optional
724 * parameters like shadow comparitor or LOD bias.  If optional
725 * parameters aren't present, those base slots are optional and don't
726 * need to be included in the message.
727 *
728 * We don't fill in the unnecessary slots regardless, which may look
729 * surprising in the disassembly.
730 */
731fs_inst *
732fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
733			      int sampler)
734{
735   int mlen = 0;
736   int base_mrf = 2;
737   int reg_width = c->dispatch_width / 8;
738   bool header_present = false;
739
740   if (ir->offset) {
741      /* The offsets set up by the ir_texture visitor are in the
742       * m1 header, so we can't go headerless.
743       */
744      header_present = true;
745      mlen++;
746      base_mrf--;
747   }
748
749   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
750      fs_inst *inst = emit(BRW_OPCODE_MOV,
751			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
752			   coordinate);
753      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
754	 inst->saturate = true;
755      coordinate.reg_offset++;
756   }
757   mlen += ir->coordinate->type->vector_elements * reg_width;
758
759   if (ir->shadow_comparitor && ir->op != ir_txd) {
760      mlen = MAX2(mlen, header_present + 4 * reg_width);
761
762      this->result = reg_undef;
763      ir->shadow_comparitor->accept(this);
764      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
765      mlen += reg_width;
766   }
767
768   fs_inst *inst = NULL;
769   switch (ir->op) {
770   case ir_tex:
771      inst = emit(FS_OPCODE_TEX, dst);
772      break;
773   case ir_txb:
774      this->result = reg_undef;
775      ir->lod_info.bias->accept(this);
776      mlen = MAX2(mlen, header_present + 4 * reg_width);
777      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
778      mlen += reg_width;
779
780      inst = emit(FS_OPCODE_TXB, dst);
781
782      break;
783   case ir_txl:
784      this->result = reg_undef;
785      ir->lod_info.lod->accept(this);
786      mlen = MAX2(mlen, header_present + 4 * reg_width);
787      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
788      mlen += reg_width;
789
790      inst = emit(FS_OPCODE_TXL, dst);
791      break;
792   case ir_txd: {
793      this->result = reg_undef;
794      ir->lod_info.grad.dPdx->accept(this);
795      fs_reg dPdx = this->result;
796
797      this->result = reg_undef;
798      ir->lod_info.grad.dPdy->accept(this);
799      fs_reg dPdy = this->result;
800
801      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
802
803      /**
804       *  P   =  u,    v,    r
805       * dPdx = dudx, dvdx, drdx
806       * dPdy = dudy, dvdy, drdy
807       *
808       * Load up these values:
809       * - dudx   dudy   dvdx   dvdy   drdx   drdy
810       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
811       */
812      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
813	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
814	 dPdx.reg_offset++;
815	 mlen += reg_width;
816
817	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
818	 dPdy.reg_offset++;
819	 mlen += reg_width;
820      }
821
822      inst = emit(FS_OPCODE_TXD, dst);
823      break;
824   }
825   case ir_txf:
826      assert(!"GLSL 1.30 features unsupported");
827      break;
828   }
829   inst->base_mrf = base_mrf;
830   inst->mlen = mlen;
831   inst->header_present = header_present;
832
833   if (mlen > 11) {
834      fail("Message length >11 disallowed by hardware\n");
835   }
836
837   return inst;
838}
839
840fs_inst *
841fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
842			      int sampler)
843{
844   int mlen = 0;
845   int base_mrf = 2;
846   int reg_width = c->dispatch_width / 8;
847   bool header_present = false;
848
849   if (ir->offset) {
850      /* The offsets set up by the ir_texture visitor are in the
851       * m1 header, so we can't go headerless.
852       */
853      header_present = true;
854      mlen++;
855      base_mrf--;
856   }
857
858   if (ir->shadow_comparitor && ir->op != ir_txd) {
859      this->result = reg_undef;
860      ir->shadow_comparitor->accept(this);
861      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
862      mlen += reg_width;
863   }
864
865   /* Set up the LOD info */
866   switch (ir->op) {
867   case ir_tex:
868      break;
869   case ir_txb:
870      this->result = reg_undef;
871      ir->lod_info.bias->accept(this);
872      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
873      mlen += reg_width;
874      break;
875   case ir_txl:
876      this->result = reg_undef;
877      ir->lod_info.lod->accept(this);
878      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
879      mlen += reg_width;
880      break;
881   case ir_txd: {
882      if (c->dispatch_width == 16)
883	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
884
885      this->result = reg_undef;
886      ir->lod_info.grad.dPdx->accept(this);
887      fs_reg dPdx = this->result;
888
889      this->result = reg_undef;
890      ir->lod_info.grad.dPdy->accept(this);
891      fs_reg dPdy = this->result;
892
893      /* Load dPdx and the coordinate together:
894       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
895       */
896      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
897	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
898			      coordinate);
899	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
900	    inst->saturate = true;
901	 coordinate.reg_offset++;
902	 mlen += reg_width;
903
904	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
905	 dPdx.reg_offset++;
906	 mlen += reg_width;
907
908	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
909	 dPdy.reg_offset++;
910	 mlen += reg_width;
911      }
912      break;
913   }
914   case ir_txf:
915      assert(!"GLSL 1.30 features unsupported");
916      break;
917   }
918
919   /* Set up the coordinate (except for TXD where it was done earlier) */
920   if (ir->op != ir_txd) {
921      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
922	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
923			      coordinate);
924	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
925	    inst->saturate = true;
926	 coordinate.reg_offset++;
927	 mlen += reg_width;
928      }
929   }
930
931   /* Generate the SEND */
932   fs_inst *inst = NULL;
933   switch (ir->op) {
934   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
935   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
936   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
937   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
938   case ir_txf: assert(!"TXF unsupported.");
939   }
940   inst->base_mrf = base_mrf;
941   inst->mlen = mlen;
942   inst->header_present = header_present;
943
944   if (mlen > 11) {
945      fail("Message length >11 disallowed by hardware\n");
946   }
947
948   return inst;
949}
950
951void
952fs_visitor::visit(ir_texture *ir)
953{
954   fs_inst *inst = NULL;
955
956   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
957   sampler = fp->Base.SamplerUnits[sampler];
958
959   /* Our hardware doesn't have a sample_d_c message, so shadow compares
960    * for textureGrad/TXD need to be emulated with instructions.
961    */
962   bool hw_compare_supported = ir->op != ir_txd;
963   if (ir->shadow_comparitor && !hw_compare_supported) {
964      assert(c->key.compare_funcs[sampler] != GL_NONE);
965      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
966      if (c->key.compare_funcs[sampler] == GL_ALWAYS)
967	 return swizzle_result(ir, fs_reg(1.0f), sampler);
968      else if (c->key.compare_funcs[sampler] == GL_NEVER)
969	 return swizzle_result(ir, fs_reg(0.0f), sampler);
970   }
971
972   this->result = reg_undef;
973   ir->coordinate->accept(this);
974   fs_reg coordinate = this->result;
975
976   if (ir->offset != NULL) {
977      ir_constant *offset = ir->offset->as_constant();
978      assert(offset != NULL);
979
980      signed char offsets[3];
981      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
982	 offsets[i] = (signed char) offset->value.i[i];
983
984      /* Combine all three offsets into a single unsigned dword:
985       *
986       *    bits 11:8 - U Offset (X component)
987       *    bits  7:4 - V Offset (Y component)
988       *    bits  3:0 - R Offset (Z component)
989       */
990      unsigned offset_bits = 0;
991      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
992	 const unsigned shift = 4 * (2 - i);
993	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
994      }
995
996      /* Explicitly set up the message header by copying g0 to msg reg m1. */
997      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
998	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
999
1000      /* Then set the offset bits in DWord 2 of the message header. */
1001      emit(BRW_OPCODE_MOV,
1002	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1003			 BRW_REGISTER_TYPE_UD)),
1004	   fs_reg(brw_imm_uw(offset_bits)));
1005   }
1006
1007   /* Should be lowered by do_lower_texture_projection */
1008   assert(!ir->projector);
1009
1010   /* The 965 requires the EU to do the normalization of GL rectangle
1011    * texture coordinates.  We use the program parameter state
1012    * tracking to get the scaling factor.
1013    */
1014   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1015      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1016      int tokens[STATE_LENGTH] = {
1017	 STATE_INTERNAL,
1018	 STATE_TEXRECT_SCALE,
1019	 sampler,
1020	 0,
1021	 0
1022      };
1023
1024      if (c->dispatch_width == 16) {
1025	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1026	 this->result = fs_reg(this, ir->type);
1027	 return;
1028      }
1029
1030      c->prog_data.param_convert[c->prog_data.nr_params] =
1031	 PARAM_NO_CONVERT;
1032      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1033	 PARAM_NO_CONVERT;
1034
1035      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1036      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1037      GLuint index = _mesa_add_state_reference(params,
1038					       (gl_state_index *)tokens);
1039
1040      this->param_index[c->prog_data.nr_params] = index;
1041      this->param_offset[c->prog_data.nr_params] = 0;
1042      c->prog_data.nr_params++;
1043      this->param_index[c->prog_data.nr_params] = index;
1044      this->param_offset[c->prog_data.nr_params] = 1;
1045      c->prog_data.nr_params++;
1046
1047      fs_reg dst = fs_reg(this, ir->coordinate->type);
1048      fs_reg src = coordinate;
1049      coordinate = dst;
1050
1051      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1052      dst.reg_offset++;
1053      src.reg_offset++;
1054      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1055   }
1056
1057   /* Writemasking doesn't eliminate channels on SIMD8 texture
1058    * samples, so don't worry about them.
1059    */
1060   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1061
1062   if (intel->gen >= 7) {
1063      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1064   } else if (intel->gen >= 5) {
1065      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1066   } else {
1067      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1068   }
1069
1070   /* If there's an offset, we already set up m1.  To avoid the implied move,
1071    * use the null register.  Otherwise, we want an implied move from g0.
1072    */
1073   if (ir->offset != NULL || !inst->header_present)
1074      inst->src[0] = reg_undef;
1075   else
1076      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1077
1078   inst->sampler = sampler;
1079
1080   if (ir->shadow_comparitor) {
1081      if (hw_compare_supported) {
1082	 inst->shadow_compare = true;
1083      } else {
1084	 this->result = reg_undef;
1085	 ir->shadow_comparitor->accept(this);
1086	 fs_reg ref = this->result;
1087
1088	 fs_reg value = dst;
1089	 dst = fs_reg(this, glsl_type::vec4_type);
1090
1091	 /* FINISHME: This needs to be done pre-filtering. */
1092
1093	 uint32_t conditional = 0;
1094	 switch (c->key.compare_funcs[sampler]) {
1095	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1096	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1097	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1098	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1099	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1100	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1101	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1102	 default: assert(!"Should not get here: bad shadow compare function");
1103	 }
1104
1105	 /* Use conditional moves to load 0 or 1 as the result */
1106	 this->current_annotation = "manual shadow comparison";
1107	 for (int i = 0; i < 4; i++) {
1108	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1109
1110	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1111	    inst->conditional_mod = conditional;
1112
1113	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1114	    inst->predicated = true;
1115
1116	    dst.reg_offset++;
1117	    value.reg_offset++;
1118	 }
1119	 dst.reg_offset = 0;
1120      }
1121   }
1122
1123   swizzle_result(ir, dst, sampler);
1124}
1125
1126/**
1127 * Swizzle the result of a texture result.  This is necessary for
1128 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1129 */
1130void
1131fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1132{
1133   this->result = orig_val;
1134
1135   if (ir->type == glsl_type::float_type) {
1136      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1137      assert(ir->sampler->type->sampler_shadow);
1138   } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1139      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1140
1141      for (int i = 0; i < 4; i++) {
1142	 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1143	 fs_reg l = swizzled_result;
1144	 l.reg_offset += i;
1145
1146	 if (swiz == SWIZZLE_ZERO) {
1147	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1148	 } else if (swiz == SWIZZLE_ONE) {
1149	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1150	 } else {
1151	    fs_reg r = orig_val;
1152	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1153	    emit(BRW_OPCODE_MOV, l, r);
1154	 }
1155      }
1156      this->result = swizzled_result;
1157   }
1158}
1159
1160void
1161fs_visitor::visit(ir_swizzle *ir)
1162{
1163   this->result = reg_undef;
1164   ir->val->accept(this);
1165   fs_reg val = this->result;
1166
1167   if (ir->type->vector_elements == 1) {
1168      this->result.reg_offset += ir->mask.x;
1169      return;
1170   }
1171
1172   fs_reg result = fs_reg(this, ir->type);
1173   this->result = result;
1174
1175   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1176      fs_reg channel = val;
1177      int swiz = 0;
1178
1179      switch (i) {
1180      case 0:
1181	 swiz = ir->mask.x;
1182	 break;
1183      case 1:
1184	 swiz = ir->mask.y;
1185	 break;
1186      case 2:
1187	 swiz = ir->mask.z;
1188	 break;
1189      case 3:
1190	 swiz = ir->mask.w;
1191	 break;
1192      }
1193
1194      channel.reg_offset += swiz;
1195      emit(BRW_OPCODE_MOV, result, channel);
1196      result.reg_offset++;
1197   }
1198}
1199
1200void
1201fs_visitor::visit(ir_discard *ir)
1202{
1203   assert(ir->condition == NULL); /* FINISHME */
1204
1205   emit(FS_OPCODE_DISCARD);
1206   kill_emitted = true;
1207}
1208
1209void
1210fs_visitor::visit(ir_constant *ir)
1211{
1212   /* Set this->result to reg at the bottom of the function because some code
1213    * paths will cause this visitor to be applied to other fields.  This will
1214    * cause the value stored in this->result to be modified.
1215    *
1216    * Make reg constant so that it doesn't get accidentally modified along the
1217    * way.  Yes, I actually had this problem. :(
1218    */
1219   const fs_reg reg(this, ir->type);
1220   fs_reg dst_reg = reg;
1221
1222   if (ir->type->is_array()) {
1223      const unsigned size = type_size(ir->type->fields.array);
1224
1225      for (unsigned i = 0; i < ir->type->length; i++) {
1226	 this->result = reg_undef;
1227	 ir->array_elements[i]->accept(this);
1228	 fs_reg src_reg = this->result;
1229
1230	 dst_reg.type = src_reg.type;
1231	 for (unsigned j = 0; j < size; j++) {
1232	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1233	    src_reg.reg_offset++;
1234	    dst_reg.reg_offset++;
1235	 }
1236      }
1237   } else if (ir->type->is_record()) {
1238      foreach_list(node, &ir->components) {
1239	 ir_instruction *const field = (ir_instruction *) node;
1240	 const unsigned size = type_size(field->type);
1241
1242	 this->result = reg_undef;
1243	 field->accept(this);
1244	 fs_reg src_reg = this->result;
1245
1246	 dst_reg.type = src_reg.type;
1247	 for (unsigned j = 0; j < size; j++) {
1248	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1249	    src_reg.reg_offset++;
1250	    dst_reg.reg_offset++;
1251	 }
1252      }
1253   } else {
1254      const unsigned size = type_size(ir->type);
1255
1256      for (unsigned i = 0; i < size; i++) {
1257	 switch (ir->type->base_type) {
1258	 case GLSL_TYPE_FLOAT:
1259	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1260	    break;
1261	 case GLSL_TYPE_UINT:
1262	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1263	    break;
1264	 case GLSL_TYPE_INT:
1265	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1266	    break;
1267	 case GLSL_TYPE_BOOL:
1268	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1269	    break;
1270	 default:
1271	    assert(!"Non-float/uint/int/bool constant");
1272	 }
1273	 dst_reg.reg_offset++;
1274      }
1275   }
1276
1277   this->result = reg;
1278}
1279
1280void
1281fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1282{
1283   ir_expression *expr = ir->as_expression();
1284
1285   if (expr) {
1286      fs_reg op[2];
1287      fs_inst *inst;
1288
1289      assert(expr->get_num_operands() <= 2);
1290      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1291	 assert(expr->operands[i]->type->is_scalar());
1292
1293	 this->result = reg_undef;
1294	 expr->operands[i]->accept(this);
1295	 op[i] = this->result;
1296      }
1297
1298      switch (expr->operation) {
1299      case ir_unop_logic_not:
1300	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1301	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1302	 break;
1303
1304      case ir_binop_logic_xor:
1305	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1306	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1307	 break;
1308
1309      case ir_binop_logic_or:
1310	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1311	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1312	 break;
1313
1314      case ir_binop_logic_and:
1315	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1316	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1317	 break;
1318
1319      case ir_unop_f2b:
1320	 if (intel->gen >= 6) {
1321	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1322	 } else {
1323	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1324	 }
1325	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1326	 break;
1327
1328      case ir_unop_i2b:
1329	 if (intel->gen >= 6) {
1330	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1331	 } else {
1332	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1333	 }
1334	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1335	 break;
1336
1337      case ir_binop_greater:
1338      case ir_binop_gequal:
1339      case ir_binop_less:
1340      case ir_binop_lequal:
1341      case ir_binop_equal:
1342      case ir_binop_all_equal:
1343      case ir_binop_nequal:
1344      case ir_binop_any_nequal:
1345	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1346	 inst->conditional_mod =
1347	    brw_conditional_for_comparison(expr->operation);
1348	 break;
1349
1350      default:
1351	 assert(!"not reached");
1352	 fail("bad cond code\n");
1353	 break;
1354      }
1355      return;
1356   }
1357
1358   this->result = reg_undef;
1359   ir->accept(this);
1360
1361   if (intel->gen >= 6) {
1362      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1363      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1364   } else {
1365      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1366      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1367   }
1368}
1369
1370/**
1371 * Emit a gen6 IF statement with the comparison folded into the IF
1372 * instruction.
1373 */
1374void
1375fs_visitor::emit_if_gen6(ir_if *ir)
1376{
1377   ir_expression *expr = ir->condition->as_expression();
1378
1379   if (expr) {
1380      fs_reg op[2];
1381      fs_inst *inst;
1382      fs_reg temp;
1383
1384      assert(expr->get_num_operands() <= 2);
1385      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1386	 assert(expr->operands[i]->type->is_scalar());
1387
1388	 this->result = reg_undef;
1389	 expr->operands[i]->accept(this);
1390	 op[i] = this->result;
1391      }
1392
1393      switch (expr->operation) {
1394      case ir_unop_logic_not:
1395	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1396	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1397	 return;
1398
1399      case ir_binop_logic_xor:
1400	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1401	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1402	 return;
1403
1404      case ir_binop_logic_or:
1405	 temp = fs_reg(this, glsl_type::bool_type);
1406	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1407	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1408	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1409	 return;
1410
1411      case ir_binop_logic_and:
1412	 temp = fs_reg(this, glsl_type::bool_type);
1413	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1414	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1415	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1416	 return;
1417
1418      case ir_unop_f2b:
1419	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1420	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1421	 return;
1422
1423      case ir_unop_i2b:
1424	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1425	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1426	 return;
1427
1428      case ir_binop_greater:
1429      case ir_binop_gequal:
1430      case ir_binop_less:
1431      case ir_binop_lequal:
1432      case ir_binop_equal:
1433      case ir_binop_all_equal:
1434      case ir_binop_nequal:
1435      case ir_binop_any_nequal:
1436	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1437	 inst->conditional_mod =
1438	    brw_conditional_for_comparison(expr->operation);
1439	 return;
1440      default:
1441	 assert(!"not reached");
1442	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1443	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1444	 fail("bad condition\n");
1445	 return;
1446      }
1447      return;
1448   }
1449
1450   this->result = reg_undef;
1451   ir->condition->accept(this);
1452
1453   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1454   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1455}
1456
1457void
1458fs_visitor::visit(ir_if *ir)
1459{
1460   fs_inst *inst;
1461
1462   if (intel->gen != 6 && c->dispatch_width == 16) {
1463      fail("Can't support (non-uniform) control flow on 16-wide\n");
1464   }
1465
1466   /* Don't point the annotation at the if statement, because then it plus
1467    * the then and else blocks get printed.
1468    */
1469   this->base_ir = ir->condition;
1470
1471   if (intel->gen == 6) {
1472      emit_if_gen6(ir);
1473   } else {
1474      emit_bool_to_cond_code(ir->condition);
1475
1476      inst = emit(BRW_OPCODE_IF);
1477      inst->predicated = true;
1478   }
1479
1480   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1481      ir_instruction *ir = (ir_instruction *)iter.get();
1482      this->base_ir = ir;
1483      this->result = reg_undef;
1484      ir->accept(this);
1485   }
1486
1487   if (!ir->else_instructions.is_empty()) {
1488      emit(BRW_OPCODE_ELSE);
1489
1490      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1491	 ir_instruction *ir = (ir_instruction *)iter.get();
1492	 this->base_ir = ir;
1493	 this->result = reg_undef;
1494	 ir->accept(this);
1495      }
1496   }
1497
1498   emit(BRW_OPCODE_ENDIF);
1499}
1500
1501void
1502fs_visitor::visit(ir_loop *ir)
1503{
1504   fs_reg counter = reg_undef;
1505
1506   if (c->dispatch_width == 16) {
1507      fail("Can't support (non-uniform) control flow on 16-wide\n");
1508   }
1509
1510   if (ir->counter) {
1511      this->base_ir = ir->counter;
1512      ir->counter->accept(this);
1513      counter = *(variable_storage(ir->counter));
1514
1515      if (ir->from) {
1516	 this->result = counter;
1517
1518	 this->base_ir = ir->from;
1519	 this->result = counter;
1520	 ir->from->accept(this);
1521
1522	 if (!this->result.equals(&counter))
1523	    emit(BRW_OPCODE_MOV, counter, this->result);
1524      }
1525   }
1526
1527   emit(BRW_OPCODE_DO);
1528
1529   if (ir->to) {
1530      this->base_ir = ir->to;
1531      this->result = reg_undef;
1532      ir->to->accept(this);
1533
1534      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1535      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1536
1537      inst = emit(BRW_OPCODE_BREAK);
1538      inst->predicated = true;
1539   }
1540
1541   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1542      ir_instruction *ir = (ir_instruction *)iter.get();
1543
1544      this->base_ir = ir;
1545      this->result = reg_undef;
1546      ir->accept(this);
1547   }
1548
1549   if (ir->increment) {
1550      this->base_ir = ir->increment;
1551      this->result = reg_undef;
1552      ir->increment->accept(this);
1553      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1554   }
1555
1556   emit(BRW_OPCODE_WHILE);
1557}
1558
1559void
1560fs_visitor::visit(ir_loop_jump *ir)
1561{
1562   switch (ir->mode) {
1563   case ir_loop_jump::jump_break:
1564      emit(BRW_OPCODE_BREAK);
1565      break;
1566   case ir_loop_jump::jump_continue:
1567      emit(BRW_OPCODE_CONTINUE);
1568      break;
1569   }
1570}
1571
1572void
1573fs_visitor::visit(ir_call *ir)
1574{
1575   assert(!"FINISHME");
1576}
1577
1578void
1579fs_visitor::visit(ir_return *ir)
1580{
1581   assert(!"FINISHME");
1582}
1583
1584void
1585fs_visitor::visit(ir_function *ir)
1586{
1587   /* Ignore function bodies other than main() -- we shouldn't see calls to
1588    * them since they should all be inlined before we get to ir_to_mesa.
1589    */
1590   if (strcmp(ir->name, "main") == 0) {
1591      const ir_function_signature *sig;
1592      exec_list empty;
1593
1594      sig = ir->matching_signature(&empty);
1595
1596      assert(sig);
1597
1598      foreach_iter(exec_list_iterator, iter, sig->body) {
1599	 ir_instruction *ir = (ir_instruction *)iter.get();
1600	 this->base_ir = ir;
1601	 this->result = reg_undef;
1602	 ir->accept(this);
1603      }
1604   }
1605}
1606
1607void
1608fs_visitor::visit(ir_function_signature *ir)
1609{
1610   assert(!"not reached");
1611   (void)ir;
1612}
1613
1614fs_inst *
1615fs_visitor::emit(fs_inst inst)
1616{
1617   fs_inst *list_inst = new(mem_ctx) fs_inst;
1618   *list_inst = inst;
1619
1620   if (force_uncompressed_stack > 0)
1621      list_inst->force_uncompressed = true;
1622   else if (force_sechalf_stack > 0)
1623      list_inst->force_sechalf = true;
1624
1625   list_inst->annotation = this->current_annotation;
1626   list_inst->ir = this->base_ir;
1627
1628   this->instructions.push_tail(list_inst);
1629
1630   return list_inst;
1631}
1632
1633/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1634void
1635fs_visitor::emit_dummy_fs()
1636{
1637   /* Everyone's favorite color. */
1638   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1639   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1640   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1641   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1642
1643   fs_inst *write;
1644   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1645   write->base_mrf = 2;
1646}
1647
1648/* The register location here is relative to the start of the URB
1649 * data.  It will get adjusted to be a real location before
1650 * generate_code() time.
1651 */
1652struct brw_reg
1653fs_visitor::interp_reg(int location, int channel)
1654{
1655   int regnr = urb_setup[location] * 2 + channel / 2;
1656   int stride = (channel & 1) * 4;
1657
1658   assert(urb_setup[location] != -1);
1659
1660   return brw_vec1_grf(regnr, stride);
1661}
1662
1663/** Emits the interpolation for the varying inputs. */
1664void
1665fs_visitor::emit_interpolation_setup_gen4()
1666{
1667   this->current_annotation = "compute pixel centers";
1668   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1669   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1670   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1671   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1672
1673   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1674   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1675
1676   this->current_annotation = "compute pixel deltas from v0";
1677   if (brw->has_pln) {
1678      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1679      this->delta_y = this->delta_x;
1680      this->delta_y.reg_offset++;
1681   } else {
1682      this->delta_x = fs_reg(this, glsl_type::float_type);
1683      this->delta_y = fs_reg(this, glsl_type::float_type);
1684   }
1685   emit(BRW_OPCODE_ADD, this->delta_x,
1686	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1687   emit(BRW_OPCODE_ADD, this->delta_y,
1688	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1689
1690   this->current_annotation = "compute pos.w and 1/pos.w";
1691   /* Compute wpos.w.  It's always in our setup, since it's needed to
1692    * interpolate the other attributes.
1693    */
1694   this->wpos_w = fs_reg(this, glsl_type::float_type);
1695   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1696	interp_reg(FRAG_ATTRIB_WPOS, 3));
1697   /* Compute the pixel 1/W value from wpos.w. */
1698   this->pixel_w = fs_reg(this, glsl_type::float_type);
1699   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1700   this->current_annotation = NULL;
1701}
1702
1703/** Emits the interpolation for the varying inputs. */
1704void
1705fs_visitor::emit_interpolation_setup_gen6()
1706{
1707   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1708
1709   /* If the pixel centers end up used, the setup is the same as for gen4. */
1710   this->current_annotation = "compute pixel centers";
1711   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1712   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1713   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1714   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1715   emit(BRW_OPCODE_ADD,
1716	int_pixel_x,
1717	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1718	fs_reg(brw_imm_v(0x10101010)));
1719   emit(BRW_OPCODE_ADD,
1720	int_pixel_y,
1721	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1722	fs_reg(brw_imm_v(0x11001100)));
1723
1724   /* As of gen6, we can no longer mix float and int sources.  We have
1725    * to turn the integer pixel centers into floats for their actual
1726    * use.
1727    */
1728   this->pixel_x = fs_reg(this, glsl_type::float_type);
1729   this->pixel_y = fs_reg(this, glsl_type::float_type);
1730   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1731   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1732
1733   this->current_annotation = "compute pos.w";
1734   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1735   this->wpos_w = fs_reg(this, glsl_type::float_type);
1736   emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1737
1738   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1739   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1740
1741   this->current_annotation = NULL;
1742}
1743
1744void
1745fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1746{
1747   int reg_width = c->dispatch_width / 8;
1748   fs_inst *inst;
1749
1750   if (c->dispatch_width == 8 || intel->gen == 6) {
1751      /* SIMD8 write looks like:
1752       * m + 0: r0
1753       * m + 1: r1
1754       * m + 2: g0
1755       * m + 3: g1
1756       *
1757       * gen6 SIMD16 DP write looks like:
1758       * m + 0: r0
1759       * m + 1: r1
1760       * m + 2: g0
1761       * m + 3: g1
1762       * m + 4: b0
1763       * m + 5: b1
1764       * m + 6: a0
1765       * m + 7: a1
1766       */
1767      inst = emit(BRW_OPCODE_MOV,
1768		  fs_reg(MRF, first_color_mrf + index * reg_width),
1769		  color);
1770      inst->saturate = c->key.clamp_fragment_color;
1771   } else {
1772      /* pre-gen6 SIMD16 single source DP write looks like:
1773       * m + 0: r0
1774       * m + 1: g0
1775       * m + 2: b0
1776       * m + 3: a0
1777       * m + 4: r1
1778       * m + 5: g1
1779       * m + 6: b1
1780       * m + 7: a1
1781       */
1782      if (brw->has_compr4) {
1783	 /* By setting the high bit of the MRF register number, we
1784	  * indicate that we want COMPR4 mode - instead of doing the
1785	  * usual destination + 1 for the second half we get
1786	  * destination + 4.
1787	  */
1788	 inst = emit(BRW_OPCODE_MOV,
1789		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index),
1790		     color);
1791	 inst->saturate = c->key.clamp_fragment_color;
1792      } else {
1793	 push_force_uncompressed();
1794	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index),
1795		     color);
1796	 inst->saturate = c->key.clamp_fragment_color;
1797	 pop_force_uncompressed();
1798
1799	 push_force_sechalf();
1800	 color.sechalf = true;
1801	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4),
1802		     color);
1803	 inst->saturate = c->key.clamp_fragment_color;
1804	 pop_force_sechalf();
1805	 color.sechalf = false;
1806      }
1807   }
1808}
1809
1810void
1811fs_visitor::emit_fb_writes()
1812{
1813   this->current_annotation = "FB write header";
1814   GLboolean header_present = GL_TRUE;
1815   int base_mrf = 2;
1816   int nr = base_mrf;
1817   int reg_width = c->dispatch_width / 8;
1818
1819   if (intel->gen >= 6 &&
1820       !this->kill_emitted &&
1821       c->key.nr_color_regions == 1) {
1822      header_present = false;
1823   }
1824
1825   if (header_present) {
1826      /* m2, m3 header */
1827      nr += 2;
1828   }
1829
1830   if (c->aa_dest_stencil_reg) {
1831      push_force_uncompressed();
1832      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1833	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1834      pop_force_uncompressed();
1835   }
1836
1837   /* Reserve space for color. It'll be filled in per MRT below. */
1838   int color_mrf = nr;
1839   nr += 4 * reg_width;
1840
1841   if (c->source_depth_to_render_target) {
1842      if (intel->gen == 6 && c->dispatch_width == 16) {
1843	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1844	  * used.  This would require 8-wide moves of each half to
1845	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1846	  * Just bail on doing so for now.
1847	  */
1848	 fail("Missing support for simd16 depth writes on gen6\n");
1849      }
1850
1851      if (c->computes_depth) {
1852	 /* Hand over gl_FragDepth. */
1853	 assert(this->frag_depth);
1854	 fs_reg depth = *(variable_storage(this->frag_depth));
1855
1856	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1857      } else {
1858	 /* Pass through the payload depth. */
1859	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1860	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1861      }
1862      nr += reg_width;
1863   }
1864
1865   if (c->dest_depth_reg) {
1866      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1867	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1868      nr += reg_width;
1869   }
1870
1871   fs_reg color = reg_undef;
1872   if (this->frag_color)
1873      color = *(variable_storage(this->frag_color));
1874   else if (this->frag_data) {
1875      color = *(variable_storage(this->frag_data));
1876      color.type = BRW_REGISTER_TYPE_F;
1877   }
1878
1879   for (int target = 0; target < c->key.nr_color_regions; target++) {
1880      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1881						 "FB write target %d",
1882						 target);
1883      if (this->frag_color || this->frag_data) {
1884	 for (int i = 0; i < 4; i++) {
1885	    emit_color_write(i, color_mrf, color);
1886	    color.reg_offset++;
1887	 }
1888      }
1889
1890      if (this->frag_color)
1891	 color.reg_offset -= 4;
1892
1893      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1894      inst->target = target;
1895      inst->base_mrf = base_mrf;
1896      inst->mlen = nr - base_mrf;
1897      if (target == c->key.nr_color_regions - 1)
1898	 inst->eot = true;
1899      inst->header_present = header_present;
1900   }
1901
1902   if (c->key.nr_color_regions == 0) {
1903      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1904	 /* If the alpha test is enabled but there's no color buffer,
1905	  * we still need to send alpha out the pipeline to our null
1906	  * renderbuffer.
1907	  */
1908	 color.reg_offset += 3;
1909	 emit_color_write(3, color_mrf, color);
1910      }
1911
1912      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1913      inst->base_mrf = base_mrf;
1914      inst->mlen = nr - base_mrf;
1915      inst->eot = true;
1916      inst->header_present = header_present;
1917   }
1918
1919   this->current_annotation = NULL;
1920}
1921