brw_fs_visitor.cpp revision 73b0a28ba8b3e2ab917d4c729f34ddbde52c9e88
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM || this->result.file == GRF);
146      this->result.reg_offset += index->value.i[0] * element_size;
147   } else {
148      assert(!"FINISHME: non-constant array element");
149   }
150}
151
152/* Instruction selection: Produce a MOV.sat instead of
153 * MIN(MAX(val, 0), 1) when possible.
154 */
155bool
156fs_visitor::try_emit_saturate(ir_expression *ir)
157{
158   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
159
160   if (!sat_val)
161      return false;
162
163   sat_val->accept(this);
164   fs_reg src = this->result;
165
166   this->result = fs_reg(this, ir->type);
167   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
168   inst->saturate = true;
169
170   return true;
171}
172
173void
174fs_visitor::visit(ir_expression *ir)
175{
176   unsigned int operand;
177   fs_reg op[2], temp;
178   fs_inst *inst;
179
180   assert(ir->get_num_operands() <= 2);
181
182   if (try_emit_saturate(ir))
183      return;
184
185   for (operand = 0; operand < ir->get_num_operands(); operand++) {
186      ir->operands[operand]->accept(this);
187      if (this->result.file == BAD_FILE) {
188	 ir_print_visitor v;
189	 fail("Failed to get tree for expression operand:\n");
190	 ir->operands[operand]->accept(&v);
191      }
192      op[operand] = this->result;
193
194      /* Matrix expression operands should have been broken down to vector
195       * operations already.
196       */
197      assert(!ir->operands[operand]->type->is_matrix());
198      /* And then those vector operands should have been broken down to scalar.
199       */
200      assert(!ir->operands[operand]->type->is_vector());
201   }
202
203   /* Storage for our result.  If our result goes into an assignment, it will
204    * just get copy-propagated out, so no worries.
205    */
206   this->result = fs_reg(this, ir->type);
207
208   switch (ir->operation) {
209   case ir_unop_logic_not:
210      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
211       * ones complement of the whole register, not just bit 0.
212       */
213      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
214      break;
215   case ir_unop_neg:
216      op[0].negate = !op[0].negate;
217      this->result = op[0];
218      break;
219   case ir_unop_abs:
220      op[0].abs = true;
221      op[0].negate = false;
222      this->result = op[0];
223      break;
224   case ir_unop_sign:
225      temp = fs_reg(this, ir->type);
226
227      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
228
229      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
230      inst->conditional_mod = BRW_CONDITIONAL_G;
231      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
232      inst->predicated = true;
233
234      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
235      inst->conditional_mod = BRW_CONDITIONAL_L;
236      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
237      inst->predicated = true;
238
239      break;
240   case ir_unop_rcp:
241      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
242      break;
243
244   case ir_unop_exp2:
245      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
246      break;
247   case ir_unop_log2:
248      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
249      break;
250   case ir_unop_exp:
251   case ir_unop_log:
252      assert(!"not reached: should be handled by ir_explog_to_explog2");
253      break;
254   case ir_unop_sin:
255   case ir_unop_sin_reduced:
256      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
257      break;
258   case ir_unop_cos:
259   case ir_unop_cos_reduced:
260      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
261      break;
262
263   case ir_unop_dFdx:
264      emit(FS_OPCODE_DDX, this->result, op[0]);
265      break;
266   case ir_unop_dFdy:
267      emit(FS_OPCODE_DDY, this->result, op[0]);
268      break;
269
270   case ir_binop_add:
271      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
272      break;
273   case ir_binop_sub:
274      assert(!"not reached: should be handled by ir_sub_to_add_neg");
275      break;
276
277   case ir_binop_mul:
278      if (ir->type->is_integer()) {
279	 /* For integer multiplication, the MUL uses the low 16 bits
280	  * of one of the operands (src0 on gen6, src1 on gen7).  The
281	  * MACH accumulates in the contribution of the upper 16 bits
282	  * of that operand.
283	  *
284	  * FINISHME: Emit just the MUL if we know an operand is small
285	  * enough.
286	  */
287	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
288
289	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
290	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
291	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
292      } else {
293	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
294      }
295      break;
296   case ir_binop_div:
297      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
298      assert(ir->type->is_integer());
299      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
300      break;
301   case ir_binop_mod:
302      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
303      assert(ir->type->is_integer());
304      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
305      break;
306
307   case ir_binop_less:
308   case ir_binop_greater:
309   case ir_binop_lequal:
310   case ir_binop_gequal:
311   case ir_binop_equal:
312   case ir_binop_all_equal:
313   case ir_binop_nequal:
314   case ir_binop_any_nequal:
315      temp = this->result;
316      /* original gen4 does implicit conversion before comparison. */
317      if (intel->gen < 5)
318	 temp.type = op[0].type;
319
320      resolve_ud_negate(&op[0]);
321      resolve_ud_negate(&op[1]);
322
323      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
324      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
325      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
326      break;
327
328   case ir_binop_logic_xor:
329      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
330      break;
331
332   case ir_binop_logic_or:
333      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
334      break;
335
336   case ir_binop_logic_and:
337      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
338      break;
339
340   case ir_binop_dot:
341   case ir_unop_any:
342      assert(!"not reached: should be handled by brw_fs_channel_expressions");
343      break;
344
345   case ir_unop_noise:
346      assert(!"not reached: should be handled by lower_noise");
347      break;
348
349   case ir_quadop_vector:
350      assert(!"not reached: should be handled by lower_quadop_vector");
351      break;
352
353   case ir_unop_sqrt:
354      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
355      break;
356
357   case ir_unop_rsq:
358      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
359      break;
360
361   case ir_unop_i2u:
362      op[0].type = BRW_REGISTER_TYPE_UD;
363      this->result = op[0];
364      break;
365   case ir_unop_u2i:
366      op[0].type = BRW_REGISTER_TYPE_D;
367      this->result = op[0];
368      break;
369   case ir_unop_i2f:
370   case ir_unop_u2f:
371   case ir_unop_b2f:
372   case ir_unop_b2i:
373   case ir_unop_f2i:
374      emit(BRW_OPCODE_MOV, this->result, op[0]);
375      break;
376   case ir_unop_f2b:
377   case ir_unop_i2b:
378      temp = this->result;
379      /* original gen4 does implicit conversion before comparison. */
380      if (intel->gen < 5)
381	 temp.type = op[0].type;
382
383      resolve_ud_negate(&op[0]);
384
385      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
386      inst->conditional_mod = BRW_CONDITIONAL_NZ;
387      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
388      break;
389
390   case ir_unop_trunc:
391      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
392      break;
393   case ir_unop_ceil:
394      op[0].negate = !op[0].negate;
395      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
396      this->result.negate = true;
397      break;
398   case ir_unop_floor:
399      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
400      break;
401   case ir_unop_fract:
402      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
403      break;
404   case ir_unop_round_even:
405      emit(BRW_OPCODE_RNDE, this->result, op[0]);
406      break;
407
408   case ir_binop_min:
409      resolve_ud_negate(&op[0]);
410      resolve_ud_negate(&op[1]);
411
412      if (intel->gen >= 6) {
413	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
414	 inst->conditional_mod = BRW_CONDITIONAL_L;
415      } else {
416	 /* Unalias the destination */
417	 this->result = fs_reg(this, ir->type);
418
419	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
420	 inst->conditional_mod = BRW_CONDITIONAL_L;
421
422	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
423	 inst->predicated = true;
424      }
425      break;
426   case ir_binop_max:
427      resolve_ud_negate(&op[0]);
428      resolve_ud_negate(&op[1]);
429
430      if (intel->gen >= 6) {
431	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
432	 inst->conditional_mod = BRW_CONDITIONAL_GE;
433      } else {
434	 /* Unalias the destination */
435	 this->result = fs_reg(this, ir->type);
436
437	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
438	 inst->conditional_mod = BRW_CONDITIONAL_G;
439
440	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
441	 inst->predicated = true;
442      }
443      break;
444
445   case ir_binop_pow:
446      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
447      break;
448
449   case ir_unop_bit_not:
450      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
451      break;
452   case ir_binop_bit_and:
453      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
454      break;
455   case ir_binop_bit_xor:
456      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
457      break;
458   case ir_binop_bit_or:
459      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
460      break;
461
462   case ir_binop_lshift:
463      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
464      break;
465
466   case ir_binop_rshift:
467      if (ir->type->base_type == GLSL_TYPE_INT)
468	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
469      else
470	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
471      break;
472   }
473}
474
475void
476fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
477				   const glsl_type *type, bool predicated)
478{
479   switch (type->base_type) {
480   case GLSL_TYPE_FLOAT:
481   case GLSL_TYPE_UINT:
482   case GLSL_TYPE_INT:
483   case GLSL_TYPE_BOOL:
484      for (unsigned int i = 0; i < type->components(); i++) {
485	 l.type = brw_type_for_base_type(type);
486	 r.type = brw_type_for_base_type(type);
487
488	 if (predicated || !l.equals(&r)) {
489	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
490	    inst->predicated = predicated;
491	 }
492
493	 l.reg_offset++;
494	 r.reg_offset++;
495      }
496      break;
497   case GLSL_TYPE_ARRAY:
498      for (unsigned int i = 0; i < type->length; i++) {
499	 emit_assignment_writes(l, r, type->fields.array, predicated);
500      }
501      break;
502
503   case GLSL_TYPE_STRUCT:
504      for (unsigned int i = 0; i < type->length; i++) {
505	 emit_assignment_writes(l, r, type->fields.structure[i].type,
506				predicated);
507      }
508      break;
509
510   case GLSL_TYPE_SAMPLER:
511      break;
512
513   default:
514      assert(!"not reached");
515      break;
516   }
517}
518
519/* If the RHS processing resulted in an instruction generating a
520 * temporary value, and it would be easy to rewrite the instruction to
521 * generate its result right into the LHS instead, do so.  This ends
522 * up reliably removing instructions where it can be tricky to do so
523 * later without real UD chain information.
524 */
525bool
526fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
527                                   fs_reg dst,
528                                   fs_reg src,
529                                   fs_inst *pre_rhs_inst,
530                                   fs_inst *last_rhs_inst)
531{
532   if (pre_rhs_inst == last_rhs_inst)
533      return false; /* No instructions generated to work with. */
534
535   /* Only attempt if we're doing a direct assignment. */
536   if (ir->condition ||
537       !(ir->lhs->type->is_scalar() ||
538        (ir->lhs->type->is_vector() &&
539         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
540      return false;
541
542   /* Make sure the last instruction generated our source reg. */
543   if (last_rhs_inst->predicated ||
544       last_rhs_inst->force_uncompressed ||
545       last_rhs_inst->force_sechalf ||
546       !src.equals(&last_rhs_inst->dst))
547      return false;
548
549   /* Success!  Rewrite the instruction. */
550   last_rhs_inst->dst = dst;
551
552   return true;
553}
554
555void
556fs_visitor::visit(ir_assignment *ir)
557{
558   fs_reg l, r;
559   fs_inst *inst;
560
561   /* FINISHME: arrays on the lhs */
562   ir->lhs->accept(this);
563   l = this->result;
564
565   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
566
567   ir->rhs->accept(this);
568   r = this->result;
569
570   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
571
572   assert(l.file != BAD_FILE);
573   assert(r.file != BAD_FILE);
574
575   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
576      return;
577
578   if (ir->condition) {
579      emit_bool_to_cond_code(ir->condition);
580   }
581
582   if (ir->lhs->type->is_scalar() ||
583       ir->lhs->type->is_vector()) {
584      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
585	 if (ir->write_mask & (1 << i)) {
586	    inst = emit(BRW_OPCODE_MOV, l, r);
587	    if (ir->condition)
588	       inst->predicated = true;
589	    r.reg_offset++;
590	 }
591	 l.reg_offset++;
592      }
593   } else {
594      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
595   }
596}
597
598fs_inst *
599fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
600			      int sampler)
601{
602   int mlen;
603   int base_mrf = 1;
604   bool simd16 = false;
605   fs_reg orig_dst;
606
607   /* g0 header. */
608   mlen = 1;
609
610   if (ir->shadow_comparitor && ir->op != ir_txd) {
611      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
612	 fs_inst *inst = emit(BRW_OPCODE_MOV,
613			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
614	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
615	    inst->saturate = true;
616
617	 coordinate.reg_offset++;
618      }
619      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
620      mlen += 3;
621
622      if (ir->op == ir_tex) {
623	 /* There's no plain shadow compare message, so we use shadow
624	  * compare with a bias of 0.0.
625	  */
626	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
627	 mlen++;
628      } else if (ir->op == ir_txb) {
629	 ir->lod_info.bias->accept(this);
630	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
631	 mlen++;
632      } else {
633	 assert(ir->op == ir_txl);
634	 ir->lod_info.lod->accept(this);
635	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
636	 mlen++;
637      }
638
639      ir->shadow_comparitor->accept(this);
640      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
641      mlen++;
642   } else if (ir->op == ir_tex) {
643      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
644	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
645			      coordinate);
646	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
647	    inst->saturate = true;
648	 coordinate.reg_offset++;
649      }
650      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
651      mlen += 3;
652   } else if (ir->op == ir_txd) {
653      ir->lod_info.grad.dPdx->accept(this);
654      fs_reg dPdx = this->result;
655
656      ir->lod_info.grad.dPdy->accept(this);
657      fs_reg dPdy = this->result;
658
659      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
660	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
661	 coordinate.reg_offset++;
662      }
663      /* the slots for u and v are always present, but r is optional */
664      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
665
666      /*  P   = u, v, r
667       * dPdx = dudx, dvdx, drdx
668       * dPdy = dudy, dvdy, drdy
669       *
670       * 1-arg: Does not exist.
671       *
672       * 2-arg: dudx   dvdx   dudy   dvdy
673       *        dPdx.x dPdx.y dPdy.x dPdy.y
674       *        m4     m5     m6     m7
675       *
676       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
677       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
678       *        m5     m6     m7     m8     m9     m10
679       */
680      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
681	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
682	 dPdx.reg_offset++;
683      }
684      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
685
686      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
687	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
688	 dPdy.reg_offset++;
689      }
690      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
691   } else if (ir->op == ir_txs) {
692      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
693      simd16 = true;
694      ir->lod_info.lod->accept(this);
695      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
696      mlen += 2;
697   } else {
698      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
699       * instructions.  We'll need to do SIMD16 here.
700       */
701      simd16 = true;
702      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
703
704      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
705	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
706						     base_mrf + mlen + i * 2,
707						     coordinate.type),
708			      coordinate);
709	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
710	    inst->saturate = true;
711	 coordinate.reg_offset++;
712      }
713
714      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
715       * be necessary for TXF (ld), but seems wise to do for all messages.
716       */
717      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
718	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
719      }
720
721      /* lod/bias appears after u/v/r. */
722      mlen += 6;
723
724      if (ir->op == ir_txb) {
725	 ir->lod_info.bias->accept(this);
726	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
727	 mlen++;
728      } else {
729	 ir->lod_info.lod->accept(this);
730	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
731			      this->result);
732	 mlen++;
733      }
734
735      /* The unused upper half. */
736      mlen++;
737   }
738
739   if (simd16) {
740      /* Now, since we're doing simd16, the return is 2 interleaved
741       * vec4s where the odd-indexed ones are junk. We'll need to move
742       * this weirdness around to the expected layout.
743       */
744      orig_dst = dst;
745      const glsl_type *vec_type =
746	 glsl_type::get_instance(ir->type->base_type, 4, 1);
747      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
748      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
749			       : BRW_REGISTER_TYPE_F;
750   }
751
752   fs_inst *inst = NULL;
753   switch (ir->op) {
754   case ir_tex:
755      inst = emit(FS_OPCODE_TEX, dst);
756      break;
757   case ir_txb:
758      inst = emit(FS_OPCODE_TXB, dst);
759      break;
760   case ir_txl:
761      inst = emit(FS_OPCODE_TXL, dst);
762      break;
763   case ir_txd:
764      inst = emit(FS_OPCODE_TXD, dst);
765      break;
766   case ir_txs:
767      inst = emit(FS_OPCODE_TXS, dst);
768      break;
769   case ir_txf:
770      inst = emit(FS_OPCODE_TXF, dst);
771      break;
772   }
773   inst->base_mrf = base_mrf;
774   inst->mlen = mlen;
775   inst->header_present = true;
776
777   if (simd16) {
778      for (int i = 0; i < 4; i++) {
779	 emit(BRW_OPCODE_MOV, orig_dst, dst);
780	 orig_dst.reg_offset++;
781	 dst.reg_offset += 2;
782      }
783   }
784
785   return inst;
786}
787
788/* gen5's sampler has slots for u, v, r, array index, then optional
789 * parameters like shadow comparitor or LOD bias.  If optional
790 * parameters aren't present, those base slots are optional and don't
791 * need to be included in the message.
792 *
793 * We don't fill in the unnecessary slots regardless, which may look
794 * surprising in the disassembly.
795 */
796fs_inst *
797fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
798			      int sampler)
799{
800   int mlen = 0;
801   int base_mrf = 2;
802   int reg_width = c->dispatch_width / 8;
803   bool header_present = false;
804   const int vector_elements =
805      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
806
807   if (ir->offset) {
808      /* The offsets set up by the ir_texture visitor are in the
809       * m1 header, so we can't go headerless.
810       */
811      header_present = true;
812      mlen++;
813      base_mrf--;
814   }
815
816   for (int i = 0; i < vector_elements; i++) {
817      fs_inst *inst = emit(BRW_OPCODE_MOV,
818			   fs_reg(MRF, base_mrf + mlen + i * reg_width,
819				  coordinate.type),
820			   coordinate);
821      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
822	 inst->saturate = true;
823      coordinate.reg_offset++;
824   }
825   mlen += vector_elements * reg_width;
826
827   if (ir->shadow_comparitor && ir->op != ir_txd) {
828      mlen = MAX2(mlen, header_present + 4 * reg_width);
829
830      ir->shadow_comparitor->accept(this);
831      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
832      mlen += reg_width;
833   }
834
835   fs_inst *inst = NULL;
836   switch (ir->op) {
837   case ir_tex:
838      inst = emit(FS_OPCODE_TEX, dst);
839      break;
840   case ir_txb:
841      ir->lod_info.bias->accept(this);
842      mlen = MAX2(mlen, header_present + 4 * reg_width);
843      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
844      mlen += reg_width;
845
846      inst = emit(FS_OPCODE_TXB, dst);
847
848      break;
849   case ir_txl:
850      ir->lod_info.lod->accept(this);
851      mlen = MAX2(mlen, header_present + 4 * reg_width);
852      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
853      mlen += reg_width;
854
855      inst = emit(FS_OPCODE_TXL, dst);
856      break;
857   case ir_txd: {
858      ir->lod_info.grad.dPdx->accept(this);
859      fs_reg dPdx = this->result;
860
861      ir->lod_info.grad.dPdy->accept(this);
862      fs_reg dPdy = this->result;
863
864      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
865
866      /**
867       *  P   =  u,    v,    r
868       * dPdx = dudx, dvdx, drdx
869       * dPdy = dudy, dvdy, drdy
870       *
871       * Load up these values:
872       * - dudx   dudy   dvdx   dvdy   drdx   drdy
873       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
874       */
875      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
876	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
877	 dPdx.reg_offset++;
878	 mlen += reg_width;
879
880	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
881	 dPdy.reg_offset++;
882	 mlen += reg_width;
883      }
884
885      inst = emit(FS_OPCODE_TXD, dst);
886      break;
887   }
888   case ir_txs:
889      ir->lod_info.lod->accept(this);
890      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
891      mlen += reg_width;
892      inst = emit(FS_OPCODE_TXS, dst);
893      break;
894   case ir_txf:
895      mlen = header_present + 4 * reg_width;
896
897      ir->lod_info.lod->accept(this);
898      emit(BRW_OPCODE_MOV,
899	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
900	   this->result);
901      inst = emit(FS_OPCODE_TXF, dst);
902      break;
903   }
904   inst->base_mrf = base_mrf;
905   inst->mlen = mlen;
906   inst->header_present = header_present;
907
908   if (mlen > 11) {
909      fail("Message length >11 disallowed by hardware\n");
910   }
911
912   return inst;
913}
914
915fs_inst *
916fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
917			      int sampler)
918{
919   int mlen = 0;
920   int base_mrf = 2;
921   int reg_width = c->dispatch_width / 8;
922   bool header_present = false;
923
924   if (ir->offset) {
925      /* The offsets set up by the ir_texture visitor are in the
926       * m1 header, so we can't go headerless.
927       */
928      header_present = true;
929      mlen++;
930      base_mrf--;
931   }
932
933   if (ir->shadow_comparitor && ir->op != ir_txd) {
934      ir->shadow_comparitor->accept(this);
935      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
936      mlen += reg_width;
937   }
938
939   /* Set up the LOD info */
940   switch (ir->op) {
941   case ir_tex:
942      break;
943   case ir_txb:
944      ir->lod_info.bias->accept(this);
945      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
946      mlen += reg_width;
947      break;
948   case ir_txl:
949      ir->lod_info.lod->accept(this);
950      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
951      mlen += reg_width;
952      break;
953   case ir_txd: {
954      if (c->dispatch_width == 16)
955	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
956
957      ir->lod_info.grad.dPdx->accept(this);
958      fs_reg dPdx = this->result;
959
960      ir->lod_info.grad.dPdy->accept(this);
961      fs_reg dPdy = this->result;
962
963      /* Load dPdx and the coordinate together:
964       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
965       */
966      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
967	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
968			      coordinate);
969	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
970	    inst->saturate = true;
971	 coordinate.reg_offset++;
972	 mlen += reg_width;
973
974	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
975	 dPdx.reg_offset++;
976	 mlen += reg_width;
977
978	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
979	 dPdy.reg_offset++;
980	 mlen += reg_width;
981      }
982      break;
983   }
984   case ir_txs:
985      ir->lod_info.lod->accept(this);
986      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
987      mlen += reg_width;
988      break;
989   case ir_txf:
990      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
991      emit(BRW_OPCODE_MOV,
992	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
993      coordinate.reg_offset++;
994      mlen += reg_width;
995
996      ir->lod_info.lod->accept(this);
997      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
998      mlen += reg_width;
999
1000      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1001	 emit(BRW_OPCODE_MOV,
1002	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1003	 coordinate.reg_offset++;
1004	 mlen += reg_width;
1005      }
1006      break;
1007   }
1008
1009   /* Set up the coordinate (except for cases where it was done above) */
1010   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1011      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1012	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1013			      coordinate);
1014	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
1015	    inst->saturate = true;
1016	 coordinate.reg_offset++;
1017	 mlen += reg_width;
1018      }
1019   }
1020
1021   /* Generate the SEND */
1022   fs_inst *inst = NULL;
1023   switch (ir->op) {
1024   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
1025   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1026   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
1027   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
1028   case ir_txf: inst = emit(FS_OPCODE_TXF, dst); break;
1029   case ir_txs: inst = emit(FS_OPCODE_TXS, dst); break;
1030   }
1031   inst->base_mrf = base_mrf;
1032   inst->mlen = mlen;
1033   inst->header_present = header_present;
1034
1035   if (mlen > 11) {
1036      fail("Message length >11 disallowed by hardware\n");
1037   }
1038
1039   return inst;
1040}
1041
1042void
1043fs_visitor::visit(ir_texture *ir)
1044{
1045   fs_inst *inst = NULL;
1046
1047   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1048   sampler = fp->Base.SamplerUnits[sampler];
1049
1050   /* Our hardware doesn't have a sample_d_c message, so shadow compares
1051    * for textureGrad/TXD need to be emulated with instructions.
1052    */
1053   bool hw_compare_supported = ir->op != ir_txd;
1054   if (ir->shadow_comparitor && !hw_compare_supported) {
1055      assert(c->key.compare_funcs[sampler] != GL_NONE);
1056      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1057      if (c->key.compare_funcs[sampler] == GL_ALWAYS)
1058	 return swizzle_result(ir, fs_reg(1.0f), sampler);
1059      else if (c->key.compare_funcs[sampler] == GL_NEVER)
1060	 return swizzle_result(ir, fs_reg(0.0f), sampler);
1061   }
1062
1063   if (ir->coordinate)
1064      ir->coordinate->accept(this);
1065   fs_reg coordinate = this->result;
1066
1067   if (ir->offset != NULL) {
1068      ir_constant *offset = ir->offset->as_constant();
1069      assert(offset != NULL);
1070
1071      signed char offsets[3];
1072      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
1073	 offsets[i] = (signed char) offset->value.i[i];
1074
1075      /* Combine all three offsets into a single unsigned dword:
1076       *
1077       *    bits 11:8 - U Offset (X component)
1078       *    bits  7:4 - V Offset (Y component)
1079       *    bits  3:0 - R Offset (Z component)
1080       */
1081      unsigned offset_bits = 0;
1082      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
1083	 const unsigned shift = 4 * (2 - i);
1084	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
1085      }
1086
1087      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1088      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1089	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
1090
1091      /* Then set the offset bits in DWord 2 of the message header. */
1092      emit(BRW_OPCODE_MOV,
1093	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1094			 BRW_REGISTER_TYPE_UD)),
1095	   fs_reg(brw_imm_uw(offset_bits)));
1096   }
1097
1098   /* Should be lowered by do_lower_texture_projection */
1099   assert(!ir->projector);
1100
1101   /* The 965 requires the EU to do the normalization of GL rectangle
1102    * texture coordinates.  We use the program parameter state
1103    * tracking to get the scaling factor.
1104    */
1105   if (intel->gen < 6 &&
1106       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1107      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1108      int tokens[STATE_LENGTH] = {
1109	 STATE_INTERNAL,
1110	 STATE_TEXRECT_SCALE,
1111	 sampler,
1112	 0,
1113	 0
1114      };
1115
1116      if (c->dispatch_width == 16) {
1117	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1118	 this->result = fs_reg(this, ir->type);
1119	 return;
1120      }
1121
1122      c->prog_data.param_convert[c->prog_data.nr_params] =
1123	 PARAM_NO_CONVERT;
1124      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1125	 PARAM_NO_CONVERT;
1126
1127      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1128      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1129      GLuint index = _mesa_add_state_reference(params,
1130					       (gl_state_index *)tokens);
1131
1132      this->param_index[c->prog_data.nr_params] = index;
1133      this->param_offset[c->prog_data.nr_params] = 0;
1134      c->prog_data.nr_params++;
1135      this->param_index[c->prog_data.nr_params] = index;
1136      this->param_offset[c->prog_data.nr_params] = 1;
1137      c->prog_data.nr_params++;
1138
1139      fs_reg dst = fs_reg(this, ir->coordinate->type);
1140      fs_reg src = coordinate;
1141      coordinate = dst;
1142
1143      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1144      dst.reg_offset++;
1145      src.reg_offset++;
1146      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1147   }
1148
1149   /* Writemasking doesn't eliminate channels on SIMD8 texture
1150    * samples, so don't worry about them.
1151    */
1152   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1153
1154   if (intel->gen >= 7) {
1155      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1156   } else if (intel->gen >= 5) {
1157      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1158   } else {
1159      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1160   }
1161
1162   /* If there's an offset, we already set up m1.  To avoid the implied move,
1163    * use the null register.  Otherwise, we want an implied move from g0.
1164    */
1165   if (ir->offset != NULL || !inst->header_present)
1166      inst->src[0] = reg_undef;
1167   else
1168      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1169
1170   inst->sampler = sampler;
1171
1172   if (ir->shadow_comparitor) {
1173      if (hw_compare_supported) {
1174	 inst->shadow_compare = true;
1175      } else {
1176	 ir->shadow_comparitor->accept(this);
1177	 fs_reg ref = this->result;
1178
1179	 fs_reg value = dst;
1180	 dst = fs_reg(this, glsl_type::vec4_type);
1181
1182	 /* FINISHME: This needs to be done pre-filtering. */
1183
1184	 uint32_t conditional = 0;
1185	 switch (c->key.compare_funcs[sampler]) {
1186	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1187	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1188	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1189	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1190	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1191	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1192	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1193	 default: assert(!"Should not get here: bad shadow compare function");
1194	 }
1195
1196	 /* Use conditional moves to load 0 or 1 as the result */
1197	 this->current_annotation = "manual shadow comparison";
1198	 for (int i = 0; i < 4; i++) {
1199	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1200
1201	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1202	    inst->conditional_mod = conditional;
1203
1204	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1205	    inst->predicated = true;
1206
1207	    dst.reg_offset++;
1208	    value.reg_offset++;
1209	 }
1210	 dst.reg_offset = 0;
1211      }
1212   }
1213
1214   swizzle_result(ir, dst, sampler);
1215}
1216
1217/**
1218 * Swizzle the result of a texture result.  This is necessary for
1219 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1220 */
1221void
1222fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1223{
1224   this->result = orig_val;
1225
1226   if (ir->type == glsl_type::float_type) {
1227      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1228      assert(ir->sampler->type->sampler_shadow);
1229   } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1230      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1231
1232      for (int i = 0; i < 4; i++) {
1233	 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1234	 fs_reg l = swizzled_result;
1235	 l.reg_offset += i;
1236
1237	 if (swiz == SWIZZLE_ZERO) {
1238	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1239	 } else if (swiz == SWIZZLE_ONE) {
1240	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1241	 } else {
1242	    fs_reg r = orig_val;
1243	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1244	    emit(BRW_OPCODE_MOV, l, r);
1245	 }
1246      }
1247      this->result = swizzled_result;
1248   }
1249}
1250
1251void
1252fs_visitor::visit(ir_swizzle *ir)
1253{
1254   ir->val->accept(this);
1255   fs_reg val = this->result;
1256
1257   if (ir->type->vector_elements == 1) {
1258      this->result.reg_offset += ir->mask.x;
1259      return;
1260   }
1261
1262   fs_reg result = fs_reg(this, ir->type);
1263   this->result = result;
1264
1265   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1266      fs_reg channel = val;
1267      int swiz = 0;
1268
1269      switch (i) {
1270      case 0:
1271	 swiz = ir->mask.x;
1272	 break;
1273      case 1:
1274	 swiz = ir->mask.y;
1275	 break;
1276      case 2:
1277	 swiz = ir->mask.z;
1278	 break;
1279      case 3:
1280	 swiz = ir->mask.w;
1281	 break;
1282      }
1283
1284      channel.reg_offset += swiz;
1285      emit(BRW_OPCODE_MOV, result, channel);
1286      result.reg_offset++;
1287   }
1288}
1289
1290void
1291fs_visitor::visit(ir_discard *ir)
1292{
1293   assert(ir->condition == NULL); /* FINISHME */
1294
1295   emit(FS_OPCODE_DISCARD);
1296   kill_emitted = true;
1297}
1298
1299void
1300fs_visitor::visit(ir_constant *ir)
1301{
1302   /* Set this->result to reg at the bottom of the function because some code
1303    * paths will cause this visitor to be applied to other fields.  This will
1304    * cause the value stored in this->result to be modified.
1305    *
1306    * Make reg constant so that it doesn't get accidentally modified along the
1307    * way.  Yes, I actually had this problem. :(
1308    */
1309   const fs_reg reg(this, ir->type);
1310   fs_reg dst_reg = reg;
1311
1312   if (ir->type->is_array()) {
1313      const unsigned size = type_size(ir->type->fields.array);
1314
1315      for (unsigned i = 0; i < ir->type->length; i++) {
1316	 ir->array_elements[i]->accept(this);
1317	 fs_reg src_reg = this->result;
1318
1319	 dst_reg.type = src_reg.type;
1320	 for (unsigned j = 0; j < size; j++) {
1321	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1322	    src_reg.reg_offset++;
1323	    dst_reg.reg_offset++;
1324	 }
1325      }
1326   } else if (ir->type->is_record()) {
1327      foreach_list(node, &ir->components) {
1328	 ir_instruction *const field = (ir_instruction *) node;
1329	 const unsigned size = type_size(field->type);
1330
1331	 field->accept(this);
1332	 fs_reg src_reg = this->result;
1333
1334	 dst_reg.type = src_reg.type;
1335	 for (unsigned j = 0; j < size; j++) {
1336	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1337	    src_reg.reg_offset++;
1338	    dst_reg.reg_offset++;
1339	 }
1340      }
1341   } else {
1342      const unsigned size = type_size(ir->type);
1343
1344      for (unsigned i = 0; i < size; i++) {
1345	 switch (ir->type->base_type) {
1346	 case GLSL_TYPE_FLOAT:
1347	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1348	    break;
1349	 case GLSL_TYPE_UINT:
1350	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1351	    break;
1352	 case GLSL_TYPE_INT:
1353	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1354	    break;
1355	 case GLSL_TYPE_BOOL:
1356	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1357	    break;
1358	 default:
1359	    assert(!"Non-float/uint/int/bool constant");
1360	 }
1361	 dst_reg.reg_offset++;
1362      }
1363   }
1364
1365   this->result = reg;
1366}
1367
1368void
1369fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1370{
1371   ir_expression *expr = ir->as_expression();
1372
1373   if (expr) {
1374      fs_reg op[2];
1375      fs_inst *inst;
1376
1377      assert(expr->get_num_operands() <= 2);
1378      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1379	 assert(expr->operands[i]->type->is_scalar());
1380
1381	 expr->operands[i]->accept(this);
1382	 op[i] = this->result;
1383
1384	 resolve_ud_negate(&op[i]);
1385      }
1386
1387      switch (expr->operation) {
1388      case ir_unop_logic_not:
1389	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1390	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1391	 break;
1392
1393      case ir_binop_logic_xor:
1394	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1395	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1396	 break;
1397
1398      case ir_binop_logic_or:
1399	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1400	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1401	 break;
1402
1403      case ir_binop_logic_and:
1404	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1405	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1406	 break;
1407
1408      case ir_unop_f2b:
1409	 if (intel->gen >= 6) {
1410	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1411	 } else {
1412	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1413	 }
1414	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1415	 break;
1416
1417      case ir_unop_i2b:
1418	 if (intel->gen >= 6) {
1419	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1420	 } else {
1421	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1422	 }
1423	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1424	 break;
1425
1426      case ir_binop_greater:
1427      case ir_binop_gequal:
1428      case ir_binop_less:
1429      case ir_binop_lequal:
1430      case ir_binop_equal:
1431      case ir_binop_all_equal:
1432      case ir_binop_nequal:
1433      case ir_binop_any_nequal:
1434	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1435	 inst->conditional_mod =
1436	    brw_conditional_for_comparison(expr->operation);
1437	 break;
1438
1439      default:
1440	 assert(!"not reached");
1441	 fail("bad cond code\n");
1442	 break;
1443      }
1444      return;
1445   }
1446
1447   ir->accept(this);
1448
1449   if (intel->gen >= 6) {
1450      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1451      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1452   } else {
1453      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1454      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1455   }
1456}
1457
1458/**
1459 * Emit a gen6 IF statement with the comparison folded into the IF
1460 * instruction.
1461 */
1462void
1463fs_visitor::emit_if_gen6(ir_if *ir)
1464{
1465   ir_expression *expr = ir->condition->as_expression();
1466
1467   if (expr) {
1468      fs_reg op[2];
1469      fs_inst *inst;
1470      fs_reg temp;
1471
1472      assert(expr->get_num_operands() <= 2);
1473      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1474	 assert(expr->operands[i]->type->is_scalar());
1475
1476	 expr->operands[i]->accept(this);
1477	 op[i] = this->result;
1478      }
1479
1480      switch (expr->operation) {
1481      case ir_unop_logic_not:
1482	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1483	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1484	 return;
1485
1486      case ir_binop_logic_xor:
1487	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1488	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1489	 return;
1490
1491      case ir_binop_logic_or:
1492	 temp = fs_reg(this, glsl_type::bool_type);
1493	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1494	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1495	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1496	 return;
1497
1498      case ir_binop_logic_and:
1499	 temp = fs_reg(this, glsl_type::bool_type);
1500	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1501	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1502	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1503	 return;
1504
1505      case ir_unop_f2b:
1506	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1507	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1508	 return;
1509
1510      case ir_unop_i2b:
1511	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1512	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1513	 return;
1514
1515      case ir_binop_greater:
1516      case ir_binop_gequal:
1517      case ir_binop_less:
1518      case ir_binop_lequal:
1519      case ir_binop_equal:
1520      case ir_binop_all_equal:
1521      case ir_binop_nequal:
1522      case ir_binop_any_nequal:
1523	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1524	 inst->conditional_mod =
1525	    brw_conditional_for_comparison(expr->operation);
1526	 return;
1527      default:
1528	 assert(!"not reached");
1529	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1530	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1531	 fail("bad condition\n");
1532	 return;
1533      }
1534      return;
1535   }
1536
1537   ir->condition->accept(this);
1538
1539   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1540   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1541}
1542
1543void
1544fs_visitor::visit(ir_if *ir)
1545{
1546   fs_inst *inst;
1547
1548   if (intel->gen < 6 && c->dispatch_width == 16) {
1549      fail("Can't support (non-uniform) control flow on 16-wide\n");
1550   }
1551
1552   /* Don't point the annotation at the if statement, because then it plus
1553    * the then and else blocks get printed.
1554    */
1555   this->base_ir = ir->condition;
1556
1557   if (intel->gen == 6) {
1558      emit_if_gen6(ir);
1559   } else {
1560      emit_bool_to_cond_code(ir->condition);
1561
1562      inst = emit(BRW_OPCODE_IF);
1563      inst->predicated = true;
1564   }
1565
1566   foreach_list(node, &ir->then_instructions) {
1567      ir_instruction *ir = (ir_instruction *)node;
1568      this->base_ir = ir;
1569
1570      ir->accept(this);
1571   }
1572
1573   if (!ir->else_instructions.is_empty()) {
1574      emit(BRW_OPCODE_ELSE);
1575
1576      foreach_list(node, &ir->else_instructions) {
1577	 ir_instruction *ir = (ir_instruction *)node;
1578	 this->base_ir = ir;
1579
1580	 ir->accept(this);
1581      }
1582   }
1583
1584   emit(BRW_OPCODE_ENDIF);
1585}
1586
1587void
1588fs_visitor::visit(ir_loop *ir)
1589{
1590   fs_reg counter = reg_undef;
1591
1592   if (c->dispatch_width == 16) {
1593      fail("Can't support (non-uniform) control flow on 16-wide\n");
1594   }
1595
1596   if (ir->counter) {
1597      this->base_ir = ir->counter;
1598      ir->counter->accept(this);
1599      counter = *(variable_storage(ir->counter));
1600
1601      if (ir->from) {
1602	 this->base_ir = ir->from;
1603	 ir->from->accept(this);
1604
1605	 emit(BRW_OPCODE_MOV, counter, this->result);
1606      }
1607   }
1608
1609   emit(BRW_OPCODE_DO);
1610
1611   if (ir->to) {
1612      this->base_ir = ir->to;
1613      ir->to->accept(this);
1614
1615      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1616      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1617
1618      inst = emit(BRW_OPCODE_BREAK);
1619      inst->predicated = true;
1620   }
1621
1622   foreach_list(node, &ir->body_instructions) {
1623      ir_instruction *ir = (ir_instruction *)node;
1624
1625      this->base_ir = ir;
1626      ir->accept(this);
1627   }
1628
1629   if (ir->increment) {
1630      this->base_ir = ir->increment;
1631      ir->increment->accept(this);
1632      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1633   }
1634
1635   emit(BRW_OPCODE_WHILE);
1636}
1637
1638void
1639fs_visitor::visit(ir_loop_jump *ir)
1640{
1641   switch (ir->mode) {
1642   case ir_loop_jump::jump_break:
1643      emit(BRW_OPCODE_BREAK);
1644      break;
1645   case ir_loop_jump::jump_continue:
1646      emit(BRW_OPCODE_CONTINUE);
1647      break;
1648   }
1649}
1650
1651void
1652fs_visitor::visit(ir_call *ir)
1653{
1654   assert(!"FINISHME");
1655}
1656
1657void
1658fs_visitor::visit(ir_return *ir)
1659{
1660   assert(!"FINISHME");
1661}
1662
1663void
1664fs_visitor::visit(ir_function *ir)
1665{
1666   /* Ignore function bodies other than main() -- we shouldn't see calls to
1667    * them since they should all be inlined before we get to ir_to_mesa.
1668    */
1669   if (strcmp(ir->name, "main") == 0) {
1670      const ir_function_signature *sig;
1671      exec_list empty;
1672
1673      sig = ir->matching_signature(&empty);
1674
1675      assert(sig);
1676
1677      foreach_list(node, &sig->body) {
1678	 ir_instruction *ir = (ir_instruction *)node;
1679	 this->base_ir = ir;
1680
1681	 ir->accept(this);
1682      }
1683   }
1684}
1685
1686void
1687fs_visitor::visit(ir_function_signature *ir)
1688{
1689   assert(!"not reached");
1690   (void)ir;
1691}
1692
1693fs_inst *
1694fs_visitor::emit(fs_inst inst)
1695{
1696   fs_inst *list_inst = new(mem_ctx) fs_inst;
1697   *list_inst = inst;
1698
1699   if (force_uncompressed_stack > 0)
1700      list_inst->force_uncompressed = true;
1701   else if (force_sechalf_stack > 0)
1702      list_inst->force_sechalf = true;
1703
1704   list_inst->annotation = this->current_annotation;
1705   list_inst->ir = this->base_ir;
1706
1707   this->instructions.push_tail(list_inst);
1708
1709   return list_inst;
1710}
1711
1712/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1713void
1714fs_visitor::emit_dummy_fs()
1715{
1716   /* Everyone's favorite color. */
1717   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1718   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1719   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1720   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1721
1722   fs_inst *write;
1723   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1724   write->base_mrf = 2;
1725}
1726
1727/* The register location here is relative to the start of the URB
1728 * data.  It will get adjusted to be a real location before
1729 * generate_code() time.
1730 */
1731struct brw_reg
1732fs_visitor::interp_reg(int location, int channel)
1733{
1734   int regnr = urb_setup[location] * 2 + channel / 2;
1735   int stride = (channel & 1) * 4;
1736
1737   assert(urb_setup[location] != -1);
1738
1739   return brw_vec1_grf(regnr, stride);
1740}
1741
1742/** Emits the interpolation for the varying inputs. */
1743void
1744fs_visitor::emit_interpolation_setup_gen4()
1745{
1746   this->current_annotation = "compute pixel centers";
1747   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1748   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1749   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1750   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1751
1752   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1753   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1754
1755   this->current_annotation = "compute pixel deltas from v0";
1756   if (brw->has_pln) {
1757      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1758      this->delta_y = this->delta_x;
1759      this->delta_y.reg_offset++;
1760   } else {
1761      this->delta_x = fs_reg(this, glsl_type::float_type);
1762      this->delta_y = fs_reg(this, glsl_type::float_type);
1763   }
1764   emit(BRW_OPCODE_ADD, this->delta_x,
1765	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1766   emit(BRW_OPCODE_ADD, this->delta_y,
1767	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1768
1769   this->current_annotation = "compute pos.w and 1/pos.w";
1770   /* Compute wpos.w.  It's always in our setup, since it's needed to
1771    * interpolate the other attributes.
1772    */
1773   this->wpos_w = fs_reg(this, glsl_type::float_type);
1774   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1775	interp_reg(FRAG_ATTRIB_WPOS, 3));
1776   /* Compute the pixel 1/W value from wpos.w. */
1777   this->pixel_w = fs_reg(this, glsl_type::float_type);
1778   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1779   this->current_annotation = NULL;
1780}
1781
1782/** Emits the interpolation for the varying inputs. */
1783void
1784fs_visitor::emit_interpolation_setup_gen6()
1785{
1786   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1787
1788   /* If the pixel centers end up used, the setup is the same as for gen4. */
1789   this->current_annotation = "compute pixel centers";
1790   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1791   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1792   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1793   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1794   emit(BRW_OPCODE_ADD,
1795	int_pixel_x,
1796	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1797	fs_reg(brw_imm_v(0x10101010)));
1798   emit(BRW_OPCODE_ADD,
1799	int_pixel_y,
1800	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1801	fs_reg(brw_imm_v(0x11001100)));
1802
1803   /* As of gen6, we can no longer mix float and int sources.  We have
1804    * to turn the integer pixel centers into floats for their actual
1805    * use.
1806    */
1807   this->pixel_x = fs_reg(this, glsl_type::float_type);
1808   this->pixel_y = fs_reg(this, glsl_type::float_type);
1809   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1810   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1811
1812   this->current_annotation = "compute pos.w";
1813   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1814   this->wpos_w = fs_reg(this, glsl_type::float_type);
1815   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1816
1817   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1818   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1819
1820   this->current_annotation = NULL;
1821}
1822
1823void
1824fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1825{
1826   int reg_width = c->dispatch_width / 8;
1827   fs_inst *inst;
1828
1829   if (c->dispatch_width == 8 || intel->gen >= 6) {
1830      /* SIMD8 write looks like:
1831       * m + 0: r0
1832       * m + 1: r1
1833       * m + 2: g0
1834       * m + 3: g1
1835       *
1836       * gen6 SIMD16 DP write looks like:
1837       * m + 0: r0
1838       * m + 1: r1
1839       * m + 2: g0
1840       * m + 3: g1
1841       * m + 4: b0
1842       * m + 5: b1
1843       * m + 6: a0
1844       * m + 7: a1
1845       */
1846      inst = emit(BRW_OPCODE_MOV,
1847		  fs_reg(MRF, first_color_mrf + index * reg_width),
1848		  color);
1849      inst->saturate = c->key.clamp_fragment_color;
1850   } else {
1851      /* pre-gen6 SIMD16 single source DP write looks like:
1852       * m + 0: r0
1853       * m + 1: g0
1854       * m + 2: b0
1855       * m + 3: a0
1856       * m + 4: r1
1857       * m + 5: g1
1858       * m + 6: b1
1859       * m + 7: a1
1860       */
1861      if (brw->has_compr4) {
1862	 /* By setting the high bit of the MRF register number, we
1863	  * indicate that we want COMPR4 mode - instead of doing the
1864	  * usual destination + 1 for the second half we get
1865	  * destination + 4.
1866	  */
1867	 inst = emit(BRW_OPCODE_MOV,
1868		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index),
1869		     color);
1870	 inst->saturate = c->key.clamp_fragment_color;
1871      } else {
1872	 push_force_uncompressed();
1873	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index),
1874		     color);
1875	 inst->saturate = c->key.clamp_fragment_color;
1876	 pop_force_uncompressed();
1877
1878	 push_force_sechalf();
1879	 color.sechalf = true;
1880	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4),
1881		     color);
1882	 inst->saturate = c->key.clamp_fragment_color;
1883	 pop_force_sechalf();
1884	 color.sechalf = false;
1885      }
1886   }
1887}
1888
1889void
1890fs_visitor::emit_fb_writes()
1891{
1892   this->current_annotation = "FB write header";
1893   bool header_present = true;
1894   int base_mrf = 2;
1895   int nr = base_mrf;
1896   int reg_width = c->dispatch_width / 8;
1897
1898   if (intel->gen >= 6 &&
1899       !this->kill_emitted &&
1900       c->key.nr_color_regions == 1) {
1901      header_present = false;
1902   }
1903
1904   if (header_present) {
1905      /* m2, m3 header */
1906      nr += 2;
1907   }
1908
1909   if (c->aa_dest_stencil_reg) {
1910      push_force_uncompressed();
1911      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1912	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1913      pop_force_uncompressed();
1914   }
1915
1916   /* Reserve space for color. It'll be filled in per MRT below. */
1917   int color_mrf = nr;
1918   nr += 4 * reg_width;
1919
1920   if (c->source_depth_to_render_target) {
1921      if (intel->gen == 6 && c->dispatch_width == 16) {
1922	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1923	  * used.  This would require 8-wide moves of each half to
1924	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1925	  * Just bail on doing so for now.
1926	  */
1927	 fail("Missing support for simd16 depth writes on gen6\n");
1928      }
1929
1930      if (c->computes_depth) {
1931	 /* Hand over gl_FragDepth. */
1932	 assert(this->frag_depth);
1933	 fs_reg depth = *(variable_storage(this->frag_depth));
1934
1935	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1936      } else {
1937	 /* Pass through the payload depth. */
1938	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1939	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1940      }
1941      nr += reg_width;
1942   }
1943
1944   if (c->dest_depth_reg) {
1945      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1946	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1947      nr += reg_width;
1948   }
1949
1950   fs_reg color = reg_undef;
1951   if (this->frag_color)
1952      color = *(variable_storage(this->frag_color));
1953   else if (this->frag_data) {
1954      color = *(variable_storage(this->frag_data));
1955      color.type = BRW_REGISTER_TYPE_F;
1956   }
1957
1958   for (int target = 0; target < c->key.nr_color_regions; target++) {
1959      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1960						 "FB write target %d",
1961						 target);
1962      if (this->frag_color || this->frag_data) {
1963	 for (int i = 0; i < 4; i++) {
1964	    emit_color_write(i, color_mrf, color);
1965	    color.reg_offset++;
1966	 }
1967      }
1968
1969      if (this->frag_color)
1970	 color.reg_offset -= 4;
1971
1972      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1973      inst->target = target;
1974      inst->base_mrf = base_mrf;
1975      inst->mlen = nr - base_mrf;
1976      if (target == c->key.nr_color_regions - 1)
1977	 inst->eot = true;
1978      inst->header_present = header_present;
1979   }
1980
1981   if (c->key.nr_color_regions == 0) {
1982      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1983	 /* If the alpha test is enabled but there's no color buffer,
1984	  * we still need to send alpha out the pipeline to our null
1985	  * renderbuffer.
1986	  */
1987	 color.reg_offset += 3;
1988	 emit_color_write(3, color_mrf, color);
1989      }
1990
1991      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1992      inst->base_mrf = base_mrf;
1993      inst->mlen = nr - base_mrf;
1994      inst->eot = true;
1995      inst->header_present = header_present;
1996   }
1997
1998   this->current_annotation = NULL;
1999}
2000
2001void
2002fs_visitor::resolve_ud_negate(fs_reg *reg)
2003{
2004   if (reg->type != BRW_REGISTER_TYPE_UD ||
2005       !reg->negate)
2006      return;
2007
2008   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2009   emit(BRW_OPCODE_MOV, temp, *reg);
2010   *reg = temp;
2011}
2012