brw_fs_visitor.cpp revision 65b5cbbcf783f6c668ab5b31a0734680dd396794
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM || this->result.file == GRF);
146      this->result.reg_offset += index->value.i[0] * element_size;
147   } else {
148      assert(!"FINISHME: non-constant array element");
149   }
150}
151
152/* Instruction selection: Produce a MOV.sat instead of
153 * MIN(MAX(val, 0), 1) when possible.
154 */
155bool
156fs_visitor::try_emit_saturate(ir_expression *ir)
157{
158   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
159
160   if (!sat_val)
161      return false;
162
163   this->result = reg_undef;
164   sat_val->accept(this);
165   fs_reg src = this->result;
166
167   this->result = fs_reg(this, ir->type);
168   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
169   inst->saturate = true;
170
171   return true;
172}
173
174void
175fs_visitor::visit(ir_expression *ir)
176{
177   unsigned int operand;
178   fs_reg op[2], temp;
179   fs_inst *inst;
180
181   assert(ir->get_num_operands() <= 2);
182
183   if (try_emit_saturate(ir))
184      return;
185
186   /* This is where our caller would like us to put the result, if possible. */
187   fs_reg saved_result_storage = this->result;
188
189   for (operand = 0; operand < ir->get_num_operands(); operand++) {
190      this->result = reg_undef;
191      ir->operands[operand]->accept(this);
192      if (this->result.file == BAD_FILE) {
193	 ir_print_visitor v;
194	 fail("Failed to get tree for expression operand:\n");
195	 ir->operands[operand]->accept(&v);
196      }
197      op[operand] = this->result;
198
199      /* Matrix expression operands should have been broken down to vector
200       * operations already.
201       */
202      assert(!ir->operands[operand]->type->is_matrix());
203      /* And then those vector operands should have been broken down to scalar.
204       */
205      assert(!ir->operands[operand]->type->is_vector());
206   }
207
208   /* Inherit storage from our parent if possible, and otherwise we
209    * alloc a temporary.
210    */
211   if (saved_result_storage.file == BAD_FILE) {
212      this->result = fs_reg(this, ir->type);
213   } else {
214      this->result = saved_result_storage;
215   }
216
217   switch (ir->operation) {
218   case ir_unop_logic_not:
219      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
220       * ones complement of the whole register, not just bit 0.
221       */
222      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
223      break;
224   case ir_unop_neg:
225      op[0].negate = !op[0].negate;
226      this->result = op[0];
227      break;
228   case ir_unop_abs:
229      op[0].abs = true;
230      op[0].negate = false;
231      this->result = op[0];
232      break;
233   case ir_unop_sign:
234      temp = fs_reg(this, ir->type);
235
236      /* Unalias the destination.  (imagine a = sign(a)) */
237      this->result = fs_reg(this, ir->type);
238
239      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
240
241      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
242      inst->conditional_mod = BRW_CONDITIONAL_G;
243      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
244      inst->predicated = true;
245
246      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
247      inst->conditional_mod = BRW_CONDITIONAL_L;
248      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
249      inst->predicated = true;
250
251      break;
252   case ir_unop_rcp:
253      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
254      break;
255
256   case ir_unop_exp2:
257      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
258      break;
259   case ir_unop_log2:
260      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
261      break;
262   case ir_unop_exp:
263   case ir_unop_log:
264      assert(!"not reached: should be handled by ir_explog_to_explog2");
265      break;
266   case ir_unop_sin:
267   case ir_unop_sin_reduced:
268      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
269      break;
270   case ir_unop_cos:
271   case ir_unop_cos_reduced:
272      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
273      break;
274
275   case ir_unop_dFdx:
276      emit(FS_OPCODE_DDX, this->result, op[0]);
277      break;
278   case ir_unop_dFdy:
279      emit(FS_OPCODE_DDY, this->result, op[0]);
280      break;
281
282   case ir_binop_add:
283      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
284      break;
285   case ir_binop_sub:
286      assert(!"not reached: should be handled by ir_sub_to_add_neg");
287      break;
288
289   case ir_binop_mul:
290      emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
291      break;
292   case ir_binop_div:
293      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
294      break;
295   case ir_binop_mod:
296      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
297      break;
298
299   case ir_binop_less:
300   case ir_binop_greater:
301   case ir_binop_lequal:
302   case ir_binop_gequal:
303   case ir_binop_equal:
304   case ir_binop_all_equal:
305   case ir_binop_nequal:
306   case ir_binop_any_nequal:
307      temp = this->result;
308      /* original gen4 does implicit conversion before comparison. */
309      if (intel->gen < 5)
310	 temp.type = op[0].type;
311
312      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
313      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
314      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
315      break;
316
317   case ir_binop_logic_xor:
318      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
319      break;
320
321   case ir_binop_logic_or:
322      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
323      break;
324
325   case ir_binop_logic_and:
326      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
327      break;
328
329   case ir_binop_dot:
330   case ir_unop_any:
331      assert(!"not reached: should be handled by brw_fs_channel_expressions");
332      break;
333
334   case ir_unop_noise:
335      assert(!"not reached: should be handled by lower_noise");
336      break;
337
338   case ir_quadop_vector:
339      assert(!"not reached: should be handled by lower_quadop_vector");
340      break;
341
342   case ir_unop_sqrt:
343      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
344      break;
345
346   case ir_unop_rsq:
347      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
348      break;
349
350   case ir_unop_i2u:
351      op[0].type = BRW_REGISTER_TYPE_UD;
352      this->result = op[0];
353      break;
354   case ir_unop_u2i:
355      op[0].type = BRW_REGISTER_TYPE_D;
356      this->result = op[0];
357      break;
358   case ir_unop_i2f:
359   case ir_unop_b2f:
360   case ir_unop_b2i:
361   case ir_unop_f2i:
362      emit(BRW_OPCODE_MOV, this->result, op[0]);
363      break;
364   case ir_unop_f2b:
365   case ir_unop_i2b:
366      temp = this->result;
367      /* original gen4 does implicit conversion before comparison. */
368      if (intel->gen < 5)
369	 temp.type = op[0].type;
370
371      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
372      inst->conditional_mod = BRW_CONDITIONAL_NZ;
373      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
374      break;
375
376   case ir_unop_trunc:
377      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
378      break;
379   case ir_unop_ceil:
380      op[0].negate = !op[0].negate;
381      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
382      this->result.negate = true;
383      break;
384   case ir_unop_floor:
385      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
386      break;
387   case ir_unop_fract:
388      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
389      break;
390   case ir_unop_round_even:
391      emit(BRW_OPCODE_RNDE, this->result, op[0]);
392      break;
393
394   case ir_binop_min:
395      if (intel->gen >= 6) {
396	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
397	 inst->conditional_mod = BRW_CONDITIONAL_L;
398      } else {
399	 /* Unalias the destination */
400	 this->result = fs_reg(this, ir->type);
401
402	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
403	 inst->conditional_mod = BRW_CONDITIONAL_L;
404
405	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
406	 inst->predicated = true;
407      }
408      break;
409   case ir_binop_max:
410      if (intel->gen >= 6) {
411	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
412	 inst->conditional_mod = BRW_CONDITIONAL_GE;
413      } else {
414	 /* Unalias the destination */
415	 this->result = fs_reg(this, ir->type);
416
417	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
418	 inst->conditional_mod = BRW_CONDITIONAL_G;
419
420	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
421	 inst->predicated = true;
422      }
423      break;
424
425   case ir_binop_pow:
426      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
427      break;
428
429   case ir_unop_bit_not:
430      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
431      break;
432   case ir_binop_bit_and:
433      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
434      break;
435   case ir_binop_bit_xor:
436      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
437      break;
438   case ir_binop_bit_or:
439      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
440      break;
441
442   case ir_unop_u2f:
443   case ir_binop_lshift:
444   case ir_binop_rshift:
445      assert(!"GLSL 1.30 features unsupported");
446      break;
447   }
448}
449
450void
451fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
452				   const glsl_type *type, bool predicated)
453{
454   switch (type->base_type) {
455   case GLSL_TYPE_FLOAT:
456   case GLSL_TYPE_UINT:
457   case GLSL_TYPE_INT:
458   case GLSL_TYPE_BOOL:
459      for (unsigned int i = 0; i < type->components(); i++) {
460	 l.type = brw_type_for_base_type(type);
461	 r.type = brw_type_for_base_type(type);
462
463	 if (predicated || !l.equals(&r)) {
464	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
465	    inst->predicated = predicated;
466	 }
467
468	 l.reg_offset++;
469	 r.reg_offset++;
470      }
471      break;
472   case GLSL_TYPE_ARRAY:
473      for (unsigned int i = 0; i < type->length; i++) {
474	 emit_assignment_writes(l, r, type->fields.array, predicated);
475      }
476      break;
477
478   case GLSL_TYPE_STRUCT:
479      for (unsigned int i = 0; i < type->length; i++) {
480	 emit_assignment_writes(l, r, type->fields.structure[i].type,
481				predicated);
482      }
483      break;
484
485   case GLSL_TYPE_SAMPLER:
486      break;
487
488   default:
489      assert(!"not reached");
490      break;
491   }
492}
493
494void
495fs_visitor::visit(ir_assignment *ir)
496{
497   struct fs_reg l, r;
498   fs_inst *inst;
499
500   /* FINISHME: arrays on the lhs */
501   this->result = reg_undef;
502   ir->lhs->accept(this);
503   l = this->result;
504
505   /* If we're doing a direct assignment, an RHS expression could
506    * drop its result right into our destination.  Otherwise, tell it
507    * not to.
508    */
509   if (ir->condition ||
510       !(ir->lhs->type->is_scalar() ||
511	 (ir->lhs->type->is_vector() &&
512	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
513      this->result = reg_undef;
514   }
515
516   ir->rhs->accept(this);
517   r = this->result;
518
519   assert(l.file != BAD_FILE);
520   assert(r.file != BAD_FILE);
521
522   if (ir->condition) {
523      emit_bool_to_cond_code(ir->condition);
524   }
525
526   if (ir->lhs->type->is_scalar() ||
527       ir->lhs->type->is_vector()) {
528      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
529	 if (ir->write_mask & (1 << i)) {
530	    if (ir->condition) {
531	       inst = emit(BRW_OPCODE_MOV, l, r);
532	       inst->predicated = true;
533	    } else if (!l.equals(&r)) {
534	       inst = emit(BRW_OPCODE_MOV, l, r);
535	    }
536
537	    r.reg_offset++;
538	 }
539	 l.reg_offset++;
540      }
541   } else {
542      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
543   }
544}
545
546fs_inst *
547fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
548			      int sampler)
549{
550   int mlen;
551   int base_mrf = 1;
552   bool simd16 = false;
553   fs_reg orig_dst;
554
555   /* g0 header. */
556   mlen = 1;
557
558   if (ir->shadow_comparitor && ir->op != ir_txd) {
559      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
560	 fs_inst *inst = emit(BRW_OPCODE_MOV,
561			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
562	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
563	    inst->saturate = true;
564
565	 coordinate.reg_offset++;
566      }
567      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
568      mlen += 3;
569
570      if (ir->op == ir_tex) {
571	 /* There's no plain shadow compare message, so we use shadow
572	  * compare with a bias of 0.0.
573	  */
574	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
575	 mlen++;
576      } else if (ir->op == ir_txb) {
577	 this->result = reg_undef;
578	 ir->lod_info.bias->accept(this);
579	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
580	 mlen++;
581      } else {
582	 assert(ir->op == ir_txl);
583	 this->result = reg_undef;
584	 ir->lod_info.lod->accept(this);
585	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
586	 mlen++;
587      }
588
589      this->result = reg_undef;
590      ir->shadow_comparitor->accept(this);
591      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
592      mlen++;
593   } else if (ir->op == ir_tex) {
594      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
595	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
596			      coordinate);
597	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
598	    inst->saturate = true;
599	 coordinate.reg_offset++;
600      }
601      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
602      mlen += 3;
603   } else if (ir->op == ir_txd) {
604      this->result = reg_undef;
605      ir->lod_info.grad.dPdx->accept(this);
606      fs_reg dPdx = this->result;
607
608      this->result = reg_undef;
609      ir->lod_info.grad.dPdy->accept(this);
610      fs_reg dPdy = this->result;
611
612      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
613	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
614	 coordinate.reg_offset++;
615      }
616      /* the slots for u and v are always present, but r is optional */
617      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
618
619      /*  P   = u, v, r
620       * dPdx = dudx, dvdx, drdx
621       * dPdy = dudy, dvdy, drdy
622       *
623       * 1-arg: Does not exist.
624       *
625       * 2-arg: dudx   dvdx   dudy   dvdy
626       *        dPdx.x dPdx.y dPdy.x dPdy.y
627       *        m4     m5     m6     m7
628       *
629       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
630       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
631       *        m5     m6     m7     m8     m9     m10
632       */
633      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
634	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
635	 dPdx.reg_offset++;
636      }
637      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
638
639      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
640	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
641	 dPdy.reg_offset++;
642      }
643      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
644   } else {
645      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
646       * instructions.  We'll need to do SIMD16 here.
647       */
648      assert(ir->op == ir_txb || ir->op == ir_txl);
649
650      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
651	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
652						     base_mrf + mlen + i * 2),
653			      coordinate);
654	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
655	    inst->saturate = true;
656	 coordinate.reg_offset++;
657      }
658
659      /* lod/bias appears after u/v/r. */
660      mlen += 6;
661
662      if (ir->op == ir_txb) {
663	 this->result = reg_undef;
664	 ir->lod_info.bias->accept(this);
665	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
666	 mlen++;
667      } else {
668	 this->result = reg_undef;
669	 ir->lod_info.lod->accept(this);
670	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
671	 mlen++;
672      }
673
674      /* The unused upper half. */
675      mlen++;
676
677      /* Now, since we're doing simd16, the return is 2 interleaved
678       * vec4s where the odd-indexed ones are junk. We'll need to move
679       * this weirdness around to the expected layout.
680       */
681      simd16 = true;
682      orig_dst = dst;
683      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
684						       2));
685      dst.type = BRW_REGISTER_TYPE_F;
686   }
687
688   fs_inst *inst = NULL;
689   switch (ir->op) {
690   case ir_tex:
691      inst = emit(FS_OPCODE_TEX, dst);
692      break;
693   case ir_txb:
694      inst = emit(FS_OPCODE_TXB, dst);
695      break;
696   case ir_txl:
697      inst = emit(FS_OPCODE_TXL, dst);
698      break;
699   case ir_txd:
700      inst = emit(FS_OPCODE_TXD, dst);
701      break;
702   case ir_txf:
703      assert(!"GLSL 1.30 features unsupported");
704      break;
705   }
706   inst->base_mrf = base_mrf;
707   inst->mlen = mlen;
708   inst->header_present = true;
709
710   if (simd16) {
711      for (int i = 0; i < 4; i++) {
712	 emit(BRW_OPCODE_MOV, orig_dst, dst);
713	 orig_dst.reg_offset++;
714	 dst.reg_offset += 2;
715      }
716   }
717
718   return inst;
719}
720
721/* gen5's sampler has slots for u, v, r, array index, then optional
722 * parameters like shadow comparitor or LOD bias.  If optional
723 * parameters aren't present, those base slots are optional and don't
724 * need to be included in the message.
725 *
726 * We don't fill in the unnecessary slots regardless, which may look
727 * surprising in the disassembly.
728 */
729fs_inst *
730fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
731			      int sampler)
732{
733   int mlen = 0;
734   int base_mrf = 2;
735   int reg_width = c->dispatch_width / 8;
736   bool header_present = false;
737
738   if (ir->offset) {
739      /* The offsets set up by the ir_texture visitor are in the
740       * m1 header, so we can't go headerless.
741       */
742      header_present = true;
743      mlen++;
744      base_mrf--;
745   }
746
747   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
748      fs_inst *inst = emit(BRW_OPCODE_MOV,
749			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
750			   coordinate);
751      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
752	 inst->saturate = true;
753      coordinate.reg_offset++;
754   }
755   mlen += ir->coordinate->type->vector_elements * reg_width;
756
757   if (ir->shadow_comparitor && ir->op != ir_txd) {
758      mlen = MAX2(mlen, header_present + 4 * reg_width);
759
760      this->result = reg_undef;
761      ir->shadow_comparitor->accept(this);
762      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
763      mlen += reg_width;
764   }
765
766   fs_inst *inst = NULL;
767   switch (ir->op) {
768   case ir_tex:
769      inst = emit(FS_OPCODE_TEX, dst);
770      break;
771   case ir_txb:
772      this->result = reg_undef;
773      ir->lod_info.bias->accept(this);
774      mlen = MAX2(mlen, header_present + 4 * reg_width);
775      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
776      mlen += reg_width;
777
778      inst = emit(FS_OPCODE_TXB, dst);
779
780      break;
781   case ir_txl:
782      this->result = reg_undef;
783      ir->lod_info.lod->accept(this);
784      mlen = MAX2(mlen, header_present + 4 * reg_width);
785      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
786      mlen += reg_width;
787
788      inst = emit(FS_OPCODE_TXL, dst);
789      break;
790   case ir_txd: {
791      this->result = reg_undef;
792      ir->lod_info.grad.dPdx->accept(this);
793      fs_reg dPdx = this->result;
794
795      this->result = reg_undef;
796      ir->lod_info.grad.dPdy->accept(this);
797      fs_reg dPdy = this->result;
798
799      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
800
801      /**
802       *  P   =  u,    v,    r
803       * dPdx = dudx, dvdx, drdx
804       * dPdy = dudy, dvdy, drdy
805       *
806       * Load up these values:
807       * - dudx   dudy   dvdx   dvdy   drdx   drdy
808       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
809       */
810      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
811	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
812	 dPdx.reg_offset++;
813	 mlen += reg_width;
814
815	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
816	 dPdy.reg_offset++;
817	 mlen += reg_width;
818      }
819
820      inst = emit(FS_OPCODE_TXD, dst);
821      break;
822   }
823   case ir_txf:
824      assert(!"GLSL 1.30 features unsupported");
825      break;
826   }
827   inst->base_mrf = base_mrf;
828   inst->mlen = mlen;
829   inst->header_present = header_present;
830
831   if (mlen > 11) {
832      fail("Message length >11 disallowed by hardware\n");
833   }
834
835   return inst;
836}
837
838fs_inst *
839fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
840			      int sampler)
841{
842   int mlen = 0;
843   int base_mrf = 2;
844   int reg_width = c->dispatch_width / 8;
845   bool header_present = false;
846
847   if (ir->offset) {
848      /* The offsets set up by the ir_texture visitor are in the
849       * m1 header, so we can't go headerless.
850       */
851      header_present = true;
852      mlen++;
853      base_mrf--;
854   }
855
856   if (ir->shadow_comparitor && ir->op != ir_txd) {
857      this->result = reg_undef;
858      ir->shadow_comparitor->accept(this);
859      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
860      mlen += reg_width;
861   }
862
863   /* Set up the LOD info */
864   switch (ir->op) {
865   case ir_tex:
866      break;
867   case ir_txb:
868      this->result = reg_undef;
869      ir->lod_info.bias->accept(this);
870      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
871      mlen += reg_width;
872      break;
873   case ir_txl:
874      this->result = reg_undef;
875      ir->lod_info.lod->accept(this);
876      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
877      mlen += reg_width;
878      break;
879   case ir_txd: {
880      if (c->dispatch_width == 16)
881	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
882
883      this->result = reg_undef;
884      ir->lod_info.grad.dPdx->accept(this);
885      fs_reg dPdx = this->result;
886
887      this->result = reg_undef;
888      ir->lod_info.grad.dPdy->accept(this);
889      fs_reg dPdy = this->result;
890
891      /* Load dPdx and the coordinate together:
892       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
893       */
894      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
895	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
896			      coordinate);
897	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
898	    inst->saturate = true;
899	 coordinate.reg_offset++;
900	 mlen += reg_width;
901
902	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
903	 dPdx.reg_offset++;
904	 mlen += reg_width;
905
906	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
907	 dPdy.reg_offset++;
908	 mlen += reg_width;
909      }
910      break;
911   }
912   case ir_txf:
913      assert(!"GLSL 1.30 features unsupported");
914      break;
915   }
916
917   /* Set up the coordinate (except for TXD where it was done earlier) */
918   if (ir->op != ir_txd) {
919      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
920	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
921			      coordinate);
922	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
923	    inst->saturate = true;
924	 coordinate.reg_offset++;
925	 mlen += reg_width;
926      }
927   }
928
929   /* Generate the SEND */
930   fs_inst *inst = NULL;
931   switch (ir->op) {
932   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
933   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
934   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
935   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
936   case ir_txf: assert(!"TXF unsupported.");
937   }
938   inst->base_mrf = base_mrf;
939   inst->mlen = mlen;
940   inst->header_present = header_present;
941
942   if (mlen > 11) {
943      fail("Message length >11 disallowed by hardware\n");
944   }
945
946   return inst;
947}
948
949void
950fs_visitor::visit(ir_texture *ir)
951{
952   fs_inst *inst = NULL;
953
954   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
955   sampler = fp->Base.SamplerUnits[sampler];
956
957   /* Our hardware doesn't have a sample_d_c message, so shadow compares
958    * for textureGrad/TXD need to be emulated with instructions.
959    */
960   bool hw_compare_supported = ir->op != ir_txd;
961   if (ir->shadow_comparitor && !hw_compare_supported) {
962      assert(c->key.compare_funcs[sampler] != GL_NONE);
963      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
964      if (c->key.compare_funcs[sampler] == GL_ALWAYS)
965	 return swizzle_result(ir, fs_reg(1.0f), sampler);
966      else if (c->key.compare_funcs[sampler] == GL_NEVER)
967	 return swizzle_result(ir, fs_reg(0.0f), sampler);
968   }
969
970   this->result = reg_undef;
971   ir->coordinate->accept(this);
972   fs_reg coordinate = this->result;
973
974   if (ir->offset != NULL) {
975      ir_constant *offset = ir->offset->as_constant();
976      assert(offset != NULL);
977
978      signed char offsets[3];
979      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
980	 offsets[i] = (signed char) offset->value.i[i];
981
982      /* Combine all three offsets into a single unsigned dword:
983       *
984       *    bits 11:8 - U Offset (X component)
985       *    bits  7:4 - V Offset (Y component)
986       *    bits  3:0 - R Offset (Z component)
987       */
988      unsigned offset_bits = 0;
989      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
990	 const unsigned shift = 4 * (2 - i);
991	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
992      }
993
994      /* Explicitly set up the message header by copying g0 to msg reg m1. */
995      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
996	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
997
998      /* Then set the offset bits in DWord 2 of the message header. */
999      emit(BRW_OPCODE_MOV,
1000	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1001			 BRW_REGISTER_TYPE_UD)),
1002	   fs_reg(brw_imm_uw(offset_bits)));
1003   }
1004
1005   /* Should be lowered by do_lower_texture_projection */
1006   assert(!ir->projector);
1007
1008   /* The 965 requires the EU to do the normalization of GL rectangle
1009    * texture coordinates.  We use the program parameter state
1010    * tracking to get the scaling factor.
1011    */
1012   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1013      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1014      int tokens[STATE_LENGTH] = {
1015	 STATE_INTERNAL,
1016	 STATE_TEXRECT_SCALE,
1017	 sampler,
1018	 0,
1019	 0
1020      };
1021
1022      if (c->dispatch_width == 16) {
1023	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1024	 this->result = fs_reg(this, ir->type);
1025	 return;
1026      }
1027
1028      c->prog_data.param_convert[c->prog_data.nr_params] =
1029	 PARAM_NO_CONVERT;
1030      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1031	 PARAM_NO_CONVERT;
1032
1033      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1034      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1035      GLuint index = _mesa_add_state_reference(params,
1036					       (gl_state_index *)tokens);
1037
1038      this->param_index[c->prog_data.nr_params] = index;
1039      this->param_offset[c->prog_data.nr_params] = 0;
1040      c->prog_data.nr_params++;
1041      this->param_index[c->prog_data.nr_params] = index;
1042      this->param_offset[c->prog_data.nr_params] = 1;
1043      c->prog_data.nr_params++;
1044
1045      fs_reg dst = fs_reg(this, ir->coordinate->type);
1046      fs_reg src = coordinate;
1047      coordinate = dst;
1048
1049      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1050      dst.reg_offset++;
1051      src.reg_offset++;
1052      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1053   }
1054
1055   /* Writemasking doesn't eliminate channels on SIMD8 texture
1056    * samples, so don't worry about them.
1057    */
1058   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1059
1060   if (intel->gen >= 7) {
1061      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1062   } else if (intel->gen >= 5) {
1063      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1064   } else {
1065      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1066   }
1067
1068   /* If there's an offset, we already set up m1.  To avoid the implied move,
1069    * use the null register.  Otherwise, we want an implied move from g0.
1070    */
1071   if (ir->offset != NULL || !inst->header_present)
1072      inst->src[0] = reg_undef;
1073   else
1074      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1075
1076   inst->sampler = sampler;
1077
1078   if (ir->shadow_comparitor) {
1079      if (hw_compare_supported) {
1080	 inst->shadow_compare = true;
1081      } else {
1082	 this->result = reg_undef;
1083	 ir->shadow_comparitor->accept(this);
1084	 fs_reg ref = this->result;
1085
1086	 fs_reg value = dst;
1087	 dst = fs_reg(this, glsl_type::vec4_type);
1088
1089	 /* FINISHME: This needs to be done pre-filtering. */
1090
1091	 uint32_t conditional = 0;
1092	 switch (c->key.compare_funcs[sampler]) {
1093	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1094	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1095	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1096	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1097	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1098	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1099	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1100	 default: assert(!"Should not get here: bad shadow compare function");
1101	 }
1102
1103	 /* Use conditional moves to load 0 or 1 as the result */
1104	 this->current_annotation = "manual shadow comparison";
1105	 for (int i = 0; i < 4; i++) {
1106	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1107
1108	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1109	    inst->conditional_mod = conditional;
1110
1111	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1112	    inst->predicated = true;
1113
1114	    dst.reg_offset++;
1115	    value.reg_offset++;
1116	 }
1117	 dst.reg_offset = 0;
1118      }
1119   }
1120
1121   swizzle_result(ir, dst, sampler);
1122}
1123
1124/**
1125 * Swizzle the result of a texture result.  This is necessary for
1126 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1127 */
1128void
1129fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1130{
1131   this->result = orig_val;
1132
1133   if (ir->type == glsl_type::float_type) {
1134      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1135      assert(ir->sampler->type->sampler_shadow);
1136   } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1137      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1138
1139      for (int i = 0; i < 4; i++) {
1140	 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1141	 fs_reg l = swizzled_result;
1142	 l.reg_offset += i;
1143
1144	 if (swiz == SWIZZLE_ZERO) {
1145	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1146	 } else if (swiz == SWIZZLE_ONE) {
1147	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1148	 } else {
1149	    fs_reg r = orig_val;
1150	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1151	    emit(BRW_OPCODE_MOV, l, r);
1152	 }
1153      }
1154      this->result = swizzled_result;
1155   }
1156}
1157
1158void
1159fs_visitor::visit(ir_swizzle *ir)
1160{
1161   this->result = reg_undef;
1162   ir->val->accept(this);
1163   fs_reg val = this->result;
1164
1165   if (ir->type->vector_elements == 1) {
1166      this->result.reg_offset += ir->mask.x;
1167      return;
1168   }
1169
1170   fs_reg result = fs_reg(this, ir->type);
1171   this->result = result;
1172
1173   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1174      fs_reg channel = val;
1175      int swiz = 0;
1176
1177      switch (i) {
1178      case 0:
1179	 swiz = ir->mask.x;
1180	 break;
1181      case 1:
1182	 swiz = ir->mask.y;
1183	 break;
1184      case 2:
1185	 swiz = ir->mask.z;
1186	 break;
1187      case 3:
1188	 swiz = ir->mask.w;
1189	 break;
1190      }
1191
1192      channel.reg_offset += swiz;
1193      emit(BRW_OPCODE_MOV, result, channel);
1194      result.reg_offset++;
1195   }
1196}
1197
1198void
1199fs_visitor::visit(ir_discard *ir)
1200{
1201   assert(ir->condition == NULL); /* FINISHME */
1202
1203   emit(FS_OPCODE_DISCARD);
1204   kill_emitted = true;
1205}
1206
1207void
1208fs_visitor::visit(ir_constant *ir)
1209{
1210   /* Set this->result to reg at the bottom of the function because some code
1211    * paths will cause this visitor to be applied to other fields.  This will
1212    * cause the value stored in this->result to be modified.
1213    *
1214    * Make reg constant so that it doesn't get accidentally modified along the
1215    * way.  Yes, I actually had this problem. :(
1216    */
1217   const fs_reg reg(this, ir->type);
1218   fs_reg dst_reg = reg;
1219
1220   if (ir->type->is_array()) {
1221      const unsigned size = type_size(ir->type->fields.array);
1222
1223      for (unsigned i = 0; i < ir->type->length; i++) {
1224	 this->result = reg_undef;
1225	 ir->array_elements[i]->accept(this);
1226	 fs_reg src_reg = this->result;
1227
1228	 dst_reg.type = src_reg.type;
1229	 for (unsigned j = 0; j < size; j++) {
1230	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1231	    src_reg.reg_offset++;
1232	    dst_reg.reg_offset++;
1233	 }
1234      }
1235   } else if (ir->type->is_record()) {
1236      foreach_list(node, &ir->components) {
1237	 ir_instruction *const field = (ir_instruction *) node;
1238	 const unsigned size = type_size(field->type);
1239
1240	 this->result = reg_undef;
1241	 field->accept(this);
1242	 fs_reg src_reg = this->result;
1243
1244	 dst_reg.type = src_reg.type;
1245	 for (unsigned j = 0; j < size; j++) {
1246	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1247	    src_reg.reg_offset++;
1248	    dst_reg.reg_offset++;
1249	 }
1250      }
1251   } else {
1252      const unsigned size = type_size(ir->type);
1253
1254      for (unsigned i = 0; i < size; i++) {
1255	 switch (ir->type->base_type) {
1256	 case GLSL_TYPE_FLOAT:
1257	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1258	    break;
1259	 case GLSL_TYPE_UINT:
1260	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1261	    break;
1262	 case GLSL_TYPE_INT:
1263	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1264	    break;
1265	 case GLSL_TYPE_BOOL:
1266	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1267	    break;
1268	 default:
1269	    assert(!"Non-float/uint/int/bool constant");
1270	 }
1271	 dst_reg.reg_offset++;
1272      }
1273   }
1274
1275   this->result = reg;
1276}
1277
1278void
1279fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1280{
1281   ir_expression *expr = ir->as_expression();
1282
1283   if (expr) {
1284      fs_reg op[2];
1285      fs_inst *inst;
1286
1287      assert(expr->get_num_operands() <= 2);
1288      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1289	 assert(expr->operands[i]->type->is_scalar());
1290
1291	 this->result = reg_undef;
1292	 expr->operands[i]->accept(this);
1293	 op[i] = this->result;
1294      }
1295
1296      switch (expr->operation) {
1297      case ir_unop_logic_not:
1298	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1299	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1300	 break;
1301
1302      case ir_binop_logic_xor:
1303	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1304	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1305	 break;
1306
1307      case ir_binop_logic_or:
1308	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1309	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1310	 break;
1311
1312      case ir_binop_logic_and:
1313	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1314	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1315	 break;
1316
1317      case ir_unop_f2b:
1318	 if (intel->gen >= 6) {
1319	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1320	 } else {
1321	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1322	 }
1323	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1324	 break;
1325
1326      case ir_unop_i2b:
1327	 if (intel->gen >= 6) {
1328	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1329	 } else {
1330	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1331	 }
1332	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1333	 break;
1334
1335      case ir_binop_greater:
1336      case ir_binop_gequal:
1337      case ir_binop_less:
1338      case ir_binop_lequal:
1339      case ir_binop_equal:
1340      case ir_binop_all_equal:
1341      case ir_binop_nequal:
1342      case ir_binop_any_nequal:
1343	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1344	 inst->conditional_mod =
1345	    brw_conditional_for_comparison(expr->operation);
1346	 break;
1347
1348      default:
1349	 assert(!"not reached");
1350	 fail("bad cond code\n");
1351	 break;
1352      }
1353      return;
1354   }
1355
1356   this->result = reg_undef;
1357   ir->accept(this);
1358
1359   if (intel->gen >= 6) {
1360      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1361      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1362   } else {
1363      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1364      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1365   }
1366}
1367
1368/**
1369 * Emit a gen6 IF statement with the comparison folded into the IF
1370 * instruction.
1371 */
1372void
1373fs_visitor::emit_if_gen6(ir_if *ir)
1374{
1375   ir_expression *expr = ir->condition->as_expression();
1376
1377   if (expr) {
1378      fs_reg op[2];
1379      fs_inst *inst;
1380      fs_reg temp;
1381
1382      assert(expr->get_num_operands() <= 2);
1383      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1384	 assert(expr->operands[i]->type->is_scalar());
1385
1386	 this->result = reg_undef;
1387	 expr->operands[i]->accept(this);
1388	 op[i] = this->result;
1389      }
1390
1391      switch (expr->operation) {
1392      case ir_unop_logic_not:
1393	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1394	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1395	 return;
1396
1397      case ir_binop_logic_xor:
1398	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1399	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1400	 return;
1401
1402      case ir_binop_logic_or:
1403	 temp = fs_reg(this, glsl_type::bool_type);
1404	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1405	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1406	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1407	 return;
1408
1409      case ir_binop_logic_and:
1410	 temp = fs_reg(this, glsl_type::bool_type);
1411	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1412	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1413	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1414	 return;
1415
1416      case ir_unop_f2b:
1417	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1418	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1419	 return;
1420
1421      case ir_unop_i2b:
1422	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1423	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1424	 return;
1425
1426      case ir_binop_greater:
1427      case ir_binop_gequal:
1428      case ir_binop_less:
1429      case ir_binop_lequal:
1430      case ir_binop_equal:
1431      case ir_binop_all_equal:
1432      case ir_binop_nequal:
1433      case ir_binop_any_nequal:
1434	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1435	 inst->conditional_mod =
1436	    brw_conditional_for_comparison(expr->operation);
1437	 return;
1438      default:
1439	 assert(!"not reached");
1440	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1441	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1442	 fail("bad condition\n");
1443	 return;
1444      }
1445      return;
1446   }
1447
1448   this->result = reg_undef;
1449   ir->condition->accept(this);
1450
1451   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1452   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1453}
1454
1455void
1456fs_visitor::visit(ir_if *ir)
1457{
1458   fs_inst *inst;
1459
1460   if (intel->gen != 6 && c->dispatch_width == 16) {
1461      fail("Can't support (non-uniform) control flow on 16-wide\n");
1462   }
1463
1464   /* Don't point the annotation at the if statement, because then it plus
1465    * the then and else blocks get printed.
1466    */
1467   this->base_ir = ir->condition;
1468
1469   if (intel->gen == 6) {
1470      emit_if_gen6(ir);
1471   } else {
1472      emit_bool_to_cond_code(ir->condition);
1473
1474      inst = emit(BRW_OPCODE_IF);
1475      inst->predicated = true;
1476   }
1477
1478   foreach_list(node, &ir->then_instructions) {
1479      ir_instruction *ir = (ir_instruction *)node;
1480      this->base_ir = ir;
1481      this->result = reg_undef;
1482      ir->accept(this);
1483   }
1484
1485   if (!ir->else_instructions.is_empty()) {
1486      emit(BRW_OPCODE_ELSE);
1487
1488      foreach_list(node, &ir->else_instructions) {
1489	 ir_instruction *ir = (ir_instruction *)node;
1490	 this->base_ir = ir;
1491	 this->result = reg_undef;
1492	 ir->accept(this);
1493      }
1494   }
1495
1496   emit(BRW_OPCODE_ENDIF);
1497}
1498
1499void
1500fs_visitor::visit(ir_loop *ir)
1501{
1502   fs_reg counter = reg_undef;
1503
1504   if (c->dispatch_width == 16) {
1505      fail("Can't support (non-uniform) control flow on 16-wide\n");
1506   }
1507
1508   if (ir->counter) {
1509      this->base_ir = ir->counter;
1510      ir->counter->accept(this);
1511      counter = *(variable_storage(ir->counter));
1512
1513      if (ir->from) {
1514	 this->result = counter;
1515
1516	 this->base_ir = ir->from;
1517	 this->result = counter;
1518	 ir->from->accept(this);
1519
1520	 if (!this->result.equals(&counter))
1521	    emit(BRW_OPCODE_MOV, counter, this->result);
1522      }
1523   }
1524
1525   emit(BRW_OPCODE_DO);
1526
1527   if (ir->to) {
1528      this->base_ir = ir->to;
1529      this->result = reg_undef;
1530      ir->to->accept(this);
1531
1532      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1533      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1534
1535      inst = emit(BRW_OPCODE_BREAK);
1536      inst->predicated = true;
1537   }
1538
1539   foreach_list(node, &ir->body_instructions) {
1540      ir_instruction *ir = (ir_instruction *)node;
1541
1542      this->base_ir = ir;
1543      this->result = reg_undef;
1544      ir->accept(this);
1545   }
1546
1547   if (ir->increment) {
1548      this->base_ir = ir->increment;
1549      this->result = reg_undef;
1550      ir->increment->accept(this);
1551      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1552   }
1553
1554   emit(BRW_OPCODE_WHILE);
1555}
1556
1557void
1558fs_visitor::visit(ir_loop_jump *ir)
1559{
1560   switch (ir->mode) {
1561   case ir_loop_jump::jump_break:
1562      emit(BRW_OPCODE_BREAK);
1563      break;
1564   case ir_loop_jump::jump_continue:
1565      emit(BRW_OPCODE_CONTINUE);
1566      break;
1567   }
1568}
1569
1570void
1571fs_visitor::visit(ir_call *ir)
1572{
1573   assert(!"FINISHME");
1574}
1575
1576void
1577fs_visitor::visit(ir_return *ir)
1578{
1579   assert(!"FINISHME");
1580}
1581
1582void
1583fs_visitor::visit(ir_function *ir)
1584{
1585   /* Ignore function bodies other than main() -- we shouldn't see calls to
1586    * them since they should all be inlined before we get to ir_to_mesa.
1587    */
1588   if (strcmp(ir->name, "main") == 0) {
1589      const ir_function_signature *sig;
1590      exec_list empty;
1591
1592      sig = ir->matching_signature(&empty);
1593
1594      assert(sig);
1595
1596      foreach_list(node, &sig->body) {
1597	 ir_instruction *ir = (ir_instruction *)node;
1598	 this->base_ir = ir;
1599	 this->result = reg_undef;
1600	 ir->accept(this);
1601      }
1602   }
1603}
1604
1605void
1606fs_visitor::visit(ir_function_signature *ir)
1607{
1608   assert(!"not reached");
1609   (void)ir;
1610}
1611
1612fs_inst *
1613fs_visitor::emit(fs_inst inst)
1614{
1615   fs_inst *list_inst = new(mem_ctx) fs_inst;
1616   *list_inst = inst;
1617
1618   if (force_uncompressed_stack > 0)
1619      list_inst->force_uncompressed = true;
1620   else if (force_sechalf_stack > 0)
1621      list_inst->force_sechalf = true;
1622
1623   list_inst->annotation = this->current_annotation;
1624   list_inst->ir = this->base_ir;
1625
1626   this->instructions.push_tail(list_inst);
1627
1628   return list_inst;
1629}
1630
1631/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1632void
1633fs_visitor::emit_dummy_fs()
1634{
1635   /* Everyone's favorite color. */
1636   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1637   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1638   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1639   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1640
1641   fs_inst *write;
1642   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1643   write->base_mrf = 2;
1644}
1645
1646/* The register location here is relative to the start of the URB
1647 * data.  It will get adjusted to be a real location before
1648 * generate_code() time.
1649 */
1650struct brw_reg
1651fs_visitor::interp_reg(int location, int channel)
1652{
1653   int regnr = urb_setup[location] * 2 + channel / 2;
1654   int stride = (channel & 1) * 4;
1655
1656   assert(urb_setup[location] != -1);
1657
1658   return brw_vec1_grf(regnr, stride);
1659}
1660
1661/** Emits the interpolation for the varying inputs. */
1662void
1663fs_visitor::emit_interpolation_setup_gen4()
1664{
1665   this->current_annotation = "compute pixel centers";
1666   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1667   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1668   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1669   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1670
1671   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1672   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1673
1674   this->current_annotation = "compute pixel deltas from v0";
1675   if (brw->has_pln) {
1676      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1677      this->delta_y = this->delta_x;
1678      this->delta_y.reg_offset++;
1679   } else {
1680      this->delta_x = fs_reg(this, glsl_type::float_type);
1681      this->delta_y = fs_reg(this, glsl_type::float_type);
1682   }
1683   emit(BRW_OPCODE_ADD, this->delta_x,
1684	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1685   emit(BRW_OPCODE_ADD, this->delta_y,
1686	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1687
1688   this->current_annotation = "compute pos.w and 1/pos.w";
1689   /* Compute wpos.w.  It's always in our setup, since it's needed to
1690    * interpolate the other attributes.
1691    */
1692   this->wpos_w = fs_reg(this, glsl_type::float_type);
1693   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1694	interp_reg(FRAG_ATTRIB_WPOS, 3));
1695   /* Compute the pixel 1/W value from wpos.w. */
1696   this->pixel_w = fs_reg(this, glsl_type::float_type);
1697   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1698   this->current_annotation = NULL;
1699}
1700
1701/** Emits the interpolation for the varying inputs. */
1702void
1703fs_visitor::emit_interpolation_setup_gen6()
1704{
1705   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1706
1707   /* If the pixel centers end up used, the setup is the same as for gen4. */
1708   this->current_annotation = "compute pixel centers";
1709   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1710   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1711   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1712   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1713   emit(BRW_OPCODE_ADD,
1714	int_pixel_x,
1715	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1716	fs_reg(brw_imm_v(0x10101010)));
1717   emit(BRW_OPCODE_ADD,
1718	int_pixel_y,
1719	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1720	fs_reg(brw_imm_v(0x11001100)));
1721
1722   /* As of gen6, we can no longer mix float and int sources.  We have
1723    * to turn the integer pixel centers into floats for their actual
1724    * use.
1725    */
1726   this->pixel_x = fs_reg(this, glsl_type::float_type);
1727   this->pixel_y = fs_reg(this, glsl_type::float_type);
1728   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1729   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1730
1731   this->current_annotation = "compute pos.w";
1732   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1733   this->wpos_w = fs_reg(this, glsl_type::float_type);
1734   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1735
1736   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1737   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1738
1739   this->current_annotation = NULL;
1740}
1741
1742void
1743fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1744{
1745   int reg_width = c->dispatch_width / 8;
1746   fs_inst *inst;
1747
1748   if (c->dispatch_width == 8 || intel->gen == 6) {
1749      /* SIMD8 write looks like:
1750       * m + 0: r0
1751       * m + 1: r1
1752       * m + 2: g0
1753       * m + 3: g1
1754       *
1755       * gen6 SIMD16 DP write looks like:
1756       * m + 0: r0
1757       * m + 1: r1
1758       * m + 2: g0
1759       * m + 3: g1
1760       * m + 4: b0
1761       * m + 5: b1
1762       * m + 6: a0
1763       * m + 7: a1
1764       */
1765      inst = emit(BRW_OPCODE_MOV,
1766		  fs_reg(MRF, first_color_mrf + index * reg_width),
1767		  color);
1768      inst->saturate = c->key.clamp_fragment_color;
1769   } else {
1770      /* pre-gen6 SIMD16 single source DP write looks like:
1771       * m + 0: r0
1772       * m + 1: g0
1773       * m + 2: b0
1774       * m + 3: a0
1775       * m + 4: r1
1776       * m + 5: g1
1777       * m + 6: b1
1778       * m + 7: a1
1779       */
1780      if (brw->has_compr4) {
1781	 /* By setting the high bit of the MRF register number, we
1782	  * indicate that we want COMPR4 mode - instead of doing the
1783	  * usual destination + 1 for the second half we get
1784	  * destination + 4.
1785	  */
1786	 inst = emit(BRW_OPCODE_MOV,
1787		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index),
1788		     color);
1789	 inst->saturate = c->key.clamp_fragment_color;
1790      } else {
1791	 push_force_uncompressed();
1792	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index),
1793		     color);
1794	 inst->saturate = c->key.clamp_fragment_color;
1795	 pop_force_uncompressed();
1796
1797	 push_force_sechalf();
1798	 color.sechalf = true;
1799	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4),
1800		     color);
1801	 inst->saturate = c->key.clamp_fragment_color;
1802	 pop_force_sechalf();
1803	 color.sechalf = false;
1804      }
1805   }
1806}
1807
1808void
1809fs_visitor::emit_fb_writes()
1810{
1811   this->current_annotation = "FB write header";
1812   GLboolean header_present = GL_TRUE;
1813   int base_mrf = 2;
1814   int nr = base_mrf;
1815   int reg_width = c->dispatch_width / 8;
1816
1817   if (intel->gen >= 6 &&
1818       !this->kill_emitted &&
1819       c->key.nr_color_regions == 1) {
1820      header_present = false;
1821   }
1822
1823   if (header_present) {
1824      /* m2, m3 header */
1825      nr += 2;
1826   }
1827
1828   if (c->aa_dest_stencil_reg) {
1829      push_force_uncompressed();
1830      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1831	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1832      pop_force_uncompressed();
1833   }
1834
1835   /* Reserve space for color. It'll be filled in per MRT below. */
1836   int color_mrf = nr;
1837   nr += 4 * reg_width;
1838
1839   if (c->source_depth_to_render_target) {
1840      if (intel->gen == 6 && c->dispatch_width == 16) {
1841	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1842	  * used.  This would require 8-wide moves of each half to
1843	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1844	  * Just bail on doing so for now.
1845	  */
1846	 fail("Missing support for simd16 depth writes on gen6\n");
1847      }
1848
1849      if (c->computes_depth) {
1850	 /* Hand over gl_FragDepth. */
1851	 assert(this->frag_depth);
1852	 fs_reg depth = *(variable_storage(this->frag_depth));
1853
1854	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1855      } else {
1856	 /* Pass through the payload depth. */
1857	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1858	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1859      }
1860      nr += reg_width;
1861   }
1862
1863   if (c->dest_depth_reg) {
1864      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1865	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1866      nr += reg_width;
1867   }
1868
1869   fs_reg color = reg_undef;
1870   if (this->frag_color)
1871      color = *(variable_storage(this->frag_color));
1872   else if (this->frag_data) {
1873      color = *(variable_storage(this->frag_data));
1874      color.type = BRW_REGISTER_TYPE_F;
1875   }
1876
1877   for (int target = 0; target < c->key.nr_color_regions; target++) {
1878      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1879						 "FB write target %d",
1880						 target);
1881      if (this->frag_color || this->frag_data) {
1882	 for (int i = 0; i < 4; i++) {
1883	    emit_color_write(i, color_mrf, color);
1884	    color.reg_offset++;
1885	 }
1886      }
1887
1888      if (this->frag_color)
1889	 color.reg_offset -= 4;
1890
1891      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1892      inst->target = target;
1893      inst->base_mrf = base_mrf;
1894      inst->mlen = nr - base_mrf;
1895      if (target == c->key.nr_color_regions - 1)
1896	 inst->eot = true;
1897      inst->header_present = header_present;
1898   }
1899
1900   if (c->key.nr_color_regions == 0) {
1901      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1902	 /* If the alpha test is enabled but there's no color buffer,
1903	  * we still need to send alpha out the pipeline to our null
1904	  * renderbuffer.
1905	  */
1906	 color.reg_offset += 3;
1907	 emit_color_write(3, color_mrf, color);
1908      }
1909
1910      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1911      inst->base_mrf = base_mrf;
1912      inst->mlen = nr - base_mrf;
1913      inst->eot = true;
1914      inst->header_present = header_present;
1915   }
1916
1917   this->current_annotation = NULL;
1918}
1919