brw_fs_visitor.cpp revision 6c947cfd1973c3791d54f1406c973357b4a9621a
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM ||
146	     (this->result.file == GRF &&
147	      this->result.reg != 0));
148      this->result.reg_offset += index->value.i[0] * element_size;
149   } else {
150      assert(!"FINISHME: non-constant array element");
151   }
152}
153
154/* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157bool
158fs_visitor::try_emit_saturate(ir_expression *ir)
159{
160   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162   if (!sat_val)
163      return false;
164
165   this->result = reg_undef;
166   sat_val->accept(this);
167   fs_reg src = this->result;
168
169   this->result = fs_reg(this, ir->type);
170   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171   inst->saturate = true;
172
173   return true;
174}
175
176void
177fs_visitor::visit(ir_expression *ir)
178{
179   unsigned int operand;
180   fs_reg op[2], temp;
181   fs_inst *inst;
182
183   assert(ir->get_num_operands() <= 2);
184
185   if (try_emit_saturate(ir))
186      return;
187
188   /* This is where our caller would like us to put the result, if possible. */
189   fs_reg saved_result_storage = this->result;
190
191   for (operand = 0; operand < ir->get_num_operands(); operand++) {
192      this->result = reg_undef;
193      ir->operands[operand]->accept(this);
194      if (this->result.file == BAD_FILE) {
195	 ir_print_visitor v;
196	 fail("Failed to get tree for expression operand:\n");
197	 ir->operands[operand]->accept(&v);
198      }
199      op[operand] = this->result;
200
201      /* Matrix expression operands should have been broken down to vector
202       * operations already.
203       */
204      assert(!ir->operands[operand]->type->is_matrix());
205      /* And then those vector operands should have been broken down to scalar.
206       */
207      assert(!ir->operands[operand]->type->is_vector());
208   }
209
210   /* Inherit storage from our parent if possible, and otherwise we
211    * alloc a temporary.
212    */
213   if (saved_result_storage.file == BAD_FILE) {
214      this->result = fs_reg(this, ir->type);
215   } else {
216      this->result = saved_result_storage;
217   }
218
219   switch (ir->operation) {
220   case ir_unop_logic_not:
221      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222       * ones complement of the whole register, not just bit 0.
223       */
224      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225      break;
226   case ir_unop_neg:
227      op[0].negate = !op[0].negate;
228      this->result = op[0];
229      break;
230   case ir_unop_abs:
231      op[0].abs = true;
232      op[0].negate = false;
233      this->result = op[0];
234      break;
235   case ir_unop_sign:
236      temp = fs_reg(this, ir->type);
237
238      /* Unalias the destination.  (imagine a = sign(a)) */
239      this->result = fs_reg(this, ir->type);
240
241      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244      inst->conditional_mod = BRW_CONDITIONAL_G;
245      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246      inst->predicated = true;
247
248      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249      inst->conditional_mod = BRW_CONDITIONAL_L;
250      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251      inst->predicated = true;
252
253      break;
254   case ir_unop_rcp:
255      emit_math(FS_OPCODE_RCP, this->result, op[0]);
256      break;
257
258   case ir_unop_exp2:
259      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260      break;
261   case ir_unop_log2:
262      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263      break;
264   case ir_unop_exp:
265   case ir_unop_log:
266      assert(!"not reached: should be handled by ir_explog_to_explog2");
267      break;
268   case ir_unop_sin:
269   case ir_unop_sin_reduced:
270      emit_math(FS_OPCODE_SIN, this->result, op[0]);
271      break;
272   case ir_unop_cos:
273   case ir_unop_cos_reduced:
274      emit_math(FS_OPCODE_COS, this->result, op[0]);
275      break;
276
277   case ir_unop_dFdx:
278      emit(FS_OPCODE_DDX, this->result, op[0]);
279      break;
280   case ir_unop_dFdy:
281      emit(FS_OPCODE_DDY, this->result, op[0]);
282      break;
283
284   case ir_binop_add:
285      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286      break;
287   case ir_binop_sub:
288      assert(!"not reached: should be handled by ir_sub_to_add_neg");
289      break;
290
291   case ir_binop_mul:
292      emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293      break;
294   case ir_binop_div:
295      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296      break;
297   case ir_binop_mod:
298      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299      break;
300
301   case ir_binop_less:
302   case ir_binop_greater:
303   case ir_binop_lequal:
304   case ir_binop_gequal:
305   case ir_binop_equal:
306   case ir_binop_all_equal:
307   case ir_binop_nequal:
308   case ir_binop_any_nequal:
309      temp = this->result;
310      /* original gen4 does implicit conversion before comparison. */
311      if (intel->gen < 5)
312	 temp.type = op[0].type;
313
314      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317      break;
318
319   case ir_binop_logic_xor:
320      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321      break;
322
323   case ir_binop_logic_or:
324      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325      break;
326
327   case ir_binop_logic_and:
328      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329      break;
330
331   case ir_binop_dot:
332   case ir_unop_any:
333      assert(!"not reached: should be handled by brw_fs_channel_expressions");
334      break;
335
336   case ir_unop_noise:
337      assert(!"not reached: should be handled by lower_noise");
338      break;
339
340   case ir_quadop_vector:
341      assert(!"not reached: should be handled by lower_quadop_vector");
342      break;
343
344   case ir_unop_sqrt:
345      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346      break;
347
348   case ir_unop_rsq:
349      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350      break;
351
352   case ir_unop_i2f:
353   case ir_unop_b2f:
354   case ir_unop_b2i:
355   case ir_unop_f2i:
356      emit(BRW_OPCODE_MOV, this->result, op[0]);
357      break;
358   case ir_unop_f2b:
359   case ir_unop_i2b:
360      temp = this->result;
361      /* original gen4 does implicit conversion before comparison. */
362      if (intel->gen < 5)
363	 temp.type = op[0].type;
364
365      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
366      inst->conditional_mod = BRW_CONDITIONAL_NZ;
367      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
368      break;
369
370   case ir_unop_trunc:
371      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
372      break;
373   case ir_unop_ceil:
374      op[0].negate = !op[0].negate;
375      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
376      this->result.negate = true;
377      break;
378   case ir_unop_floor:
379      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
380      break;
381   case ir_unop_fract:
382      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
383      break;
384   case ir_unop_round_even:
385      emit(BRW_OPCODE_RNDE, this->result, op[0]);
386      break;
387
388   case ir_binop_min:
389      if (intel->gen >= 6) {
390	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
391	 inst->conditional_mod = BRW_CONDITIONAL_L;
392      } else {
393	 /* Unalias the destination */
394	 this->result = fs_reg(this, ir->type);
395
396	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
397	 inst->conditional_mod = BRW_CONDITIONAL_L;
398
399	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
400	 inst->predicated = true;
401      }
402      break;
403   case ir_binop_max:
404      if (intel->gen >= 6) {
405	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
406	 inst->conditional_mod = BRW_CONDITIONAL_GE;
407      } else {
408	 /* Unalias the destination */
409	 this->result = fs_reg(this, ir->type);
410
411	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
412	 inst->conditional_mod = BRW_CONDITIONAL_G;
413
414	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
415	 inst->predicated = true;
416      }
417      break;
418
419   case ir_binop_pow:
420      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
421      break;
422
423   case ir_unop_bit_not:
424      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
425      break;
426   case ir_binop_bit_and:
427      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
428      break;
429   case ir_binop_bit_xor:
430      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
431      break;
432   case ir_binop_bit_or:
433      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
434      break;
435
436   case ir_unop_u2f:
437   case ir_binop_lshift:
438   case ir_binop_rshift:
439      assert(!"GLSL 1.30 features unsupported");
440      break;
441   }
442}
443
444void
445fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
446				   const glsl_type *type, bool predicated)
447{
448   switch (type->base_type) {
449   case GLSL_TYPE_FLOAT:
450   case GLSL_TYPE_UINT:
451   case GLSL_TYPE_INT:
452   case GLSL_TYPE_BOOL:
453      for (unsigned int i = 0; i < type->components(); i++) {
454	 l.type = brw_type_for_base_type(type);
455	 r.type = brw_type_for_base_type(type);
456
457	 if (predicated || !l.equals(&r)) {
458	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
459	    inst->predicated = predicated;
460	 }
461
462	 l.reg_offset++;
463	 r.reg_offset++;
464      }
465      break;
466   case GLSL_TYPE_ARRAY:
467      for (unsigned int i = 0; i < type->length; i++) {
468	 emit_assignment_writes(l, r, type->fields.array, predicated);
469      }
470      break;
471
472   case GLSL_TYPE_STRUCT:
473      for (unsigned int i = 0; i < type->length; i++) {
474	 emit_assignment_writes(l, r, type->fields.structure[i].type,
475				predicated);
476      }
477      break;
478
479   case GLSL_TYPE_SAMPLER:
480      break;
481
482   default:
483      assert(!"not reached");
484      break;
485   }
486}
487
488void
489fs_visitor::visit(ir_assignment *ir)
490{
491   struct fs_reg l, r;
492   fs_inst *inst;
493
494   /* FINISHME: arrays on the lhs */
495   this->result = reg_undef;
496   ir->lhs->accept(this);
497   l = this->result;
498
499   /* If we're doing a direct assignment, an RHS expression could
500    * drop its result right into our destination.  Otherwise, tell it
501    * not to.
502    */
503   if (ir->condition ||
504       !(ir->lhs->type->is_scalar() ||
505	 (ir->lhs->type->is_vector() &&
506	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
507      this->result = reg_undef;
508   }
509
510   ir->rhs->accept(this);
511   r = this->result;
512
513   assert(l.file != BAD_FILE);
514   assert(r.file != BAD_FILE);
515
516   if (ir->condition) {
517      emit_bool_to_cond_code(ir->condition);
518   }
519
520   if (ir->lhs->type->is_scalar() ||
521       ir->lhs->type->is_vector()) {
522      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
523	 if (ir->write_mask & (1 << i)) {
524	    if (ir->condition) {
525	       inst = emit(BRW_OPCODE_MOV, l, r);
526	       inst->predicated = true;
527	    } else if (!l.equals(&r)) {
528	       inst = emit(BRW_OPCODE_MOV, l, r);
529	    }
530
531	    r.reg_offset++;
532	 }
533	 l.reg_offset++;
534      }
535   } else {
536      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
537   }
538}
539
540fs_inst *
541fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
542			      int sampler)
543{
544   int mlen;
545   int base_mrf = 1;
546   bool simd16 = false;
547   fs_reg orig_dst;
548
549   /* g0 header. */
550   mlen = 1;
551
552   if (ir->shadow_comparitor) {
553      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
554	 fs_inst *inst = emit(BRW_OPCODE_MOV,
555			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
556	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
557	    inst->saturate = true;
558
559	 coordinate.reg_offset++;
560      }
561      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
562      mlen += 3;
563
564      if (ir->op == ir_tex) {
565	 /* There's no plain shadow compare message, so we use shadow
566	  * compare with a bias of 0.0.
567	  */
568	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
569	 mlen++;
570      } else if (ir->op == ir_txb) {
571	 this->result = reg_undef;
572	 ir->lod_info.bias->accept(this);
573	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
574	 mlen++;
575      } else {
576	 assert(ir->op == ir_txl);
577	 this->result = reg_undef;
578	 ir->lod_info.lod->accept(this);
579	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
580	 mlen++;
581      }
582
583      this->result = reg_undef;
584      ir->shadow_comparitor->accept(this);
585      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
586      mlen++;
587   } else if (ir->op == ir_tex) {
588      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
589	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
590			      coordinate);
591	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
592	    inst->saturate = true;
593	 coordinate.reg_offset++;
594      }
595      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
596      mlen += 3;
597   } else if (ir->op == ir_txd) {
598      ir->lod_info.grad.dPdx->accept(this);
599      fs_reg dPdx = this->result;
600
601      ir->lod_info.grad.dPdy->accept(this);
602      fs_reg dPdy = this->result;
603
604      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
605	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
606	 coordinate.reg_offset++;
607      }
608      /* the slots for u and v are always present, but r is optional */
609      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
610
611      /*  P   = u, v, r
612       * dPdx = dudx, dvdx, drdx
613       * dPdy = dudy, dvdy, drdy
614       *
615       * 2-arg: dudx   dvdx   dudy   dvdy
616       *        dPdx.x dPdx.y dPdy.x dPdy.y
617       *        m4     m5     m6     m7
618       *
619       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
620       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
621       *        m5     m6     m7     m8     m9     m10
622       */
623      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
624	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
625	 dPdx.reg_offset++;
626	 mlen++;
627      }
628
629      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
630	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
631	 dPdy.reg_offset++;
632	 mlen++;
633      }
634   } else {
635      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
636       * instructions.  We'll need to do SIMD16 here.
637       */
638      assert(ir->op == ir_txb || ir->op == ir_txl);
639
640      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
641	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
642						     base_mrf + mlen + i * 2),
643			      coordinate);
644	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
645	    inst->saturate = true;
646	 coordinate.reg_offset++;
647      }
648
649      /* lod/bias appears after u/v/r. */
650      mlen += 6;
651
652      if (ir->op == ir_txb) {
653	 this->result = reg_undef;
654	 ir->lod_info.bias->accept(this);
655	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
656	 mlen++;
657      } else {
658	 this->result = reg_undef;
659	 ir->lod_info.lod->accept(this);
660	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
661	 mlen++;
662      }
663
664      /* The unused upper half. */
665      mlen++;
666
667      /* Now, since we're doing simd16, the return is 2 interleaved
668       * vec4s where the odd-indexed ones are junk. We'll need to move
669       * this weirdness around to the expected layout.
670       */
671      simd16 = true;
672      orig_dst = dst;
673      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
674						       2));
675      dst.type = BRW_REGISTER_TYPE_F;
676   }
677
678   fs_inst *inst = NULL;
679   switch (ir->op) {
680   case ir_tex:
681      inst = emit(FS_OPCODE_TEX, dst);
682      break;
683   case ir_txb:
684      inst = emit(FS_OPCODE_TXB, dst);
685      break;
686   case ir_txl:
687      inst = emit(FS_OPCODE_TXL, dst);
688      break;
689   case ir_txd:
690      inst = emit(FS_OPCODE_TXD, dst);
691      break;
692   case ir_txf:
693      assert(!"GLSL 1.30 features unsupported");
694      break;
695   }
696   inst->base_mrf = base_mrf;
697   inst->mlen = mlen;
698   inst->header_present = true;
699
700   if (simd16) {
701      for (int i = 0; i < 4; i++) {
702	 emit(BRW_OPCODE_MOV, orig_dst, dst);
703	 orig_dst.reg_offset++;
704	 dst.reg_offset += 2;
705      }
706   }
707
708   return inst;
709}
710
711/* gen5's sampler has slots for u, v, r, array index, then optional
712 * parameters like shadow comparitor or LOD bias.  If optional
713 * parameters aren't present, those base slots are optional and don't
714 * need to be included in the message.
715 *
716 * We don't fill in the unnecessary slots regardless, which may look
717 * surprising in the disassembly.
718 */
719fs_inst *
720fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
721			      int sampler)
722{
723   int mlen = 0;
724   int base_mrf = 2;
725   int reg_width = c->dispatch_width / 8;
726   bool header_present = false;
727
728   if (ir->offset) {
729      /* The offsets set up by the ir_texture visitor are in the
730       * m1 header, so we can't go headerless.
731       */
732      header_present = true;
733      mlen++;
734      base_mrf--;
735   }
736
737   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
738      fs_inst *inst = emit(BRW_OPCODE_MOV,
739			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
740			   coordinate);
741      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
742	 inst->saturate = true;
743      coordinate.reg_offset++;
744   }
745   mlen += ir->coordinate->type->vector_elements * reg_width;
746
747   if (ir->shadow_comparitor) {
748      mlen = MAX2(mlen, header_present + 4 * reg_width);
749
750      this->result = reg_undef;
751      ir->shadow_comparitor->accept(this);
752      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
753      mlen += reg_width;
754   }
755
756   fs_inst *inst = NULL;
757   switch (ir->op) {
758   case ir_tex:
759      inst = emit(FS_OPCODE_TEX, dst);
760      break;
761   case ir_txb:
762      this->result = reg_undef;
763      ir->lod_info.bias->accept(this);
764      mlen = MAX2(mlen, header_present + 4 * reg_width);
765      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
766      mlen += reg_width;
767
768      inst = emit(FS_OPCODE_TXB, dst);
769
770      break;
771   case ir_txl:
772      this->result = reg_undef;
773      ir->lod_info.lod->accept(this);
774      mlen = MAX2(mlen, header_present + 4 * reg_width);
775      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
776      mlen += reg_width;
777
778      inst = emit(FS_OPCODE_TXL, dst);
779      break;
780   case ir_txd: {
781      ir->lod_info.grad.dPdx->accept(this);
782      fs_reg dPdx = this->result;
783
784      ir->lod_info.grad.dPdy->accept(this);
785      fs_reg dPdy = this->result;
786
787      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
788
789      /**
790       *  P   =  u,    v,    r
791       * dPdx = dudx, dvdx, drdx
792       * dPdy = dudy, dvdy, drdy
793       *
794       * Load up these values:
795       * - dudx   dudy   dvdx   dvdy   drdx   drdy
796       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
797       */
798      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
799	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
800	 dPdx.reg_offset++;
801	 mlen += reg_width;
802
803	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
804	 dPdy.reg_offset++;
805	 mlen += reg_width;
806      }
807
808      inst = emit(FS_OPCODE_TXD, dst);
809      break;
810   }
811   case ir_txf:
812      assert(!"GLSL 1.30 features unsupported");
813      break;
814   }
815   inst->base_mrf = base_mrf;
816   inst->mlen = mlen;
817   inst->header_present = header_present;
818
819   if (mlen > 11) {
820      fail("Message length >11 disallowed by hardware\n");
821   }
822
823   return inst;
824}
825
826fs_inst *
827fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
828			      int sampler)
829{
830   int mlen = 0;
831   int base_mrf = 2;
832   int reg_width = c->dispatch_width / 8;
833   bool header_present = false;
834
835   if (ir->offset) {
836      /* The offsets set up by the ir_texture visitor are in the
837       * m1 header, so we can't go headerless.
838       */
839      header_present = true;
840      mlen++;
841      base_mrf--;
842   }
843
844   if (ir->shadow_comparitor) {
845      ir->shadow_comparitor->accept(this);
846      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
847      mlen += reg_width;
848   }
849
850   /* Set up the LOD info */
851   switch (ir->op) {
852   case ir_tex:
853      break;
854   case ir_txb:
855      ir->lod_info.bias->accept(this);
856      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
857      mlen += reg_width;
858      break;
859   case ir_txl:
860      ir->lod_info.lod->accept(this);
861      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
862      mlen += reg_width;
863      break;
864   case ir_txd: {
865      if (c->dispatch_width == 16)
866	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
867
868      ir->lod_info.grad.dPdx->accept(this);
869      fs_reg dPdx = this->result;
870
871      ir->lod_info.grad.dPdy->accept(this);
872      fs_reg dPdy = this->result;
873
874      /* Load dPdx and the coordinate together:
875       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
876       */
877      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
878	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
879			      coordinate);
880	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
881	    inst->saturate = true;
882	 coordinate.reg_offset++;
883	 mlen += reg_width;
884
885	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
886	 dPdx.reg_offset++;
887	 mlen += reg_width;
888
889	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
890	 dPdy.reg_offset++;
891	 mlen += reg_width;
892      }
893      break;
894   }
895   case ir_txf:
896      assert(!"GLSL 1.30 features unsupported");
897      break;
898   }
899
900   /* Set up the coordinate (except for TXD where it was done earlier) */
901   if (ir->op != ir_txd) {
902      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
903	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
904			      coordinate);
905	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
906	    inst->saturate = true;
907	 coordinate.reg_offset++;
908	 mlen += reg_width;
909      }
910   }
911
912   /* Generate the SEND */
913   fs_inst *inst = NULL;
914   switch (ir->op) {
915   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
916   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
917   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
918   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
919   case ir_txf: assert(!"TXF unsupported.");
920   }
921   inst->base_mrf = base_mrf;
922   inst->mlen = mlen;
923   inst->header_present = header_present;
924
925   if (mlen > 11) {
926      fail("Message length >11 disallowed by hardware\n");
927   }
928
929   return inst;
930}
931
932void
933fs_visitor::visit(ir_texture *ir)
934{
935   int sampler;
936   fs_inst *inst = NULL;
937
938   this->result = reg_undef;
939   ir->coordinate->accept(this);
940   fs_reg coordinate = this->result;
941
942   if (ir->offset != NULL) {
943      ir_constant *offset = ir->offset->as_constant();
944      assert(offset != NULL);
945
946      signed char offsets[3];
947      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
948	 offsets[i] = (signed char) offset->value.i[i];
949
950      /* Combine all three offsets into a single unsigned dword:
951       *
952       *    bits 11:8 - U Offset (X component)
953       *    bits  7:4 - V Offset (Y component)
954       *    bits  3:0 - R Offset (Z component)
955       */
956      unsigned offset_bits = 0;
957      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
958	 const unsigned shift = 4 * (2 - i);
959	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
960      }
961
962      /* Explicitly set up the message header by copying g0 to msg reg m1. */
963      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
964	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
965
966      /* Then set the offset bits in DWord 2 of the message header. */
967      emit(BRW_OPCODE_MOV,
968	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
969			 BRW_REGISTER_TYPE_UD)),
970	   fs_reg(brw_imm_uw(offset_bits)));
971   }
972
973   /* Should be lowered by do_lower_texture_projection */
974   assert(!ir->projector);
975
976   sampler = _mesa_get_sampler_uniform_value(ir->sampler,
977					     prog,
978					     &fp->Base);
979   sampler = fp->Base.SamplerUnits[sampler];
980
981   /* The 965 requires the EU to do the normalization of GL rectangle
982    * texture coordinates.  We use the program parameter state
983    * tracking to get the scaling factor.
984    */
985   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
986      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
987      int tokens[STATE_LENGTH] = {
988	 STATE_INTERNAL,
989	 STATE_TEXRECT_SCALE,
990	 sampler,
991	 0,
992	 0
993      };
994
995      if (c->dispatch_width == 16) {
996	 fail("rectangle scale uniform setup not supported on 16-wide\n");
997	 this->result = fs_reg(this, ir->type);
998	 return;
999      }
1000
1001      c->prog_data.param_convert[c->prog_data.nr_params] =
1002	 PARAM_NO_CONVERT;
1003      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1004	 PARAM_NO_CONVERT;
1005
1006      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1007      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1008      GLuint index = _mesa_add_state_reference(params,
1009					       (gl_state_index *)tokens);
1010
1011      this->param_index[c->prog_data.nr_params] = index;
1012      this->param_offset[c->prog_data.nr_params] = 0;
1013      c->prog_data.nr_params++;
1014      this->param_index[c->prog_data.nr_params] = index;
1015      this->param_offset[c->prog_data.nr_params] = 1;
1016      c->prog_data.nr_params++;
1017
1018      fs_reg dst = fs_reg(this, ir->coordinate->type);
1019      fs_reg src = coordinate;
1020      coordinate = dst;
1021
1022      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1023      dst.reg_offset++;
1024      src.reg_offset++;
1025      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1026   }
1027
1028   /* Writemasking doesn't eliminate channels on SIMD8 texture
1029    * samples, so don't worry about them.
1030    */
1031   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1032
1033   if (intel->gen >= 7) {
1034      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1035   } else if (intel->gen >= 5) {
1036      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1037   } else {
1038      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1039   }
1040
1041   /* If there's an offset, we already set up m1.  To avoid the implied move,
1042    * use the null register.  Otherwise, we want an implied move from g0.
1043    */
1044   if (ir->offset != NULL || !inst->header_present)
1045      inst->src[0] = reg_undef;
1046   else
1047      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1048
1049   inst->sampler = sampler;
1050
1051   this->result = dst;
1052
1053   if (ir->shadow_comparitor)
1054      inst->shadow_compare = true;
1055
1056   if (ir->type == glsl_type::float_type) {
1057      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1058      assert(ir->sampler->type->sampler_shadow);
1059   } else if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1060      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1061
1062      for (int i = 0; i < 4; i++) {
1063	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1064	 fs_reg l = swizzle_dst;
1065	 l.reg_offset += i;
1066
1067	 if (swiz == SWIZZLE_ZERO) {
1068	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1069	 } else if (swiz == SWIZZLE_ONE) {
1070	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1071	 } else {
1072	    fs_reg r = dst;
1073	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1074	    emit(BRW_OPCODE_MOV, l, r);
1075	 }
1076      }
1077      this->result = swizzle_dst;
1078   }
1079}
1080
1081void
1082fs_visitor::visit(ir_swizzle *ir)
1083{
1084   this->result = reg_undef;
1085   ir->val->accept(this);
1086   fs_reg val = this->result;
1087
1088   if (ir->type->vector_elements == 1) {
1089      this->result.reg_offset += ir->mask.x;
1090      return;
1091   }
1092
1093   fs_reg result = fs_reg(this, ir->type);
1094   this->result = result;
1095
1096   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1097      fs_reg channel = val;
1098      int swiz = 0;
1099
1100      switch (i) {
1101      case 0:
1102	 swiz = ir->mask.x;
1103	 break;
1104      case 1:
1105	 swiz = ir->mask.y;
1106	 break;
1107      case 2:
1108	 swiz = ir->mask.z;
1109	 break;
1110      case 3:
1111	 swiz = ir->mask.w;
1112	 break;
1113      }
1114
1115      channel.reg_offset += swiz;
1116      emit(BRW_OPCODE_MOV, result, channel);
1117      result.reg_offset++;
1118   }
1119}
1120
1121void
1122fs_visitor::visit(ir_discard *ir)
1123{
1124   assert(ir->condition == NULL); /* FINISHME */
1125
1126   emit(FS_OPCODE_DISCARD);
1127   kill_emitted = true;
1128}
1129
1130void
1131fs_visitor::visit(ir_constant *ir)
1132{
1133   /* Set this->result to reg at the bottom of the function because some code
1134    * paths will cause this visitor to be applied to other fields.  This will
1135    * cause the value stored in this->result to be modified.
1136    *
1137    * Make reg constant so that it doesn't get accidentally modified along the
1138    * way.  Yes, I actually had this problem. :(
1139    */
1140   const fs_reg reg(this, ir->type);
1141   fs_reg dst_reg = reg;
1142
1143   if (ir->type->is_array()) {
1144      const unsigned size = type_size(ir->type->fields.array);
1145
1146      for (unsigned i = 0; i < ir->type->length; i++) {
1147	 this->result = reg_undef;
1148	 ir->array_elements[i]->accept(this);
1149	 fs_reg src_reg = this->result;
1150
1151	 dst_reg.type = src_reg.type;
1152	 for (unsigned j = 0; j < size; j++) {
1153	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1154	    src_reg.reg_offset++;
1155	    dst_reg.reg_offset++;
1156	 }
1157      }
1158   } else if (ir->type->is_record()) {
1159      foreach_list(node, &ir->components) {
1160	 ir_instruction *const field = (ir_instruction *) node;
1161	 const unsigned size = type_size(field->type);
1162
1163	 this->result = reg_undef;
1164	 field->accept(this);
1165	 fs_reg src_reg = this->result;
1166
1167	 dst_reg.type = src_reg.type;
1168	 for (unsigned j = 0; j < size; j++) {
1169	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1170	    src_reg.reg_offset++;
1171	    dst_reg.reg_offset++;
1172	 }
1173      }
1174   } else {
1175      const unsigned size = type_size(ir->type);
1176
1177      for (unsigned i = 0; i < size; i++) {
1178	 switch (ir->type->base_type) {
1179	 case GLSL_TYPE_FLOAT:
1180	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1181	    break;
1182	 case GLSL_TYPE_UINT:
1183	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1184	    break;
1185	 case GLSL_TYPE_INT:
1186	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1187	    break;
1188	 case GLSL_TYPE_BOOL:
1189	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1190	    break;
1191	 default:
1192	    assert(!"Non-float/uint/int/bool constant");
1193	 }
1194	 dst_reg.reg_offset++;
1195      }
1196   }
1197
1198   this->result = reg;
1199}
1200
1201void
1202fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1203{
1204   ir_expression *expr = ir->as_expression();
1205
1206   if (expr) {
1207      fs_reg op[2];
1208      fs_inst *inst;
1209
1210      assert(expr->get_num_operands() <= 2);
1211      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1212	 assert(expr->operands[i]->type->is_scalar());
1213
1214	 this->result = reg_undef;
1215	 expr->operands[i]->accept(this);
1216	 op[i] = this->result;
1217      }
1218
1219      switch (expr->operation) {
1220      case ir_unop_logic_not:
1221	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1222	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1223	 break;
1224
1225      case ir_binop_logic_xor:
1226	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1227	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1228	 break;
1229
1230      case ir_binop_logic_or:
1231	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1232	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1233	 break;
1234
1235      case ir_binop_logic_and:
1236	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1237	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1238	 break;
1239
1240      case ir_unop_f2b:
1241	 if (intel->gen >= 6) {
1242	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1243	 } else {
1244	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1245	 }
1246	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1247	 break;
1248
1249      case ir_unop_i2b:
1250	 if (intel->gen >= 6) {
1251	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1252	 } else {
1253	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1254	 }
1255	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1256	 break;
1257
1258      case ir_binop_greater:
1259      case ir_binop_gequal:
1260      case ir_binop_less:
1261      case ir_binop_lequal:
1262      case ir_binop_equal:
1263      case ir_binop_all_equal:
1264      case ir_binop_nequal:
1265      case ir_binop_any_nequal:
1266	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1267	 inst->conditional_mod =
1268	    brw_conditional_for_comparison(expr->operation);
1269	 break;
1270
1271      default:
1272	 assert(!"not reached");
1273	 fail("bad cond code\n");
1274	 break;
1275      }
1276      return;
1277   }
1278
1279   this->result = reg_undef;
1280   ir->accept(this);
1281
1282   if (intel->gen >= 6) {
1283      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1284      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1285   } else {
1286      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1287      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1288   }
1289}
1290
1291/**
1292 * Emit a gen6 IF statement with the comparison folded into the IF
1293 * instruction.
1294 */
1295void
1296fs_visitor::emit_if_gen6(ir_if *ir)
1297{
1298   ir_expression *expr = ir->condition->as_expression();
1299
1300   if (expr) {
1301      fs_reg op[2];
1302      fs_inst *inst;
1303      fs_reg temp;
1304
1305      assert(expr->get_num_operands() <= 2);
1306      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1307	 assert(expr->operands[i]->type->is_scalar());
1308
1309	 this->result = reg_undef;
1310	 expr->operands[i]->accept(this);
1311	 op[i] = this->result;
1312      }
1313
1314      switch (expr->operation) {
1315      case ir_unop_logic_not:
1316	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1317	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1318	 return;
1319
1320      case ir_binop_logic_xor:
1321	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1322	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1323	 return;
1324
1325      case ir_binop_logic_or:
1326	 temp = fs_reg(this, glsl_type::bool_type);
1327	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1328	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1329	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1330	 return;
1331
1332      case ir_binop_logic_and:
1333	 temp = fs_reg(this, glsl_type::bool_type);
1334	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1335	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1336	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1337	 return;
1338
1339      case ir_unop_f2b:
1340	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1341	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1342	 return;
1343
1344      case ir_unop_i2b:
1345	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1346	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1347	 return;
1348
1349      case ir_binop_greater:
1350      case ir_binop_gequal:
1351      case ir_binop_less:
1352      case ir_binop_lequal:
1353      case ir_binop_equal:
1354      case ir_binop_all_equal:
1355      case ir_binop_nequal:
1356      case ir_binop_any_nequal:
1357	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1358	 inst->conditional_mod =
1359	    brw_conditional_for_comparison(expr->operation);
1360	 return;
1361      default:
1362	 assert(!"not reached");
1363	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1364	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1365	 fail("bad condition\n");
1366	 return;
1367      }
1368      return;
1369   }
1370
1371   this->result = reg_undef;
1372   ir->condition->accept(this);
1373
1374   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1375   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1376}
1377
1378void
1379fs_visitor::visit(ir_if *ir)
1380{
1381   fs_inst *inst;
1382
1383   if (intel->gen != 6 && c->dispatch_width == 16) {
1384      fail("Can't support (non-uniform) control flow on 16-wide\n");
1385   }
1386
1387   /* Don't point the annotation at the if statement, because then it plus
1388    * the then and else blocks get printed.
1389    */
1390   this->base_ir = ir->condition;
1391
1392   if (intel->gen == 6) {
1393      emit_if_gen6(ir);
1394   } else {
1395      emit_bool_to_cond_code(ir->condition);
1396
1397      inst = emit(BRW_OPCODE_IF);
1398      inst->predicated = true;
1399   }
1400
1401   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1402      ir_instruction *ir = (ir_instruction *)iter.get();
1403      this->base_ir = ir;
1404      this->result = reg_undef;
1405      ir->accept(this);
1406   }
1407
1408   if (!ir->else_instructions.is_empty()) {
1409      emit(BRW_OPCODE_ELSE);
1410
1411      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1412	 ir_instruction *ir = (ir_instruction *)iter.get();
1413	 this->base_ir = ir;
1414	 this->result = reg_undef;
1415	 ir->accept(this);
1416      }
1417   }
1418
1419   emit(BRW_OPCODE_ENDIF);
1420}
1421
1422void
1423fs_visitor::visit(ir_loop *ir)
1424{
1425   fs_reg counter = reg_undef;
1426
1427   if (c->dispatch_width == 16) {
1428      fail("Can't support (non-uniform) control flow on 16-wide\n");
1429   }
1430
1431   if (ir->counter) {
1432      this->base_ir = ir->counter;
1433      ir->counter->accept(this);
1434      counter = *(variable_storage(ir->counter));
1435
1436      if (ir->from) {
1437	 this->result = counter;
1438
1439	 this->base_ir = ir->from;
1440	 this->result = counter;
1441	 ir->from->accept(this);
1442
1443	 if (!this->result.equals(&counter))
1444	    emit(BRW_OPCODE_MOV, counter, this->result);
1445      }
1446   }
1447
1448   emit(BRW_OPCODE_DO);
1449
1450   if (ir->to) {
1451      this->base_ir = ir->to;
1452      this->result = reg_undef;
1453      ir->to->accept(this);
1454
1455      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1456      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1457
1458      inst = emit(BRW_OPCODE_BREAK);
1459      inst->predicated = true;
1460   }
1461
1462   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1463      ir_instruction *ir = (ir_instruction *)iter.get();
1464
1465      this->base_ir = ir;
1466      this->result = reg_undef;
1467      ir->accept(this);
1468   }
1469
1470   if (ir->increment) {
1471      this->base_ir = ir->increment;
1472      this->result = reg_undef;
1473      ir->increment->accept(this);
1474      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1475   }
1476
1477   emit(BRW_OPCODE_WHILE);
1478}
1479
1480void
1481fs_visitor::visit(ir_loop_jump *ir)
1482{
1483   switch (ir->mode) {
1484   case ir_loop_jump::jump_break:
1485      emit(BRW_OPCODE_BREAK);
1486      break;
1487   case ir_loop_jump::jump_continue:
1488      emit(BRW_OPCODE_CONTINUE);
1489      break;
1490   }
1491}
1492
1493void
1494fs_visitor::visit(ir_call *ir)
1495{
1496   assert(!"FINISHME");
1497}
1498
1499void
1500fs_visitor::visit(ir_return *ir)
1501{
1502   assert(!"FINISHME");
1503}
1504
1505void
1506fs_visitor::visit(ir_function *ir)
1507{
1508   /* Ignore function bodies other than main() -- we shouldn't see calls to
1509    * them since they should all be inlined before we get to ir_to_mesa.
1510    */
1511   if (strcmp(ir->name, "main") == 0) {
1512      const ir_function_signature *sig;
1513      exec_list empty;
1514
1515      sig = ir->matching_signature(&empty);
1516
1517      assert(sig);
1518
1519      foreach_iter(exec_list_iterator, iter, sig->body) {
1520	 ir_instruction *ir = (ir_instruction *)iter.get();
1521	 this->base_ir = ir;
1522	 this->result = reg_undef;
1523	 ir->accept(this);
1524      }
1525   }
1526}
1527
1528void
1529fs_visitor::visit(ir_function_signature *ir)
1530{
1531   assert(!"not reached");
1532   (void)ir;
1533}
1534
1535fs_inst *
1536fs_visitor::emit(fs_inst inst)
1537{
1538   fs_inst *list_inst = new(mem_ctx) fs_inst;
1539   *list_inst = inst;
1540
1541   if (force_uncompressed_stack > 0)
1542      list_inst->force_uncompressed = true;
1543   else if (force_sechalf_stack > 0)
1544      list_inst->force_sechalf = true;
1545
1546   list_inst->annotation = this->current_annotation;
1547   list_inst->ir = this->base_ir;
1548
1549   this->instructions.push_tail(list_inst);
1550
1551   return list_inst;
1552}
1553
1554/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1555void
1556fs_visitor::emit_dummy_fs()
1557{
1558   /* Everyone's favorite color. */
1559   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1560   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1561   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1562   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1563
1564   fs_inst *write;
1565   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1566   write->base_mrf = 0;
1567}
1568
1569/* The register location here is relative to the start of the URB
1570 * data.  It will get adjusted to be a real location before
1571 * generate_code() time.
1572 */
1573struct brw_reg
1574fs_visitor::interp_reg(int location, int channel)
1575{
1576   int regnr = urb_setup[location] * 2 + channel / 2;
1577   int stride = (channel & 1) * 4;
1578
1579   assert(urb_setup[location] != -1);
1580
1581   return brw_vec1_grf(regnr, stride);
1582}
1583
1584/** Emits the interpolation for the varying inputs. */
1585void
1586fs_visitor::emit_interpolation_setup_gen4()
1587{
1588   this->current_annotation = "compute pixel centers";
1589   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1590   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1591   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1592   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1593
1594   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1595   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1596
1597   this->current_annotation = "compute pixel deltas from v0";
1598   if (brw->has_pln) {
1599      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1600      this->delta_y = this->delta_x;
1601      this->delta_y.reg_offset++;
1602   } else {
1603      this->delta_x = fs_reg(this, glsl_type::float_type);
1604      this->delta_y = fs_reg(this, glsl_type::float_type);
1605   }
1606   emit(BRW_OPCODE_ADD, this->delta_x,
1607	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1608   emit(BRW_OPCODE_ADD, this->delta_y,
1609	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1610
1611   this->current_annotation = "compute pos.w and 1/pos.w";
1612   /* Compute wpos.w.  It's always in our setup, since it's needed to
1613    * interpolate the other attributes.
1614    */
1615   this->wpos_w = fs_reg(this, glsl_type::float_type);
1616   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1617	interp_reg(FRAG_ATTRIB_WPOS, 3));
1618   /* Compute the pixel 1/W value from wpos.w. */
1619   this->pixel_w = fs_reg(this, glsl_type::float_type);
1620   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1621   this->current_annotation = NULL;
1622}
1623
1624/** Emits the interpolation for the varying inputs. */
1625void
1626fs_visitor::emit_interpolation_setup_gen6()
1627{
1628   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1629
1630   /* If the pixel centers end up used, the setup is the same as for gen4. */
1631   this->current_annotation = "compute pixel centers";
1632   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1633   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1634   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1635   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1636   emit(BRW_OPCODE_ADD,
1637	int_pixel_x,
1638	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1639	fs_reg(brw_imm_v(0x10101010)));
1640   emit(BRW_OPCODE_ADD,
1641	int_pixel_y,
1642	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1643	fs_reg(brw_imm_v(0x11001100)));
1644
1645   /* As of gen6, we can no longer mix float and int sources.  We have
1646    * to turn the integer pixel centers into floats for their actual
1647    * use.
1648    */
1649   this->pixel_x = fs_reg(this, glsl_type::float_type);
1650   this->pixel_y = fs_reg(this, glsl_type::float_type);
1651   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1652   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1653
1654   this->current_annotation = "compute pos.w";
1655   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1656   this->wpos_w = fs_reg(this, glsl_type::float_type);
1657   emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1658
1659   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1660   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1661
1662   this->current_annotation = NULL;
1663}
1664
1665void
1666fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1667{
1668   int reg_width = c->dispatch_width / 8;
1669
1670   if (c->dispatch_width == 8 || intel->gen == 6) {
1671      /* SIMD8 write looks like:
1672       * m + 0: r0
1673       * m + 1: r1
1674       * m + 2: g0
1675       * m + 3: g1
1676       *
1677       * gen6 SIMD16 DP write looks like:
1678       * m + 0: r0
1679       * m + 1: r1
1680       * m + 2: g0
1681       * m + 3: g1
1682       * m + 4: b0
1683       * m + 5: b1
1684       * m + 6: a0
1685       * m + 7: a1
1686       */
1687      emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index * reg_width),
1688	   color);
1689   } else {
1690      /* pre-gen6 SIMD16 single source DP write looks like:
1691       * m + 0: r0
1692       * m + 1: g0
1693       * m + 2: b0
1694       * m + 3: a0
1695       * m + 4: r1
1696       * m + 5: g1
1697       * m + 6: b1
1698       * m + 7: a1
1699       */
1700      if (brw->has_compr4) {
1701	 /* By setting the high bit of the MRF register number, we
1702	  * indicate that we want COMPR4 mode - instead of doing the
1703	  * usual destination + 1 for the second half we get
1704	  * destination + 4.
1705	  */
1706	 emit(BRW_OPCODE_MOV,
1707	      fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index), color);
1708      } else {
1709	 push_force_uncompressed();
1710	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index), color);
1711	 pop_force_uncompressed();
1712
1713	 push_force_sechalf();
1714	 color.sechalf = true;
1715	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4), color);
1716	 pop_force_sechalf();
1717	 color.sechalf = false;
1718      }
1719   }
1720}
1721
1722void
1723fs_visitor::emit_fb_writes()
1724{
1725   this->current_annotation = "FB write header";
1726   GLboolean header_present = GL_TRUE;
1727   int nr = 0;
1728   int reg_width = c->dispatch_width / 8;
1729
1730   if (intel->gen >= 6 &&
1731       !this->kill_emitted &&
1732       c->key.nr_color_regions == 1) {
1733      header_present = false;
1734   }
1735
1736   if (header_present) {
1737      /* m0, m1 header */
1738      nr += 2;
1739   }
1740
1741   if (c->aa_dest_stencil_reg) {
1742      push_force_uncompressed();
1743      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1744	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1745      pop_force_uncompressed();
1746   }
1747
1748   /* Reserve space for color. It'll be filled in per MRT below. */
1749   int color_mrf = nr;
1750   nr += 4 * reg_width;
1751
1752   if (c->source_depth_to_render_target) {
1753      if (intel->gen == 6 && c->dispatch_width == 16) {
1754	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1755	  * used.  This would require 8-wide moves of each half to
1756	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1757	  * Just bail on doing so for now.
1758	  */
1759	 fail("Missing support for simd16 depth writes on gen6\n");
1760      }
1761
1762      if (c->computes_depth) {
1763	 /* Hand over gl_FragDepth. */
1764	 assert(this->frag_depth);
1765	 fs_reg depth = *(variable_storage(this->frag_depth));
1766
1767	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1768      } else {
1769	 /* Pass through the payload depth. */
1770	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1771	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1772      }
1773      nr += reg_width;
1774   }
1775
1776   if (c->dest_depth_reg) {
1777      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1778	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1779      nr += reg_width;
1780   }
1781
1782   fs_reg color = reg_undef;
1783   if (this->frag_color)
1784      color = *(variable_storage(this->frag_color));
1785   else if (this->frag_data) {
1786      color = *(variable_storage(this->frag_data));
1787      color.type = BRW_REGISTER_TYPE_F;
1788   }
1789
1790   for (int target = 0; target < c->key.nr_color_regions; target++) {
1791      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1792						 "FB write target %d",
1793						 target);
1794      if (this->frag_color || this->frag_data) {
1795	 for (int i = 0; i < 4; i++) {
1796	    emit_color_write(i, color_mrf, color);
1797	    color.reg_offset++;
1798	 }
1799      }
1800
1801      if (this->frag_color)
1802	 color.reg_offset -= 4;
1803
1804      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1805      inst->target = target;
1806      inst->base_mrf = 0;
1807      inst->mlen = nr;
1808      if (target == c->key.nr_color_regions - 1)
1809	 inst->eot = true;
1810      inst->header_present = header_present;
1811   }
1812
1813   if (c->key.nr_color_regions == 0) {
1814      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1815	 /* If the alpha test is enabled but there's no color buffer,
1816	  * we still need to send alpha out the pipeline to our null
1817	  * renderbuffer.
1818	  */
1819	 color.reg_offset += 3;
1820	 emit_color_write(3, color_mrf, color);
1821      }
1822
1823      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1824      inst->base_mrf = 0;
1825      inst->mlen = nr;
1826      inst->eot = true;
1827      inst->header_present = header_present;
1828   }
1829
1830   this->current_annotation = NULL;
1831}
1832