brw_fs_visitor.cpp revision 6928bea7ca1f2ed308d8255c6816f44467306255
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->index > 0) {
76	 assert(ir->location == FRAG_RESULT_DATA0);
77	 assert(ir->index == 1);
78	 this->dual_src_output = *reg;
79      } else if (ir->location == FRAG_RESULT_COLOR) {
80	 /* Writing gl_FragColor outputs to all color regions. */
81	 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
82	    this->outputs[i] = *reg;
83	    this->output_components[i] = 4;
84	 }
85      } else if (ir->location == FRAG_RESULT_DEPTH) {
86	 this->frag_depth = ir;
87      } else {
88	 /* gl_FragData or a user-defined FS output */
89	 assert(ir->location >= FRAG_RESULT_DATA0 &&
90		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
91
92	 int vector_elements =
93	    ir->type->is_array() ? ir->type->fields.array->vector_elements
94				 : ir->type->vector_elements;
95
96	 /* General color output. */
97	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
98	    int output = ir->location - FRAG_RESULT_DATA0 + i;
99	    this->outputs[output] = *reg;
100	    this->outputs[output].reg_offset += vector_elements * i;
101	    this->output_components[output] = vector_elements;
102	 }
103      }
104   } else if (ir->mode == ir_var_uniform) {
105      int param_index = c->prog_data.nr_params;
106
107      /* Thanks to the lower_ubo_reference pass, we will see only
108       * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
109       * variables, so no need for them to be in variable_ht.
110       */
111      if (ir->uniform_block != -1)
112         return;
113
114      if (c->dispatch_width == 16) {
115	 if (!variable_storage(ir)) {
116	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
117	 }
118	 return;
119      }
120
121      if (!strncmp(ir->name, "gl_", 3)) {
122	 setup_builtin_uniform_values(ir);
123      } else {
124	 setup_uniform_values(ir->location, ir->type);
125      }
126
127      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
128      reg->type = brw_type_for_base_type(ir->type);
129   }
130
131   if (!reg)
132      reg = new(this->mem_ctx) fs_reg(this, ir->type);
133
134   hash_table_insert(this->variable_ht, reg, ir);
135}
136
137void
138fs_visitor::visit(ir_dereference_variable *ir)
139{
140   fs_reg *reg = variable_storage(ir->var);
141   this->result = *reg;
142}
143
144void
145fs_visitor::visit(ir_dereference_record *ir)
146{
147   const glsl_type *struct_type = ir->record->type;
148
149   ir->record->accept(this);
150
151   unsigned int offset = 0;
152   for (unsigned int i = 0; i < struct_type->length; i++) {
153      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
154	 break;
155      offset += type_size(struct_type->fields.structure[i].type);
156   }
157   this->result.reg_offset += offset;
158   this->result.type = brw_type_for_base_type(ir->type);
159}
160
161void
162fs_visitor::visit(ir_dereference_array *ir)
163{
164   ir_constant *index;
165   int element_size;
166
167   ir->array->accept(this);
168   index = ir->array_index->as_constant();
169
170   element_size = type_size(ir->type);
171   this->result.type = brw_type_for_base_type(ir->type);
172
173   if (index) {
174      assert(this->result.file == UNIFORM || this->result.file == GRF);
175      this->result.reg_offset += index->value.i[0] * element_size;
176   } else {
177      assert(!"FINISHME: non-constant array element");
178   }
179}
180
181/* Instruction selection: Produce a MOV.sat instead of
182 * MIN(MAX(val, 0), 1) when possible.
183 */
184bool
185fs_visitor::try_emit_saturate(ir_expression *ir)
186{
187   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
188
189   if (!sat_val)
190      return false;
191
192   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
193
194   sat_val->accept(this);
195   fs_reg src = this->result;
196
197   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
198
199   /* If the last instruction from our accept() didn't generate our
200    * src, generate a saturated MOV
201    */
202   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
203   if (!modify || modify->regs_written() != 1) {
204      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
205      inst->saturate = true;
206   } else {
207      modify->saturate = true;
208      this->result = src;
209   }
210
211
212   return true;
213}
214
215bool
216fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
217{
218   /* 3-src instructions were introduced in gen6. */
219   if (intel->gen < 6)
220      return false;
221
222   /* MAD can only handle floating-point data. */
223   if (ir->type != glsl_type::float_type)
224      return false;
225
226   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
227   ir_expression *mul = ir->operands[mul_arg]->as_expression();
228
229   if (!mul || mul->operation != ir_binop_mul)
230      return false;
231
232   if (nonmul->as_constant() ||
233       mul->operands[0]->as_constant() ||
234       mul->operands[1]->as_constant())
235      return false;
236
237   nonmul->accept(this);
238   fs_reg src0 = this->result;
239
240   mul->operands[0]->accept(this);
241   fs_reg src1 = this->result;
242
243   mul->operands[1]->accept(this);
244   fs_reg src2 = this->result;
245
246   this->result = fs_reg(this, ir->type);
247   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
248
249   return true;
250}
251
252void
253fs_visitor::visit(ir_expression *ir)
254{
255   unsigned int operand;
256   fs_reg op[2], temp;
257   fs_inst *inst;
258
259   assert(ir->get_num_operands() <= 2);
260
261   if (try_emit_saturate(ir))
262      return;
263   if (ir->operation == ir_binop_add) {
264      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
265	 return;
266   }
267
268   for (operand = 0; operand < ir->get_num_operands(); operand++) {
269      ir->operands[operand]->accept(this);
270      if (this->result.file == BAD_FILE) {
271	 ir_print_visitor v;
272	 fail("Failed to get tree for expression operand:\n");
273	 ir->operands[operand]->accept(&v);
274      }
275      op[operand] = this->result;
276
277      /* Matrix expression operands should have been broken down to vector
278       * operations already.
279       */
280      assert(!ir->operands[operand]->type->is_matrix());
281      /* And then those vector operands should have been broken down to scalar.
282       */
283      assert(!ir->operands[operand]->type->is_vector());
284   }
285
286   /* Storage for our result.  If our result goes into an assignment, it will
287    * just get copy-propagated out, so no worries.
288    */
289   this->result = fs_reg(this, ir->type);
290
291   switch (ir->operation) {
292   case ir_unop_logic_not:
293      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
294       * ones complement of the whole register, not just bit 0.
295       */
296      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
297      break;
298   case ir_unop_neg:
299      op[0].negate = !op[0].negate;
300      this->result = op[0];
301      break;
302   case ir_unop_abs:
303      op[0].abs = true;
304      op[0].negate = false;
305      this->result = op[0];
306      break;
307   case ir_unop_sign:
308      temp = fs_reg(this, ir->type);
309
310      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
311
312      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
313      inst->conditional_mod = BRW_CONDITIONAL_G;
314      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
315      inst->predicated = true;
316
317      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
318      inst->conditional_mod = BRW_CONDITIONAL_L;
319      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
320      inst->predicated = true;
321
322      break;
323   case ir_unop_rcp:
324      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
325      break;
326
327   case ir_unop_exp2:
328      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
329      break;
330   case ir_unop_log2:
331      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
332      break;
333   case ir_unop_exp:
334   case ir_unop_log:
335      assert(!"not reached: should be handled by ir_explog_to_explog2");
336      break;
337   case ir_unop_sin:
338   case ir_unop_sin_reduced:
339      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
340      break;
341   case ir_unop_cos:
342   case ir_unop_cos_reduced:
343      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
344      break;
345
346   case ir_unop_dFdx:
347      emit(FS_OPCODE_DDX, this->result, op[0]);
348      break;
349   case ir_unop_dFdy:
350      emit(FS_OPCODE_DDY, this->result, op[0]);
351      break;
352
353   case ir_binop_add:
354      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
355      break;
356   case ir_binop_sub:
357      assert(!"not reached: should be handled by ir_sub_to_add_neg");
358      break;
359
360   case ir_binop_mul:
361      if (ir->type->is_integer()) {
362	 /* For integer multiplication, the MUL uses the low 16 bits
363	  * of one of the operands (src0 on gen6, src1 on gen7).  The
364	  * MACH accumulates in the contribution of the upper 16 bits
365	  * of that operand.
366	  *
367	  * FINISHME: Emit just the MUL if we know an operand is small
368	  * enough.
369	  */
370	 if (intel->gen >= 7 && c->dispatch_width == 16)
371	    fail("16-wide explicit accumulator operands unsupported\n");
372
373	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
374
375	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
376	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
377	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
378      } else {
379	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
380      }
381      break;
382   case ir_binop_div:
383      if (intel->gen >= 7 && c->dispatch_width == 16)
384	 fail("16-wide INTDIV unsupported\n");
385
386      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
387      assert(ir->type->is_integer());
388      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
389      break;
390   case ir_binop_mod:
391      if (intel->gen >= 7 && c->dispatch_width == 16)
392	 fail("16-wide INTDIV unsupported\n");
393
394      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
395      assert(ir->type->is_integer());
396      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
397      break;
398
399   case ir_binop_less:
400   case ir_binop_greater:
401   case ir_binop_lequal:
402   case ir_binop_gequal:
403   case ir_binop_equal:
404   case ir_binop_all_equal:
405   case ir_binop_nequal:
406   case ir_binop_any_nequal:
407      temp = this->result;
408      /* original gen4 does implicit conversion before comparison. */
409      if (intel->gen < 5)
410	 temp.type = op[0].type;
411
412      resolve_ud_negate(&op[0]);
413      resolve_ud_negate(&op[1]);
414
415      resolve_bool_comparison(ir->operands[0], &op[0]);
416      resolve_bool_comparison(ir->operands[1], &op[1]);
417
418      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
419      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
420      break;
421
422   case ir_binop_logic_xor:
423      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
424      break;
425
426   case ir_binop_logic_or:
427      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
428      break;
429
430   case ir_binop_logic_and:
431      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
432      break;
433
434   case ir_binop_dot:
435   case ir_unop_any:
436      assert(!"not reached: should be handled by brw_fs_channel_expressions");
437      break;
438
439   case ir_unop_noise:
440      assert(!"not reached: should be handled by lower_noise");
441      break;
442
443   case ir_quadop_vector:
444      assert(!"not reached: should be handled by lower_quadop_vector");
445      break;
446
447   case ir_unop_sqrt:
448      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
449      break;
450
451   case ir_unop_rsq:
452      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
453      break;
454
455   case ir_unop_bitcast_i2f:
456   case ir_unop_bitcast_u2f:
457      op[0].type = BRW_REGISTER_TYPE_F;
458      this->result = op[0];
459      break;
460   case ir_unop_i2u:
461   case ir_unop_bitcast_f2u:
462      op[0].type = BRW_REGISTER_TYPE_UD;
463      this->result = op[0];
464      break;
465   case ir_unop_u2i:
466   case ir_unop_bitcast_f2i:
467      op[0].type = BRW_REGISTER_TYPE_D;
468      this->result = op[0];
469      break;
470   case ir_unop_i2f:
471   case ir_unop_u2f:
472   case ir_unop_f2i:
473   case ir_unop_f2u:
474      emit(BRW_OPCODE_MOV, this->result, op[0]);
475      break;
476
477   case ir_unop_b2i:
478      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
479      break;
480   case ir_unop_b2f:
481      temp = fs_reg(this, glsl_type::int_type);
482      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
483      emit(BRW_OPCODE_MOV, this->result, temp);
484      break;
485
486   case ir_unop_f2b:
487      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f));
488      inst->conditional_mod = BRW_CONDITIONAL_NZ;
489      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
490      break;
491   case ir_unop_i2b:
492      assert(op[0].type == BRW_REGISTER_TYPE_D);
493
494      inst = emit(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0));
495      inst->conditional_mod = BRW_CONDITIONAL_NZ;
496      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
497      break;
498
499   case ir_unop_trunc:
500      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
501      break;
502   case ir_unop_ceil:
503      op[0].negate = !op[0].negate;
504      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
505      this->result.negate = true;
506      break;
507   case ir_unop_floor:
508      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
509      break;
510   case ir_unop_fract:
511      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
512      break;
513   case ir_unop_round_even:
514      emit(BRW_OPCODE_RNDE, this->result, op[0]);
515      break;
516
517   case ir_binop_min:
518      resolve_ud_negate(&op[0]);
519      resolve_ud_negate(&op[1]);
520
521      if (intel->gen >= 6) {
522	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
523	 inst->conditional_mod = BRW_CONDITIONAL_L;
524      } else {
525	 /* Unalias the destination */
526	 this->result = fs_reg(this, ir->type);
527
528	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
529	 inst->conditional_mod = BRW_CONDITIONAL_L;
530
531	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
532	 inst->predicated = true;
533      }
534      break;
535   case ir_binop_max:
536      resolve_ud_negate(&op[0]);
537      resolve_ud_negate(&op[1]);
538
539      if (intel->gen >= 6) {
540	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
541	 inst->conditional_mod = BRW_CONDITIONAL_GE;
542      } else {
543	 /* Unalias the destination */
544	 this->result = fs_reg(this, ir->type);
545
546	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
547	 inst->conditional_mod = BRW_CONDITIONAL_G;
548
549	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
550	 inst->predicated = true;
551      }
552      break;
553
554   case ir_binop_pow:
555      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
556      break;
557
558   case ir_unop_bit_not:
559      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
560      break;
561   case ir_binop_bit_and:
562      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
563      break;
564   case ir_binop_bit_xor:
565      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
566      break;
567   case ir_binop_bit_or:
568      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
569      break;
570
571   case ir_binop_lshift:
572      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
573      break;
574
575   case ir_binop_rshift:
576      if (ir->type->base_type == GLSL_TYPE_INT)
577	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
578      else
579	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
580      break;
581
582   case ir_binop_ubo_load:
583      ir_constant *uniform_block = ir->operands[0]->as_constant();
584      ir_constant *offset = ir->operands[1]->as_constant();
585
586      fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
587      packed_consts.type = result.type;
588      fs_reg surf_index = fs_reg((unsigned)SURF_INDEX_WM_UBO(uniform_block->value.u[0]));
589      fs_inst *pull = emit(fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
590                                   packed_consts,
591                                   surf_index,
592                                   fs_reg(offset->value.u[0])));
593      pull->base_mrf = 14;
594      pull->mlen = 1;
595
596      packed_consts.smear = offset->value.u[0] % 16 / 4;
597      for (int i = 0; i < ir->type->vector_elements; i++) {
598         /* UBO bools are any nonzero value.  We consider bools to be
599          * values with the low bit set to 1.  Convert them using CMP.
600          */
601         if (ir->type->base_type == GLSL_TYPE_BOOL) {
602            fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, result,
603                                         packed_consts, fs_reg(0u)));
604            inst->conditional_mod = BRW_CONDITIONAL_NZ;
605         } else {
606            emit(fs_inst(BRW_OPCODE_MOV, result, packed_consts));
607         }
608
609         packed_consts.smear++;
610         result.reg_offset++;
611
612         /* The std140 packing rules don't allow vectors to cross 16-byte
613          * boundaries, and a reg is 32 bytes.
614          */
615         assert(packed_consts.smear < 8);
616      }
617      result.reg_offset = 0;
618      break;
619   }
620}
621
622void
623fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
624				   const glsl_type *type, bool predicated)
625{
626   switch (type->base_type) {
627   case GLSL_TYPE_FLOAT:
628   case GLSL_TYPE_UINT:
629   case GLSL_TYPE_INT:
630   case GLSL_TYPE_BOOL:
631      for (unsigned int i = 0; i < type->components(); i++) {
632	 l.type = brw_type_for_base_type(type);
633	 r.type = brw_type_for_base_type(type);
634
635	 if (predicated || !l.equals(r)) {
636	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
637	    inst->predicated = predicated;
638	 }
639
640	 l.reg_offset++;
641	 r.reg_offset++;
642      }
643      break;
644   case GLSL_TYPE_ARRAY:
645      for (unsigned int i = 0; i < type->length; i++) {
646	 emit_assignment_writes(l, r, type->fields.array, predicated);
647      }
648      break;
649
650   case GLSL_TYPE_STRUCT:
651      for (unsigned int i = 0; i < type->length; i++) {
652	 emit_assignment_writes(l, r, type->fields.structure[i].type,
653				predicated);
654      }
655      break;
656
657   case GLSL_TYPE_SAMPLER:
658      break;
659
660   default:
661      assert(!"not reached");
662      break;
663   }
664}
665
666/* If the RHS processing resulted in an instruction generating a
667 * temporary value, and it would be easy to rewrite the instruction to
668 * generate its result right into the LHS instead, do so.  This ends
669 * up reliably removing instructions where it can be tricky to do so
670 * later without real UD chain information.
671 */
672bool
673fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
674                                   fs_reg dst,
675                                   fs_reg src,
676                                   fs_inst *pre_rhs_inst,
677                                   fs_inst *last_rhs_inst)
678{
679   /* Only attempt if we're doing a direct assignment. */
680   if (ir->condition ||
681       !(ir->lhs->type->is_scalar() ||
682        (ir->lhs->type->is_vector() &&
683         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
684      return false;
685
686   /* Make sure the last instruction generated our source reg. */
687   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
688						    last_rhs_inst,
689						    src);
690   if (!modify)
691      return false;
692
693   /* If last_rhs_inst wrote a different number of components than our LHS,
694    * we can't safely rewrite it.
695    */
696   if (ir->lhs->type->vector_elements != modify->regs_written())
697      return false;
698
699   /* Success!  Rewrite the instruction. */
700   modify->dst = dst;
701
702   return true;
703}
704
705void
706fs_visitor::visit(ir_assignment *ir)
707{
708   fs_reg l, r;
709   fs_inst *inst;
710
711   /* FINISHME: arrays on the lhs */
712   ir->lhs->accept(this);
713   l = this->result;
714
715   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
716
717   ir->rhs->accept(this);
718   r = this->result;
719
720   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
721
722   assert(l.file != BAD_FILE);
723   assert(r.file != BAD_FILE);
724
725   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
726      return;
727
728   if (ir->condition) {
729      emit_bool_to_cond_code(ir->condition);
730   }
731
732   if (ir->lhs->type->is_scalar() ||
733       ir->lhs->type->is_vector()) {
734      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
735	 if (ir->write_mask & (1 << i)) {
736	    inst = emit(BRW_OPCODE_MOV, l, r);
737	    if (ir->condition)
738	       inst->predicated = true;
739	    r.reg_offset++;
740	 }
741	 l.reg_offset++;
742      }
743   } else {
744      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
745   }
746}
747
748fs_inst *
749fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
750			      fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
751{
752   int mlen;
753   int base_mrf = 1;
754   bool simd16 = false;
755   fs_reg orig_dst;
756
757   /* g0 header. */
758   mlen = 1;
759
760   if (ir->shadow_comparitor) {
761      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
762	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
763	 coordinate.reg_offset++;
764      }
765      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
766      mlen += 3;
767
768      if (ir->op == ir_tex) {
769	 /* There's no plain shadow compare message, so we use shadow
770	  * compare with a bias of 0.0.
771	  */
772	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
773	 mlen++;
774      } else if (ir->op == ir_txb || ir->op == ir_txl) {
775	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
776	 mlen++;
777      } else {
778         assert(!"Should not get here.");
779      }
780
781      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
782      mlen++;
783   } else if (ir->op == ir_tex) {
784      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
785	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
786	 coordinate.reg_offset++;
787      }
788      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
789      mlen += 3;
790   } else if (ir->op == ir_txd) {
791      fs_reg &dPdx = lod;
792
793      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
794	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
795	 coordinate.reg_offset++;
796      }
797      /* the slots for u and v are always present, but r is optional */
798      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
799
800      /*  P   = u, v, r
801       * dPdx = dudx, dvdx, drdx
802       * dPdy = dudy, dvdy, drdy
803       *
804       * 1-arg: Does not exist.
805       *
806       * 2-arg: dudx   dvdx   dudy   dvdy
807       *        dPdx.x dPdx.y dPdy.x dPdy.y
808       *        m4     m5     m6     m7
809       *
810       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
811       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
812       *        m5     m6     m7     m8     m9     m10
813       */
814      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
815	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
816	 dPdx.reg_offset++;
817      }
818      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
819
820      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
821	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
822	 dPdy.reg_offset++;
823      }
824      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
825   } else if (ir->op == ir_txs) {
826      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
827      simd16 = true;
828      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
829      mlen += 2;
830   } else {
831      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
832       * instructions.  We'll need to do SIMD16 here.
833       */
834      simd16 = true;
835      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
836
837      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
838	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
839	      coordinate);
840	 coordinate.reg_offset++;
841      }
842
843      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
844       * be necessary for TXF (ld), but seems wise to do for all messages.
845       */
846      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
847	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
848      }
849
850      /* lod/bias appears after u/v/r. */
851      mlen += 6;
852
853      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, lod.type), lod);
854      mlen++;
855
856      /* The unused upper half. */
857      mlen++;
858   }
859
860   if (simd16) {
861      /* Now, since we're doing simd16, the return is 2 interleaved
862       * vec4s where the odd-indexed ones are junk. We'll need to move
863       * this weirdness around to the expected layout.
864       */
865      orig_dst = dst;
866      const glsl_type *vec_type =
867	 glsl_type::get_instance(ir->type->base_type, 4, 1);
868      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
869      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
870			       : BRW_REGISTER_TYPE_F;
871   }
872
873   fs_inst *inst = NULL;
874   switch (ir->op) {
875   case ir_tex:
876      inst = emit(SHADER_OPCODE_TEX, dst);
877      break;
878   case ir_txb:
879      inst = emit(FS_OPCODE_TXB, dst);
880      break;
881   case ir_txl:
882      inst = emit(SHADER_OPCODE_TXL, dst);
883      break;
884   case ir_txd:
885      inst = emit(SHADER_OPCODE_TXD, dst);
886      break;
887   case ir_txs:
888      inst = emit(SHADER_OPCODE_TXS, dst);
889      break;
890   case ir_txf:
891      inst = emit(SHADER_OPCODE_TXF, dst);
892      break;
893   }
894   inst->base_mrf = base_mrf;
895   inst->mlen = mlen;
896   inst->header_present = true;
897
898   if (simd16) {
899      for (int i = 0; i < 4; i++) {
900	 emit(BRW_OPCODE_MOV, orig_dst, dst);
901	 orig_dst.reg_offset++;
902	 dst.reg_offset += 2;
903      }
904   }
905
906   return inst;
907}
908
909/* gen5's sampler has slots for u, v, r, array index, then optional
910 * parameters like shadow comparitor or LOD bias.  If optional
911 * parameters aren't present, those base slots are optional and don't
912 * need to be included in the message.
913 *
914 * We don't fill in the unnecessary slots regardless, which may look
915 * surprising in the disassembly.
916 */
917fs_inst *
918fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
919			      fs_reg shadow_c, fs_reg lod, fs_reg lod2)
920{
921   int mlen = 0;
922   int base_mrf = 2;
923   int reg_width = c->dispatch_width / 8;
924   bool header_present = false;
925   const int vector_elements =
926      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
927
928   if (ir->offset != NULL && ir->op == ir_txf) {
929      /* It appears that the ld instruction used for txf does its
930       * address bounds check before adding in the offset.  To work
931       * around this, just add the integer offset to the integer texel
932       * coordinate, and don't put the offset in the header.
933       */
934      ir_constant *offset = ir->offset->as_constant();
935      for (int i = 0; i < vector_elements; i++) {
936	 emit(BRW_OPCODE_ADD,
937	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
938	      coordinate,
939	      offset->value.i[i]);
940	 coordinate.reg_offset++;
941      }
942   } else {
943      if (ir->offset) {
944	 /* The offsets set up by the ir_texture visitor are in the
945	  * m1 header, so we can't go headerless.
946	  */
947	 header_present = true;
948	 mlen++;
949	 base_mrf--;
950      }
951
952      for (int i = 0; i < vector_elements; i++) {
953	 emit(BRW_OPCODE_MOV,
954	      fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
955	      coordinate);
956	 coordinate.reg_offset++;
957      }
958   }
959   mlen += vector_elements * reg_width;
960
961   if (ir->shadow_comparitor) {
962      mlen = MAX2(mlen, header_present + 4 * reg_width);
963
964      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
965      mlen += reg_width;
966   }
967
968   fs_inst *inst = NULL;
969   switch (ir->op) {
970   case ir_tex:
971      inst = emit(SHADER_OPCODE_TEX, dst);
972      break;
973   case ir_txb:
974      mlen = MAX2(mlen, header_present + 4 * reg_width);
975      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
976      mlen += reg_width;
977
978      inst = emit(FS_OPCODE_TXB, dst);
979      break;
980   case ir_txl:
981      mlen = MAX2(mlen, header_present + 4 * reg_width);
982      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
983      mlen += reg_width;
984
985      inst = emit(SHADER_OPCODE_TXL, dst);
986      break;
987   case ir_txd: {
988      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
989
990      /**
991       *  P   =  u,    v,    r
992       * dPdx = dudx, dvdx, drdx
993       * dPdy = dudy, dvdy, drdy
994       *
995       * Load up these values:
996       * - dudx   dudy   dvdx   dvdy   drdx   drdy
997       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
998       */
999      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
1000	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1001	 lod.reg_offset++;
1002	 mlen += reg_width;
1003
1004	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod2);
1005	 lod2.reg_offset++;
1006	 mlen += reg_width;
1007      }
1008
1009      inst = emit(SHADER_OPCODE_TXD, dst);
1010      break;
1011   }
1012   case ir_txs:
1013      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
1014      mlen += reg_width;
1015      inst = emit(SHADER_OPCODE_TXS, dst);
1016      break;
1017   case ir_txf:
1018      mlen = header_present + 4 * reg_width;
1019
1020      emit(BRW_OPCODE_MOV,
1021	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
1022	   lod);
1023      inst = emit(SHADER_OPCODE_TXF, dst);
1024      break;
1025   }
1026   inst->base_mrf = base_mrf;
1027   inst->mlen = mlen;
1028   inst->header_present = header_present;
1029
1030   if (mlen > 11) {
1031      fail("Message length >11 disallowed by hardware\n");
1032   }
1033
1034   return inst;
1035}
1036
1037fs_inst *
1038fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
1039			      fs_reg shadow_c, fs_reg lod, fs_reg lod2)
1040{
1041   int mlen = 0;
1042   int base_mrf = 2;
1043   int reg_width = c->dispatch_width / 8;
1044   bool header_present = false;
1045   int offsets[3];
1046
1047   if (ir->offset && ir->op != ir_txf) {
1048      /* The offsets set up by the ir_texture visitor are in the
1049       * m1 header, so we can't go headerless.
1050       */
1051      header_present = true;
1052      mlen++;
1053      base_mrf--;
1054   }
1055
1056   if (ir->shadow_comparitor) {
1057      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), shadow_c);
1058      mlen += reg_width;
1059   }
1060
1061   /* Set up the LOD info */
1062   switch (ir->op) {
1063   case ir_tex:
1064      break;
1065   case ir_txb:
1066      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1067      mlen += reg_width;
1068      break;
1069   case ir_txl:
1070      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1071      mlen += reg_width;
1072      break;
1073   case ir_txd: {
1074      if (c->dispatch_width == 16)
1075	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1076
1077      /* Load dPdx and the coordinate together:
1078       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1079       */
1080      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1081	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1082	 coordinate.reg_offset++;
1083	 mlen += reg_width;
1084
1085	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod);
1086	 lod.reg_offset++;
1087	 mlen += reg_width;
1088
1089	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), lod2);
1090	 lod2.reg_offset++;
1091	 mlen += reg_width;
1092      }
1093      break;
1094   }
1095   case ir_txs:
1096      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod);
1097      mlen += reg_width;
1098      break;
1099   case ir_txf:
1100      /* It appears that the ld instruction used for txf does its
1101       * address bounds check before adding in the offset.  To work
1102       * around this, just add the integer offset to the integer texel
1103       * coordinate, and don't put the offset in the header.
1104       */
1105      if (ir->offset) {
1106	 ir_constant *offset = ir->offset->as_constant();
1107	 offsets[0] = offset->value.i[0];
1108	 offsets[1] = offset->value.i[1];
1109	 offsets[2] = offset->value.i[2];
1110      } else {
1111	 memset(offsets, 0, sizeof(offsets));
1112      }
1113
1114      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1115      emit(BRW_OPCODE_ADD,
1116	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1117      coordinate.reg_offset++;
1118      mlen += reg_width;
1119
1120      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod);
1121      mlen += reg_width;
1122
1123      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1124	 emit(BRW_OPCODE_ADD,
1125	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1126	 coordinate.reg_offset++;
1127	 mlen += reg_width;
1128      }
1129      break;
1130   }
1131
1132   /* Set up the coordinate (except for cases where it was done above) */
1133   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1134      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1135	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1136	 coordinate.reg_offset++;
1137	 mlen += reg_width;
1138      }
1139   }
1140
1141   /* Generate the SEND */
1142   fs_inst *inst = NULL;
1143   switch (ir->op) {
1144   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1145   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1146   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1147   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1148   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1149   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1150   }
1151   inst->base_mrf = base_mrf;
1152   inst->mlen = mlen;
1153   inst->header_present = header_present;
1154
1155   if (mlen > 11) {
1156      fail("Message length >11 disallowed by hardware\n");
1157   }
1158
1159   return inst;
1160}
1161
1162/**
1163 * Emit code to produce the coordinates for a texture lookup.
1164 *
1165 * Returns the fs_reg containing the texture coordinate (as opposed to
1166 * setting this->result).
1167 */
1168fs_reg
1169fs_visitor::emit_texcoord(ir_texture *ir, int sampler, int texunit)
1170{
1171   fs_inst *inst = NULL;
1172
1173   if (!ir->coordinate)
1174      return fs_reg(); /* Return the default BAD_FILE register. */
1175
1176   ir->coordinate->accept(this);
1177   fs_reg coordinate = this->result;
1178
1179   bool needs_gl_clamp = true;
1180
1181   fs_reg scale_x, scale_y;
1182
1183   /* The 965 requires the EU to do the normalization of GL rectangle
1184    * texture coordinates.  We use the program parameter state
1185    * tracking to get the scaling factor.
1186    */
1187   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1188       (intel->gen < 6 ||
1189	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1190			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1191      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1192      int tokens[STATE_LENGTH] = {
1193	 STATE_INTERNAL,
1194	 STATE_TEXRECT_SCALE,
1195	 texunit,
1196	 0,
1197	 0
1198      };
1199
1200      if (c->dispatch_width == 16) {
1201	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1202	 return fs_reg(this, ir->type);
1203      }
1204
1205      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1206      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1207
1208      GLuint index = _mesa_add_state_reference(params,
1209					       (gl_state_index *)tokens);
1210
1211      this->param_index[c->prog_data.nr_params] = index;
1212      this->param_offset[c->prog_data.nr_params] = 0;
1213      c->prog_data.nr_params++;
1214      this->param_index[c->prog_data.nr_params] = index;
1215      this->param_offset[c->prog_data.nr_params] = 1;
1216      c->prog_data.nr_params++;
1217   }
1218
1219   /* The 965 requires the EU to do the normalization of GL rectangle
1220    * texture coordinates.  We use the program parameter state
1221    * tracking to get the scaling factor.
1222    */
1223   if (intel->gen < 6 &&
1224       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1225      fs_reg dst = fs_reg(this, ir->coordinate->type);
1226      fs_reg src = coordinate;
1227      coordinate = dst;
1228
1229      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1230      dst.reg_offset++;
1231      src.reg_offset++;
1232      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1233   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1234      /* On gen6+, the sampler handles the rectangle coordinates
1235       * natively, without needing rescaling.  But that means we have
1236       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1237       * not [0, 1] like the default case below.
1238       */
1239      needs_gl_clamp = false;
1240
1241      for (int i = 0; i < 2; i++) {
1242	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1243	    fs_reg chan = coordinate;
1244	    chan.reg_offset += i;
1245
1246	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1247	    inst->conditional_mod = BRW_CONDITIONAL_G;
1248
1249	    /* Our parameter comes in as 1.0/width or 1.0/height,
1250	     * because that's what people normally want for doing
1251	     * texture rectangle handling.  We need width or height
1252	     * for clamping, but we don't care enough to make a new
1253	     * parameter type, so just invert back.
1254	     */
1255	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1256	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1257	    emit(SHADER_OPCODE_RCP, limit, limit);
1258
1259	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1260	    inst->conditional_mod = BRW_CONDITIONAL_L;
1261	 }
1262      }
1263   }
1264
1265   if (ir->coordinate && needs_gl_clamp) {
1266      for (unsigned int i = 0;
1267	   i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1268	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1269	    fs_reg chan = coordinate;
1270	    chan.reg_offset += i;
1271
1272	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1273	    inst->saturate = true;
1274	 }
1275      }
1276   }
1277   return coordinate;
1278}
1279
1280void
1281fs_visitor::visit(ir_texture *ir)
1282{
1283   fs_inst *inst = NULL;
1284
1285   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1286   int texunit = fp->Base.SamplerUnits[sampler];
1287
1288   /* Should be lowered by do_lower_texture_projection */
1289   assert(!ir->projector);
1290
1291   /* Generate code to compute all the subexpression trees.  This has to be
1292    * done before loading any values into MRFs for the sampler message since
1293    * generating these values may involve SEND messages that need the MRFs.
1294    */
1295   fs_reg coordinate = emit_texcoord(ir, sampler, texunit);
1296
1297   fs_reg shadow_comparitor;
1298   if (ir->shadow_comparitor) {
1299      ir->shadow_comparitor->accept(this);
1300      shadow_comparitor = this->result;
1301   }
1302
1303   fs_reg lod, lod2;
1304   switch (ir->op) {
1305   case ir_tex:
1306      break;
1307   case ir_txb:
1308      ir->lod_info.bias->accept(this);
1309      lod = this->result;
1310      break;
1311   case ir_txd:
1312      ir->lod_info.grad.dPdx->accept(this);
1313      lod = this->result;
1314
1315      ir->lod_info.grad.dPdy->accept(this);
1316      lod2 = this->result;
1317      break;
1318   case ir_txf:
1319   case ir_txl:
1320   case ir_txs:
1321      ir->lod_info.lod->accept(this);
1322      lod = this->result;
1323      break;
1324   };
1325
1326   /* Writemasking doesn't eliminate channels on SIMD8 texture
1327    * samples, so don't worry about them.
1328    */
1329   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1330
1331   if (intel->gen >= 7) {
1332      inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
1333                               lod, lod2);
1334   } else if (intel->gen >= 5) {
1335      inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
1336                               lod, lod2);
1337   } else {
1338      inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
1339                               lod, lod2);
1340   }
1341
1342   /* The header is set up by generate_tex() when necessary. */
1343   inst->src[0] = reg_undef;
1344
1345   if (ir->offset != NULL && ir->op != ir_txf)
1346      inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1347
1348   inst->sampler = sampler;
1349
1350   if (ir->shadow_comparitor)
1351      inst->shadow_compare = true;
1352
1353   swizzle_result(ir, dst, sampler);
1354}
1355
1356/**
1357 * Swizzle the result of a texture result.  This is necessary for
1358 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1359 */
1360void
1361fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1362{
1363   this->result = orig_val;
1364
1365   if (ir->op == ir_txs)
1366      return;
1367
1368   if (ir->type == glsl_type::float_type) {
1369      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1370      assert(ir->sampler->type->sampler_shadow);
1371   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1372      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1373
1374      for (int i = 0; i < 4; i++) {
1375	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1376	 fs_reg l = swizzled_result;
1377	 l.reg_offset += i;
1378
1379	 if (swiz == SWIZZLE_ZERO) {
1380	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1381	 } else if (swiz == SWIZZLE_ONE) {
1382	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1383	 } else {
1384	    fs_reg r = orig_val;
1385	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1386	    emit(BRW_OPCODE_MOV, l, r);
1387	 }
1388      }
1389      this->result = swizzled_result;
1390   }
1391}
1392
1393void
1394fs_visitor::visit(ir_swizzle *ir)
1395{
1396   ir->val->accept(this);
1397   fs_reg val = this->result;
1398
1399   if (ir->type->vector_elements == 1) {
1400      this->result.reg_offset += ir->mask.x;
1401      return;
1402   }
1403
1404   fs_reg result = fs_reg(this, ir->type);
1405   this->result = result;
1406
1407   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1408      fs_reg channel = val;
1409      int swiz = 0;
1410
1411      switch (i) {
1412      case 0:
1413	 swiz = ir->mask.x;
1414	 break;
1415      case 1:
1416	 swiz = ir->mask.y;
1417	 break;
1418      case 2:
1419	 swiz = ir->mask.z;
1420	 break;
1421      case 3:
1422	 swiz = ir->mask.w;
1423	 break;
1424      }
1425
1426      channel.reg_offset += swiz;
1427      emit(BRW_OPCODE_MOV, result, channel);
1428      result.reg_offset++;
1429   }
1430}
1431
1432void
1433fs_visitor::visit(ir_discard *ir)
1434{
1435   assert(ir->condition == NULL); /* FINISHME */
1436
1437   emit(FS_OPCODE_DISCARD);
1438}
1439
1440void
1441fs_visitor::visit(ir_constant *ir)
1442{
1443   /* Set this->result to reg at the bottom of the function because some code
1444    * paths will cause this visitor to be applied to other fields.  This will
1445    * cause the value stored in this->result to be modified.
1446    *
1447    * Make reg constant so that it doesn't get accidentally modified along the
1448    * way.  Yes, I actually had this problem. :(
1449    */
1450   const fs_reg reg(this, ir->type);
1451   fs_reg dst_reg = reg;
1452
1453   if (ir->type->is_array()) {
1454      const unsigned size = type_size(ir->type->fields.array);
1455
1456      for (unsigned i = 0; i < ir->type->length; i++) {
1457	 ir->array_elements[i]->accept(this);
1458	 fs_reg src_reg = this->result;
1459
1460	 dst_reg.type = src_reg.type;
1461	 for (unsigned j = 0; j < size; j++) {
1462	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1463	    src_reg.reg_offset++;
1464	    dst_reg.reg_offset++;
1465	 }
1466      }
1467   } else if (ir->type->is_record()) {
1468      foreach_list(node, &ir->components) {
1469	 ir_constant *const field = (ir_constant *) node;
1470	 const unsigned size = type_size(field->type);
1471
1472	 field->accept(this);
1473	 fs_reg src_reg = this->result;
1474
1475	 dst_reg.type = src_reg.type;
1476	 for (unsigned j = 0; j < size; j++) {
1477	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1478	    src_reg.reg_offset++;
1479	    dst_reg.reg_offset++;
1480	 }
1481      }
1482   } else {
1483      const unsigned size = type_size(ir->type);
1484
1485      for (unsigned i = 0; i < size; i++) {
1486	 switch (ir->type->base_type) {
1487	 case GLSL_TYPE_FLOAT:
1488	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1489	    break;
1490	 case GLSL_TYPE_UINT:
1491	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1492	    break;
1493	 case GLSL_TYPE_INT:
1494	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1495	    break;
1496	 case GLSL_TYPE_BOOL:
1497	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1498	    break;
1499	 default:
1500	    assert(!"Non-float/uint/int/bool constant");
1501	 }
1502	 dst_reg.reg_offset++;
1503      }
1504   }
1505
1506   this->result = reg;
1507}
1508
1509void
1510fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1511{
1512   ir_expression *expr = ir->as_expression();
1513
1514   if (expr) {
1515      fs_reg op[2];
1516      fs_inst *inst;
1517
1518      assert(expr->get_num_operands() <= 2);
1519      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1520	 assert(expr->operands[i]->type->is_scalar());
1521
1522	 expr->operands[i]->accept(this);
1523	 op[i] = this->result;
1524
1525	 resolve_ud_negate(&op[i]);
1526      }
1527
1528      switch (expr->operation) {
1529      case ir_unop_logic_not:
1530	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1531	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1532	 break;
1533
1534      case ir_binop_logic_xor:
1535      case ir_binop_logic_or:
1536      case ir_binop_logic_and:
1537	 goto out;
1538
1539      case ir_unop_f2b:
1540	 if (intel->gen >= 6) {
1541	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1542	 } else {
1543	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1544	 }
1545	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1546	 break;
1547
1548      case ir_unop_i2b:
1549	 if (intel->gen >= 6) {
1550	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1551	 } else {
1552	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1553	 }
1554	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1555	 break;
1556
1557      case ir_binop_greater:
1558      case ir_binop_gequal:
1559      case ir_binop_less:
1560      case ir_binop_lequal:
1561      case ir_binop_equal:
1562      case ir_binop_all_equal:
1563      case ir_binop_nequal:
1564      case ir_binop_any_nequal:
1565	 resolve_bool_comparison(expr->operands[0], &op[0]);
1566	 resolve_bool_comparison(expr->operands[1], &op[1]);
1567
1568	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1569	 inst->conditional_mod =
1570	    brw_conditional_for_comparison(expr->operation);
1571	 break;
1572
1573      default:
1574	 assert(!"not reached");
1575	 fail("bad cond code\n");
1576	 break;
1577      }
1578      return;
1579   }
1580
1581out:
1582   ir->accept(this);
1583
1584   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1585   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1586}
1587
1588/**
1589 * Emit a gen6 IF statement with the comparison folded into the IF
1590 * instruction.
1591 */
1592void
1593fs_visitor::emit_if_gen6(ir_if *ir)
1594{
1595   ir_expression *expr = ir->condition->as_expression();
1596
1597   if (expr) {
1598      fs_reg op[2];
1599      fs_inst *inst;
1600      fs_reg temp;
1601
1602      assert(expr->get_num_operands() <= 2);
1603      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1604	 assert(expr->operands[i]->type->is_scalar());
1605
1606	 expr->operands[i]->accept(this);
1607	 op[i] = this->result;
1608      }
1609
1610      switch (expr->operation) {
1611      case ir_unop_logic_not:
1612	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1613	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1614	 return;
1615
1616      case ir_binop_logic_xor:
1617	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1618	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1619	 return;
1620
1621      case ir_binop_logic_or:
1622	 temp = fs_reg(this, glsl_type::bool_type);
1623	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1624	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1625	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1626	 return;
1627
1628      case ir_binop_logic_and:
1629	 temp = fs_reg(this, glsl_type::bool_type);
1630	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1631	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1632	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1633	 return;
1634
1635      case ir_unop_f2b:
1636	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1637	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1638	 return;
1639
1640      case ir_unop_i2b:
1641	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1642	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1643	 return;
1644
1645      case ir_binop_greater:
1646      case ir_binop_gequal:
1647      case ir_binop_less:
1648      case ir_binop_lequal:
1649      case ir_binop_equal:
1650      case ir_binop_all_equal:
1651      case ir_binop_nequal:
1652      case ir_binop_any_nequal:
1653	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1654	 inst->conditional_mod =
1655	    brw_conditional_for_comparison(expr->operation);
1656	 return;
1657      default:
1658	 assert(!"not reached");
1659	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1660	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1661	 fail("bad condition\n");
1662	 return;
1663      }
1664      return;
1665   }
1666
1667   ir->condition->accept(this);
1668
1669   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1670   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1671}
1672
1673void
1674fs_visitor::visit(ir_if *ir)
1675{
1676   fs_inst *inst;
1677
1678   if (intel->gen < 6 && c->dispatch_width == 16) {
1679      fail("Can't support (non-uniform) control flow on 16-wide\n");
1680   }
1681
1682   /* Don't point the annotation at the if statement, because then it plus
1683    * the then and else blocks get printed.
1684    */
1685   this->base_ir = ir->condition;
1686
1687   if (intel->gen == 6) {
1688      emit_if_gen6(ir);
1689   } else {
1690      emit_bool_to_cond_code(ir->condition);
1691
1692      inst = emit(BRW_OPCODE_IF);
1693      inst->predicated = true;
1694   }
1695
1696   foreach_list(node, &ir->then_instructions) {
1697      ir_instruction *ir = (ir_instruction *)node;
1698      this->base_ir = ir;
1699
1700      ir->accept(this);
1701   }
1702
1703   if (!ir->else_instructions.is_empty()) {
1704      emit(BRW_OPCODE_ELSE);
1705
1706      foreach_list(node, &ir->else_instructions) {
1707	 ir_instruction *ir = (ir_instruction *)node;
1708	 this->base_ir = ir;
1709
1710	 ir->accept(this);
1711      }
1712   }
1713
1714   emit(BRW_OPCODE_ENDIF);
1715}
1716
1717void
1718fs_visitor::visit(ir_loop *ir)
1719{
1720   fs_reg counter = reg_undef;
1721
1722   if (intel->gen < 6 && c->dispatch_width == 16) {
1723      fail("Can't support (non-uniform) control flow on 16-wide\n");
1724   }
1725
1726   if (ir->counter) {
1727      this->base_ir = ir->counter;
1728      ir->counter->accept(this);
1729      counter = *(variable_storage(ir->counter));
1730
1731      if (ir->from) {
1732	 this->base_ir = ir->from;
1733	 ir->from->accept(this);
1734
1735	 emit(BRW_OPCODE_MOV, counter, this->result);
1736      }
1737   }
1738
1739   this->base_ir = NULL;
1740   emit(BRW_OPCODE_DO);
1741
1742   if (ir->to) {
1743      this->base_ir = ir->to;
1744      ir->to->accept(this);
1745
1746      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1747      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1748
1749      inst = emit(BRW_OPCODE_BREAK);
1750      inst->predicated = true;
1751   }
1752
1753   foreach_list(node, &ir->body_instructions) {
1754      ir_instruction *ir = (ir_instruction *)node;
1755
1756      this->base_ir = ir;
1757      ir->accept(this);
1758   }
1759
1760   if (ir->increment) {
1761      this->base_ir = ir->increment;
1762      ir->increment->accept(this);
1763      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1764   }
1765
1766   this->base_ir = NULL;
1767   emit(BRW_OPCODE_WHILE);
1768}
1769
1770void
1771fs_visitor::visit(ir_loop_jump *ir)
1772{
1773   switch (ir->mode) {
1774   case ir_loop_jump::jump_break:
1775      emit(BRW_OPCODE_BREAK);
1776      break;
1777   case ir_loop_jump::jump_continue:
1778      emit(BRW_OPCODE_CONTINUE);
1779      break;
1780   }
1781}
1782
1783void
1784fs_visitor::visit(ir_call *ir)
1785{
1786   assert(!"FINISHME");
1787}
1788
1789void
1790fs_visitor::visit(ir_return *ir)
1791{
1792   assert(!"FINISHME");
1793}
1794
1795void
1796fs_visitor::visit(ir_function *ir)
1797{
1798   /* Ignore function bodies other than main() -- we shouldn't see calls to
1799    * them since they should all be inlined before we get to ir_to_mesa.
1800    */
1801   if (strcmp(ir->name, "main") == 0) {
1802      const ir_function_signature *sig;
1803      exec_list empty;
1804
1805      sig = ir->matching_signature(&empty);
1806
1807      assert(sig);
1808
1809      foreach_list(node, &sig->body) {
1810	 ir_instruction *ir = (ir_instruction *)node;
1811	 this->base_ir = ir;
1812
1813	 ir->accept(this);
1814      }
1815   }
1816}
1817
1818void
1819fs_visitor::visit(ir_function_signature *ir)
1820{
1821   assert(!"not reached");
1822   (void)ir;
1823}
1824
1825fs_inst *
1826fs_visitor::emit(fs_inst inst)
1827{
1828   fs_inst *list_inst = new(mem_ctx) fs_inst;
1829   *list_inst = inst;
1830
1831   if (force_uncompressed_stack > 0)
1832      list_inst->force_uncompressed = true;
1833   else if (force_sechalf_stack > 0)
1834      list_inst->force_sechalf = true;
1835
1836   list_inst->annotation = this->current_annotation;
1837   list_inst->ir = this->base_ir;
1838
1839   this->instructions.push_tail(list_inst);
1840
1841   return list_inst;
1842}
1843
1844/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1845void
1846fs_visitor::emit_dummy_fs()
1847{
1848   int reg_width = c->dispatch_width / 8;
1849
1850   /* Everyone's favorite color. */
1851   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1852   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1853   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1854   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1855
1856   fs_inst *write;
1857   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1858   write->base_mrf = 2;
1859   write->mlen = 4 * reg_width;
1860   write->eot = true;
1861}
1862
1863/* The register location here is relative to the start of the URB
1864 * data.  It will get adjusted to be a real location before
1865 * generate_code() time.
1866 */
1867struct brw_reg
1868fs_visitor::interp_reg(int location, int channel)
1869{
1870   int regnr = urb_setup[location] * 2 + channel / 2;
1871   int stride = (channel & 1) * 4;
1872
1873   assert(urb_setup[location] != -1);
1874
1875   return brw_vec1_grf(regnr, stride);
1876}
1877
1878/** Emits the interpolation for the varying inputs. */
1879void
1880fs_visitor::emit_interpolation_setup_gen4()
1881{
1882   this->current_annotation = "compute pixel centers";
1883   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1884   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1885   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1886   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1887
1888   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1889   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1890
1891   this->current_annotation = "compute pixel deltas from v0";
1892   if (brw->has_pln) {
1893      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1894         fs_reg(this, glsl_type::vec2_type);
1895      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1896         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1897      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1898   } else {
1899      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1900         fs_reg(this, glsl_type::float_type);
1901      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1902         fs_reg(this, glsl_type::float_type);
1903   }
1904   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1905	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1906   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1907	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1908
1909   this->current_annotation = "compute pos.w and 1/pos.w";
1910   /* Compute wpos.w.  It's always in our setup, since it's needed to
1911    * interpolate the other attributes.
1912    */
1913   this->wpos_w = fs_reg(this, glsl_type::float_type);
1914   emit(FS_OPCODE_LINTERP, wpos_w,
1915        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1916        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1917	interp_reg(FRAG_ATTRIB_WPOS, 3));
1918   /* Compute the pixel 1/W value from wpos.w. */
1919   this->pixel_w = fs_reg(this, glsl_type::float_type);
1920   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1921   this->current_annotation = NULL;
1922}
1923
1924/** Emits the interpolation for the varying inputs. */
1925void
1926fs_visitor::emit_interpolation_setup_gen6()
1927{
1928   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1929
1930   /* If the pixel centers end up used, the setup is the same as for gen4. */
1931   this->current_annotation = "compute pixel centers";
1932   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1933   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1934   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1935   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1936   emit(BRW_OPCODE_ADD,
1937	int_pixel_x,
1938	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1939	fs_reg(brw_imm_v(0x10101010)));
1940   emit(BRW_OPCODE_ADD,
1941	int_pixel_y,
1942	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1943	fs_reg(brw_imm_v(0x11001100)));
1944
1945   /* As of gen6, we can no longer mix float and int sources.  We have
1946    * to turn the integer pixel centers into floats for their actual
1947    * use.
1948    */
1949   this->pixel_x = fs_reg(this, glsl_type::float_type);
1950   this->pixel_y = fs_reg(this, glsl_type::float_type);
1951   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1952   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1953
1954   this->current_annotation = "compute pos.w";
1955   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1956   this->wpos_w = fs_reg(this, glsl_type::float_type);
1957   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1958
1959   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1960      uint8_t reg = c->barycentric_coord_reg[i];
1961      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1962      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1963   }
1964
1965   this->current_annotation = NULL;
1966}
1967
1968void
1969fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1970{
1971   int reg_width = c->dispatch_width / 8;
1972   fs_inst *inst;
1973   fs_reg color = outputs[target];
1974   fs_reg mrf;
1975
1976   /* If there's no color data to be written, skip it. */
1977   if (color.file == BAD_FILE)
1978      return;
1979
1980   color.reg_offset += index;
1981
1982   if (c->dispatch_width == 8 || intel->gen >= 6) {
1983      /* SIMD8 write looks like:
1984       * m + 0: r0
1985       * m + 1: r1
1986       * m + 2: g0
1987       * m + 3: g1
1988       *
1989       * gen6 SIMD16 DP write looks like:
1990       * m + 0: r0
1991       * m + 1: r1
1992       * m + 2: g0
1993       * m + 3: g1
1994       * m + 4: b0
1995       * m + 5: b1
1996       * m + 6: a0
1997       * m + 7: a1
1998       */
1999      inst = emit(BRW_OPCODE_MOV,
2000		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
2001		  color);
2002      inst->saturate = c->key.clamp_fragment_color;
2003   } else {
2004      /* pre-gen6 SIMD16 single source DP write looks like:
2005       * m + 0: r0
2006       * m + 1: g0
2007       * m + 2: b0
2008       * m + 3: a0
2009       * m + 4: r1
2010       * m + 5: g1
2011       * m + 6: b1
2012       * m + 7: a1
2013       */
2014      if (brw->has_compr4) {
2015	 /* By setting the high bit of the MRF register number, we
2016	  * indicate that we want COMPR4 mode - instead of doing the
2017	  * usual destination + 1 for the second half we get
2018	  * destination + 4.
2019	  */
2020	 inst = emit(BRW_OPCODE_MOV,
2021		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2022			    color.type),
2023		     color);
2024	 inst->saturate = c->key.clamp_fragment_color;
2025      } else {
2026	 push_force_uncompressed();
2027	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
2028					    color.type),
2029		     color);
2030	 inst->saturate = c->key.clamp_fragment_color;
2031	 pop_force_uncompressed();
2032
2033	 push_force_sechalf();
2034	 color.sechalf = true;
2035	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
2036					    color.type),
2037		     color);
2038	 inst->saturate = c->key.clamp_fragment_color;
2039	 pop_force_sechalf();
2040	 color.sechalf = false;
2041      }
2042   }
2043}
2044
2045void
2046fs_visitor::emit_fb_writes()
2047{
2048   this->current_annotation = "FB write header";
2049   bool header_present = true;
2050   /* We can potentially have a message length of up to 15, so we have to set
2051    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2052    */
2053   int base_mrf = 1;
2054   int nr = base_mrf;
2055   int reg_width = c->dispatch_width / 8;
2056   bool do_dual_src = this->dual_src_output.file != BAD_FILE;
2057   bool src0_alpha_to_render_target = false;
2058
2059   if (c->dispatch_width == 16 && do_dual_src) {
2060      fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
2061      do_dual_src = false;
2062   }
2063
2064   /* From the Sandy Bridge PRM, volume 4, page 198:
2065    *
2066    *     "Dispatched Pixel Enables. One bit per pixel indicating
2067    *      which pixels were originally enabled when the thread was
2068    *      dispatched. This field is only required for the end-of-
2069    *      thread message and on all dual-source messages."
2070    */
2071   if (intel->gen >= 6 &&
2072       !this->fp->UsesKill &&
2073       !do_dual_src &&
2074       c->key.nr_color_regions == 1) {
2075      header_present = false;
2076   }
2077
2078   if (header_present) {
2079      src0_alpha_to_render_target = intel->gen >= 6 &&
2080				    !do_dual_src &&
2081				    c->key.nr_color_regions > 1 &&
2082				    c->key.sample_alpha_to_coverage;
2083      /* m2, m3 header */
2084      nr += 2;
2085   }
2086
2087   if (c->aa_dest_stencil_reg) {
2088      push_force_uncompressed();
2089      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2090	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2091      pop_force_uncompressed();
2092   }
2093
2094   /* Reserve space for color. It'll be filled in per MRT below. */
2095   int color_mrf = nr;
2096   nr += 4 * reg_width;
2097   if (do_dual_src)
2098      nr += 4;
2099   if (src0_alpha_to_render_target)
2100      nr += reg_width;
2101
2102   if (c->source_depth_to_render_target) {
2103      if (intel->gen == 6 && c->dispatch_width == 16) {
2104	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2105	  * used.  This would require 8-wide moves of each half to
2106	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2107	  * Just bail on doing so for now.
2108	  */
2109	 fail("Missing support for simd16 depth writes on gen6\n");
2110      }
2111
2112      if (c->computes_depth) {
2113	 /* Hand over gl_FragDepth. */
2114	 assert(this->frag_depth);
2115	 fs_reg depth = *(variable_storage(this->frag_depth));
2116
2117	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2118      } else {
2119	 /* Pass through the payload depth. */
2120	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2121	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2122      }
2123      nr += reg_width;
2124   }
2125
2126   if (c->dest_depth_reg) {
2127      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2128	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2129      nr += reg_width;
2130   }
2131
2132   if (do_dual_src) {
2133      fs_reg src0 = this->outputs[0];
2134      fs_reg src1 = this->dual_src_output;
2135
2136      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2137						 "FB write src0");
2138      for (int i = 0; i < 4; i++) {
2139	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2140			      fs_reg(MRF, color_mrf + i, src0.type),
2141			      src0);
2142	 src0.reg_offset++;
2143	 inst->saturate = c->key.clamp_fragment_color;
2144      }
2145
2146      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2147						 "FB write src1");
2148      for (int i = 0; i < 4; i++) {
2149	 fs_inst *inst = emit(BRW_OPCODE_MOV,
2150			      fs_reg(MRF, color_mrf + 4 + i, src1.type),
2151			      src1);
2152	 src1.reg_offset++;
2153	 inst->saturate = c->key.clamp_fragment_color;
2154      }
2155
2156      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2157      inst->target = 0;
2158      inst->base_mrf = base_mrf;
2159      inst->mlen = nr - base_mrf;
2160      inst->eot = true;
2161      inst->header_present = header_present;
2162
2163      c->prog_data.dual_src_blend = true;
2164      this->current_annotation = NULL;
2165      return;
2166   }
2167
2168   for (int target = 0; target < c->key.nr_color_regions; target++) {
2169      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2170						 "FB write target %d",
2171						 target);
2172      /* If src0_alpha_to_render_target is true, include source zero alpha
2173       * data in RenderTargetWrite message for targets > 0.
2174       */
2175      int write_color_mrf = color_mrf;
2176      if (src0_alpha_to_render_target && target != 0) {
2177         fs_inst *inst;
2178         fs_reg color = outputs[0];
2179         color.reg_offset += 3;
2180
2181         inst = emit(BRW_OPCODE_MOV,
2182		     fs_reg(MRF, write_color_mrf, color.type),
2183		     color);
2184         inst->saturate = c->key.clamp_fragment_color;
2185         write_color_mrf = color_mrf + reg_width;
2186      }
2187
2188      for (unsigned i = 0; i < this->output_components[target]; i++)
2189         emit_color_write(target, i, write_color_mrf);
2190
2191      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2192      inst->target = target;
2193      inst->base_mrf = base_mrf;
2194      if (src0_alpha_to_render_target && target == 0)
2195         inst->mlen = nr - base_mrf - reg_width;
2196      else
2197         inst->mlen = nr - base_mrf;
2198      if (target == c->key.nr_color_regions - 1)
2199	 inst->eot = true;
2200      inst->header_present = header_present;
2201   }
2202
2203   if (c->key.nr_color_regions == 0) {
2204      /* Even if there's no color buffers enabled, we still need to send
2205       * alpha out the pipeline to our null renderbuffer to support
2206       * alpha-testing, alpha-to-coverage, and so on.
2207       */
2208      emit_color_write(0, 3, color_mrf);
2209
2210      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2211      inst->base_mrf = base_mrf;
2212      inst->mlen = nr - base_mrf;
2213      inst->eot = true;
2214      inst->header_present = header_present;
2215   }
2216
2217   this->current_annotation = NULL;
2218}
2219
2220void
2221fs_visitor::resolve_ud_negate(fs_reg *reg)
2222{
2223   if (reg->type != BRW_REGISTER_TYPE_UD ||
2224       !reg->negate)
2225      return;
2226
2227   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2228   emit(BRW_OPCODE_MOV, temp, *reg);
2229   *reg = temp;
2230}
2231
2232void
2233fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2234{
2235   if (rvalue->type != glsl_type::bool_type)
2236      return;
2237
2238   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2239   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2240   *reg = temp;
2241}
2242
2243fs_visitor::fs_visitor(struct brw_wm_compile *c, struct gl_shader_program *prog,
2244                       struct brw_shader *shader)
2245{
2246   this->c = c;
2247   this->p = &c->func;
2248   this->brw = p->brw;
2249   this->fp = (struct gl_fragment_program *)
2250      prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2251   this->prog = prog;
2252   this->intel = &brw->intel;
2253   this->ctx = &intel->ctx;
2254   this->mem_ctx = ralloc_context(NULL);
2255   this->shader = shader;
2256   this->failed = false;
2257   this->variable_ht = hash_table_ctor(0,
2258                                       hash_table_pointer_hash,
2259                                       hash_table_pointer_compare);
2260
2261   /* There's a question that appears to be left open in the spec:
2262    * How do implicit dst conversions interact with the CMP
2263    * instruction or conditional mods?  On gen6, the instruction:
2264    *
2265    * CMP null<d> src0<f> src1<f>
2266    *
2267    * will do src1 - src0 and compare that result as if it was an
2268    * integer.  On gen4, it will do src1 - src0 as float, convert
2269    * the result to int, and compare as int.  In between, it
2270    * appears that it does src1 - src0 and does the compare in the
2271    * execution type so dst type doesn't matter.
2272    */
2273   if (this->intel->gen > 4)
2274      this->reg_null_cmp = reg_null_d;
2275   else
2276      this->reg_null_cmp = reg_null_f;
2277
2278   this->frag_depth = NULL;
2279   memset(this->outputs, 0, sizeof(this->outputs));
2280   memset(this->output_components, 0, sizeof(this->output_components));
2281   this->first_non_payload_grf = 0;
2282   this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2283
2284   this->current_annotation = NULL;
2285   this->base_ir = NULL;
2286
2287   this->virtual_grf_sizes = NULL;
2288   this->virtual_grf_count = 0;
2289   this->virtual_grf_array_size = 0;
2290   this->virtual_grf_def = NULL;
2291   this->virtual_grf_use = NULL;
2292   this->live_intervals_valid = false;
2293
2294   this->force_uncompressed_stack = 0;
2295   this->force_sechalf_stack = 0;
2296}
2297
2298fs_visitor::~fs_visitor()
2299{
2300   ralloc_free(this->mem_ctx);
2301   hash_table_dtor(this->variable_ht);
2302}
2303