brw_fs_visitor.cpp revision b6bdcf2a908889532ef6d5eb643791176dffcb9d
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM || this->result.file == GRF);
146      this->result.reg_offset += index->value.i[0] * element_size;
147   } else {
148      assert(!"FINISHME: non-constant array element");
149   }
150}
151
152/* Instruction selection: Produce a MOV.sat instead of
153 * MIN(MAX(val, 0), 1) when possible.
154 */
155bool
156fs_visitor::try_emit_saturate(ir_expression *ir)
157{
158   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
159
160   if (!sat_val)
161      return false;
162
163   this->result = reg_undef;
164   sat_val->accept(this);
165   fs_reg src = this->result;
166
167   this->result = fs_reg(this, ir->type);
168   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
169   inst->saturate = true;
170
171   return true;
172}
173
174void
175fs_visitor::visit(ir_expression *ir)
176{
177   unsigned int operand;
178   fs_reg op[2], temp;
179   fs_inst *inst;
180
181   assert(ir->get_num_operands() <= 2);
182
183   if (try_emit_saturate(ir))
184      return;
185
186   /* This is where our caller would like us to put the result, if possible. */
187   fs_reg saved_result_storage = this->result;
188
189   for (operand = 0; operand < ir->get_num_operands(); operand++) {
190      this->result = reg_undef;
191      ir->operands[operand]->accept(this);
192      if (this->result.file == BAD_FILE) {
193	 ir_print_visitor v;
194	 fail("Failed to get tree for expression operand:\n");
195	 ir->operands[operand]->accept(&v);
196      }
197      op[operand] = this->result;
198
199      /* Matrix expression operands should have been broken down to vector
200       * operations already.
201       */
202      assert(!ir->operands[operand]->type->is_matrix());
203      /* And then those vector operands should have been broken down to scalar.
204       */
205      assert(!ir->operands[operand]->type->is_vector());
206   }
207
208   /* Inherit storage from our parent if possible, and otherwise we
209    * alloc a temporary.
210    */
211   if (saved_result_storage.file == BAD_FILE) {
212      this->result = fs_reg(this, ir->type);
213   } else {
214      this->result = saved_result_storage;
215   }
216
217   switch (ir->operation) {
218   case ir_unop_logic_not:
219      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
220       * ones complement of the whole register, not just bit 0.
221       */
222      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
223      break;
224   case ir_unop_neg:
225      op[0].negate = !op[0].negate;
226      this->result = op[0];
227      break;
228   case ir_unop_abs:
229      op[0].abs = true;
230      op[0].negate = false;
231      this->result = op[0];
232      break;
233   case ir_unop_sign:
234      temp = fs_reg(this, ir->type);
235
236      /* Unalias the destination.  (imagine a = sign(a)) */
237      this->result = fs_reg(this, ir->type);
238
239      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
240
241      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
242      inst->conditional_mod = BRW_CONDITIONAL_G;
243      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
244      inst->predicated = true;
245
246      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
247      inst->conditional_mod = BRW_CONDITIONAL_L;
248      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
249      inst->predicated = true;
250
251      break;
252   case ir_unop_rcp:
253      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
254      break;
255
256   case ir_unop_exp2:
257      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
258      break;
259   case ir_unop_log2:
260      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
261      break;
262   case ir_unop_exp:
263   case ir_unop_log:
264      assert(!"not reached: should be handled by ir_explog_to_explog2");
265      break;
266   case ir_unop_sin:
267   case ir_unop_sin_reduced:
268      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
269      break;
270   case ir_unop_cos:
271   case ir_unop_cos_reduced:
272      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
273      break;
274
275   case ir_unop_dFdx:
276      emit(FS_OPCODE_DDX, this->result, op[0]);
277      break;
278   case ir_unop_dFdy:
279      emit(FS_OPCODE_DDY, this->result, op[0]);
280      break;
281
282   case ir_binop_add:
283      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
284      break;
285   case ir_binop_sub:
286      assert(!"not reached: should be handled by ir_sub_to_add_neg");
287      break;
288
289   case ir_binop_mul:
290      if (ir->type->is_integer()) {
291	 /* For integer multiplication, the MUL uses the low 16 bits
292	  * of one of the operands (src0 on gen6, src1 on gen7).  The
293	  * MACH accumulates in the contribution of the upper 16 bits
294	  * of that operand.
295	  *
296	  * FINISHME: Emit just the MUL if we know an operand is small
297	  * enough.
298	  */
299	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
300
301	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
302	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
303	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
304      } else {
305	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
306      }
307      break;
308   case ir_binop_div:
309      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
310      break;
311   case ir_binop_mod:
312      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
313      break;
314
315   case ir_binop_less:
316   case ir_binop_greater:
317   case ir_binop_lequal:
318   case ir_binop_gequal:
319   case ir_binop_equal:
320   case ir_binop_all_equal:
321   case ir_binop_nequal:
322   case ir_binop_any_nequal:
323      temp = this->result;
324      /* original gen4 does implicit conversion before comparison. */
325      if (intel->gen < 5)
326	 temp.type = op[0].type;
327
328      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
329      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
330      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
331      break;
332
333   case ir_binop_logic_xor:
334      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
335      break;
336
337   case ir_binop_logic_or:
338      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
339      break;
340
341   case ir_binop_logic_and:
342      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
343      break;
344
345   case ir_binop_dot:
346   case ir_unop_any:
347      assert(!"not reached: should be handled by brw_fs_channel_expressions");
348      break;
349
350   case ir_unop_noise:
351      assert(!"not reached: should be handled by lower_noise");
352      break;
353
354   case ir_quadop_vector:
355      assert(!"not reached: should be handled by lower_quadop_vector");
356      break;
357
358   case ir_unop_sqrt:
359      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
360      break;
361
362   case ir_unop_rsq:
363      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
364      break;
365
366   case ir_unop_i2u:
367      op[0].type = BRW_REGISTER_TYPE_UD;
368      this->result = op[0];
369      break;
370   case ir_unop_u2i:
371      op[0].type = BRW_REGISTER_TYPE_D;
372      this->result = op[0];
373      break;
374   case ir_unop_i2f:
375   case ir_unop_b2f:
376   case ir_unop_b2i:
377   case ir_unop_f2i:
378      emit(BRW_OPCODE_MOV, this->result, op[0]);
379      break;
380   case ir_unop_f2b:
381   case ir_unop_i2b:
382      temp = this->result;
383      /* original gen4 does implicit conversion before comparison. */
384      if (intel->gen < 5)
385	 temp.type = op[0].type;
386
387      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
388      inst->conditional_mod = BRW_CONDITIONAL_NZ;
389      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
390      break;
391
392   case ir_unop_trunc:
393      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
394      break;
395   case ir_unop_ceil:
396      op[0].negate = !op[0].negate;
397      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
398      this->result.negate = true;
399      break;
400   case ir_unop_floor:
401      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
402      break;
403   case ir_unop_fract:
404      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
405      break;
406   case ir_unop_round_even:
407      emit(BRW_OPCODE_RNDE, this->result, op[0]);
408      break;
409
410   case ir_binop_min:
411      if (intel->gen >= 6) {
412	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
413	 inst->conditional_mod = BRW_CONDITIONAL_L;
414      } else {
415	 /* Unalias the destination */
416	 this->result = fs_reg(this, ir->type);
417
418	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
419	 inst->conditional_mod = BRW_CONDITIONAL_L;
420
421	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
422	 inst->predicated = true;
423      }
424      break;
425   case ir_binop_max:
426      if (intel->gen >= 6) {
427	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
428	 inst->conditional_mod = BRW_CONDITIONAL_GE;
429      } else {
430	 /* Unalias the destination */
431	 this->result = fs_reg(this, ir->type);
432
433	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
434	 inst->conditional_mod = BRW_CONDITIONAL_G;
435
436	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
437	 inst->predicated = true;
438      }
439      break;
440
441   case ir_binop_pow:
442      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
443      break;
444
445   case ir_unop_bit_not:
446      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
447      break;
448   case ir_binop_bit_and:
449      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
450      break;
451   case ir_binop_bit_xor:
452      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
453      break;
454   case ir_binop_bit_or:
455      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
456      break;
457
458   case ir_unop_u2f:
459   case ir_binop_lshift:
460   case ir_binop_rshift:
461      assert(!"GLSL 1.30 features unsupported");
462      break;
463   }
464}
465
466void
467fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
468				   const glsl_type *type, bool predicated)
469{
470   switch (type->base_type) {
471   case GLSL_TYPE_FLOAT:
472   case GLSL_TYPE_UINT:
473   case GLSL_TYPE_INT:
474   case GLSL_TYPE_BOOL:
475      for (unsigned int i = 0; i < type->components(); i++) {
476	 l.type = brw_type_for_base_type(type);
477	 r.type = brw_type_for_base_type(type);
478
479	 if (predicated || !l.equals(&r)) {
480	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
481	    inst->predicated = predicated;
482	 }
483
484	 l.reg_offset++;
485	 r.reg_offset++;
486      }
487      break;
488   case GLSL_TYPE_ARRAY:
489      for (unsigned int i = 0; i < type->length; i++) {
490	 emit_assignment_writes(l, r, type->fields.array, predicated);
491      }
492      break;
493
494   case GLSL_TYPE_STRUCT:
495      for (unsigned int i = 0; i < type->length; i++) {
496	 emit_assignment_writes(l, r, type->fields.structure[i].type,
497				predicated);
498      }
499      break;
500
501   case GLSL_TYPE_SAMPLER:
502      break;
503
504   default:
505      assert(!"not reached");
506      break;
507   }
508}
509
510void
511fs_visitor::visit(ir_assignment *ir)
512{
513   fs_reg l, r;
514   fs_inst *inst;
515
516   /* FINISHME: arrays on the lhs */
517   this->result = reg_undef;
518   ir->lhs->accept(this);
519   l = this->result;
520
521   /* If we're doing a direct assignment, an RHS expression could
522    * drop its result right into our destination.  Otherwise, tell it
523    * not to.
524    */
525   if (ir->condition ||
526       !(ir->lhs->type->is_scalar() ||
527	 (ir->lhs->type->is_vector() &&
528	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
529      this->result = reg_undef;
530   }
531
532   ir->rhs->accept(this);
533   r = this->result;
534
535   assert(l.file != BAD_FILE);
536   assert(r.file != BAD_FILE);
537
538   if (ir->condition) {
539      emit_bool_to_cond_code(ir->condition);
540   }
541
542   if (ir->lhs->type->is_scalar() ||
543       ir->lhs->type->is_vector()) {
544      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
545	 if (ir->write_mask & (1 << i)) {
546	    if (ir->condition) {
547	       inst = emit(BRW_OPCODE_MOV, l, r);
548	       inst->predicated = true;
549	    } else if (!l.equals(&r)) {
550	       inst = emit(BRW_OPCODE_MOV, l, r);
551	    }
552
553	    r.reg_offset++;
554	 }
555	 l.reg_offset++;
556      }
557   } else {
558      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
559   }
560}
561
562fs_inst *
563fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
564			      int sampler)
565{
566   int mlen;
567   int base_mrf = 1;
568   bool simd16 = false;
569   fs_reg orig_dst;
570
571   /* g0 header. */
572   mlen = 1;
573
574   if (ir->shadow_comparitor && ir->op != ir_txd) {
575      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
576	 fs_inst *inst = emit(BRW_OPCODE_MOV,
577			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
578	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
579	    inst->saturate = true;
580
581	 coordinate.reg_offset++;
582      }
583      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
584      mlen += 3;
585
586      if (ir->op == ir_tex) {
587	 /* There's no plain shadow compare message, so we use shadow
588	  * compare with a bias of 0.0.
589	  */
590	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
591	 mlen++;
592      } else if (ir->op == ir_txb) {
593	 this->result = reg_undef;
594	 ir->lod_info.bias->accept(this);
595	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
596	 mlen++;
597      } else {
598	 assert(ir->op == ir_txl);
599	 this->result = reg_undef;
600	 ir->lod_info.lod->accept(this);
601	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
602	 mlen++;
603      }
604
605      this->result = reg_undef;
606      ir->shadow_comparitor->accept(this);
607      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
608      mlen++;
609   } else if (ir->op == ir_tex) {
610      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
611	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
612			      coordinate);
613	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
614	    inst->saturate = true;
615	 coordinate.reg_offset++;
616      }
617      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
618      mlen += 3;
619   } else if (ir->op == ir_txd) {
620      this->result = reg_undef;
621      ir->lod_info.grad.dPdx->accept(this);
622      fs_reg dPdx = this->result;
623
624      this->result = reg_undef;
625      ir->lod_info.grad.dPdy->accept(this);
626      fs_reg dPdy = this->result;
627
628      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
629	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
630	 coordinate.reg_offset++;
631      }
632      /* the slots for u and v are always present, but r is optional */
633      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
634
635      /*  P   = u, v, r
636       * dPdx = dudx, dvdx, drdx
637       * dPdy = dudy, dvdy, drdy
638       *
639       * 1-arg: Does not exist.
640       *
641       * 2-arg: dudx   dvdx   dudy   dvdy
642       *        dPdx.x dPdx.y dPdy.x dPdy.y
643       *        m4     m5     m6     m7
644       *
645       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
646       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
647       *        m5     m6     m7     m8     m9     m10
648       */
649      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
650	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
651	 dPdx.reg_offset++;
652      }
653      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
654
655      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
656	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
657	 dPdy.reg_offset++;
658      }
659      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
660   } else {
661      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
662       * instructions.  We'll need to do SIMD16 here.
663       */
664      assert(ir->op == ir_txb || ir->op == ir_txl);
665
666      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
667	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
668						     base_mrf + mlen + i * 2),
669			      coordinate);
670	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
671	    inst->saturate = true;
672	 coordinate.reg_offset++;
673      }
674
675      /* lod/bias appears after u/v/r. */
676      mlen += 6;
677
678      if (ir->op == ir_txb) {
679	 this->result = reg_undef;
680	 ir->lod_info.bias->accept(this);
681	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
682	 mlen++;
683      } else {
684	 this->result = reg_undef;
685	 ir->lod_info.lod->accept(this);
686	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
687	 mlen++;
688      }
689
690      /* The unused upper half. */
691      mlen++;
692
693      /* Now, since we're doing simd16, the return is 2 interleaved
694       * vec4s where the odd-indexed ones are junk. We'll need to move
695       * this weirdness around to the expected layout.
696       */
697      simd16 = true;
698      orig_dst = dst;
699      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
700						       2));
701      dst.type = BRW_REGISTER_TYPE_F;
702   }
703
704   fs_inst *inst = NULL;
705   switch (ir->op) {
706   case ir_tex:
707      inst = emit(FS_OPCODE_TEX, dst);
708      break;
709   case ir_txb:
710      inst = emit(FS_OPCODE_TXB, dst);
711      break;
712   case ir_txl:
713      inst = emit(FS_OPCODE_TXL, dst);
714      break;
715   case ir_txd:
716      inst = emit(FS_OPCODE_TXD, dst);
717      break;
718   case ir_txf:
719   case ir_txs:
720      assert(!"GLSL 1.30 features unsupported");
721      break;
722   }
723   inst->base_mrf = base_mrf;
724   inst->mlen = mlen;
725   inst->header_present = true;
726
727   if (simd16) {
728      for (int i = 0; i < 4; i++) {
729	 emit(BRW_OPCODE_MOV, orig_dst, dst);
730	 orig_dst.reg_offset++;
731	 dst.reg_offset += 2;
732      }
733   }
734
735   return inst;
736}
737
738/* gen5's sampler has slots for u, v, r, array index, then optional
739 * parameters like shadow comparitor or LOD bias.  If optional
740 * parameters aren't present, those base slots are optional and don't
741 * need to be included in the message.
742 *
743 * We don't fill in the unnecessary slots regardless, which may look
744 * surprising in the disassembly.
745 */
746fs_inst *
747fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
748			      int sampler)
749{
750   int mlen = 0;
751   int base_mrf = 2;
752   int reg_width = c->dispatch_width / 8;
753   bool header_present = false;
754
755   if (ir->offset) {
756      /* The offsets set up by the ir_texture visitor are in the
757       * m1 header, so we can't go headerless.
758       */
759      header_present = true;
760      mlen++;
761      base_mrf--;
762   }
763
764   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
765      fs_inst *inst = emit(BRW_OPCODE_MOV,
766			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
767			   coordinate);
768      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
769	 inst->saturate = true;
770      coordinate.reg_offset++;
771   }
772   mlen += ir->coordinate->type->vector_elements * reg_width;
773
774   if (ir->shadow_comparitor && ir->op != ir_txd) {
775      mlen = MAX2(mlen, header_present + 4 * reg_width);
776
777      this->result = reg_undef;
778      ir->shadow_comparitor->accept(this);
779      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
780      mlen += reg_width;
781   }
782
783   fs_inst *inst = NULL;
784   switch (ir->op) {
785   case ir_tex:
786      inst = emit(FS_OPCODE_TEX, dst);
787      break;
788   case ir_txb:
789      this->result = reg_undef;
790      ir->lod_info.bias->accept(this);
791      mlen = MAX2(mlen, header_present + 4 * reg_width);
792      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
793      mlen += reg_width;
794
795      inst = emit(FS_OPCODE_TXB, dst);
796
797      break;
798   case ir_txl:
799      this->result = reg_undef;
800      ir->lod_info.lod->accept(this);
801      mlen = MAX2(mlen, header_present + 4 * reg_width);
802      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
803      mlen += reg_width;
804
805      inst = emit(FS_OPCODE_TXL, dst);
806      break;
807   case ir_txd: {
808      this->result = reg_undef;
809      ir->lod_info.grad.dPdx->accept(this);
810      fs_reg dPdx = this->result;
811
812      this->result = reg_undef;
813      ir->lod_info.grad.dPdy->accept(this);
814      fs_reg dPdy = this->result;
815
816      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
817
818      /**
819       *  P   =  u,    v,    r
820       * dPdx = dudx, dvdx, drdx
821       * dPdy = dudy, dvdy, drdy
822       *
823       * Load up these values:
824       * - dudx   dudy   dvdx   dvdy   drdx   drdy
825       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
826       */
827      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
828	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
829	 dPdx.reg_offset++;
830	 mlen += reg_width;
831
832	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
833	 dPdy.reg_offset++;
834	 mlen += reg_width;
835      }
836
837      inst = emit(FS_OPCODE_TXD, dst);
838      break;
839   }
840   case ir_txf:
841   case ir_txs:
842      assert(!"GLSL 1.30 features unsupported");
843      break;
844   }
845   inst->base_mrf = base_mrf;
846   inst->mlen = mlen;
847   inst->header_present = header_present;
848
849   if (mlen > 11) {
850      fail("Message length >11 disallowed by hardware\n");
851   }
852
853   return inst;
854}
855
856fs_inst *
857fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
858			      int sampler)
859{
860   int mlen = 0;
861   int base_mrf = 2;
862   int reg_width = c->dispatch_width / 8;
863   bool header_present = false;
864
865   if (ir->offset) {
866      /* The offsets set up by the ir_texture visitor are in the
867       * m1 header, so we can't go headerless.
868       */
869      header_present = true;
870      mlen++;
871      base_mrf--;
872   }
873
874   if (ir->shadow_comparitor && ir->op != ir_txd) {
875      this->result = reg_undef;
876      ir->shadow_comparitor->accept(this);
877      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
878      mlen += reg_width;
879   }
880
881   /* Set up the LOD info */
882   switch (ir->op) {
883   case ir_tex:
884      break;
885   case ir_txb:
886      this->result = reg_undef;
887      ir->lod_info.bias->accept(this);
888      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
889      mlen += reg_width;
890      break;
891   case ir_txl:
892      this->result = reg_undef;
893      ir->lod_info.lod->accept(this);
894      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
895      mlen += reg_width;
896      break;
897   case ir_txd: {
898      if (c->dispatch_width == 16)
899	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
900
901      this->result = reg_undef;
902      ir->lod_info.grad.dPdx->accept(this);
903      fs_reg dPdx = this->result;
904
905      this->result = reg_undef;
906      ir->lod_info.grad.dPdy->accept(this);
907      fs_reg dPdy = this->result;
908
909      /* Load dPdx and the coordinate together:
910       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
911       */
912      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
913	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
914			      coordinate);
915	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
916	    inst->saturate = true;
917	 coordinate.reg_offset++;
918	 mlen += reg_width;
919
920	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
921	 dPdx.reg_offset++;
922	 mlen += reg_width;
923
924	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
925	 dPdy.reg_offset++;
926	 mlen += reg_width;
927      }
928      break;
929   }
930   case ir_txf:
931   case ir_txs:
932      assert(!"GLSL 1.30 features unsupported");
933      break;
934   }
935
936   /* Set up the coordinate (except for TXD where it was done earlier) */
937   if (ir->op != ir_txd) {
938      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
939	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
940			      coordinate);
941	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
942	    inst->saturate = true;
943	 coordinate.reg_offset++;
944	 mlen += reg_width;
945      }
946   }
947
948   /* Generate the SEND */
949   fs_inst *inst = NULL;
950   switch (ir->op) {
951   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
952   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
953   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
954   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
955   case ir_txf: assert(!"TXF unsupported."); break;
956   case ir_txs: assert(!"TXS unsupported."); break;
957   }
958   inst->base_mrf = base_mrf;
959   inst->mlen = mlen;
960   inst->header_present = header_present;
961
962   if (mlen > 11) {
963      fail("Message length >11 disallowed by hardware\n");
964   }
965
966   return inst;
967}
968
969void
970fs_visitor::visit(ir_texture *ir)
971{
972   fs_inst *inst = NULL;
973
974   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
975   sampler = fp->Base.SamplerUnits[sampler];
976
977   /* Our hardware doesn't have a sample_d_c message, so shadow compares
978    * for textureGrad/TXD need to be emulated with instructions.
979    */
980   bool hw_compare_supported = ir->op != ir_txd;
981   if (ir->shadow_comparitor && !hw_compare_supported) {
982      assert(c->key.compare_funcs[sampler] != GL_NONE);
983      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
984      if (c->key.compare_funcs[sampler] == GL_ALWAYS)
985	 return swizzle_result(ir, fs_reg(1.0f), sampler);
986      else if (c->key.compare_funcs[sampler] == GL_NEVER)
987	 return swizzle_result(ir, fs_reg(0.0f), sampler);
988   }
989
990   this->result = reg_undef;
991   ir->coordinate->accept(this);
992   fs_reg coordinate = this->result;
993
994   if (ir->offset != NULL) {
995      ir_constant *offset = ir->offset->as_constant();
996      assert(offset != NULL);
997
998      signed char offsets[3];
999      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
1000	 offsets[i] = (signed char) offset->value.i[i];
1001
1002      /* Combine all three offsets into a single unsigned dword:
1003       *
1004       *    bits 11:8 - U Offset (X component)
1005       *    bits  7:4 - V Offset (Y component)
1006       *    bits  3:0 - R Offset (Z component)
1007       */
1008      unsigned offset_bits = 0;
1009      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
1010	 const unsigned shift = 4 * (2 - i);
1011	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
1012      }
1013
1014      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1015      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1016	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
1017
1018      /* Then set the offset bits in DWord 2 of the message header. */
1019      emit(BRW_OPCODE_MOV,
1020	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1021			 BRW_REGISTER_TYPE_UD)),
1022	   fs_reg(brw_imm_uw(offset_bits)));
1023   }
1024
1025   /* Should be lowered by do_lower_texture_projection */
1026   assert(!ir->projector);
1027
1028   /* The 965 requires the EU to do the normalization of GL rectangle
1029    * texture coordinates.  We use the program parameter state
1030    * tracking to get the scaling factor.
1031    */
1032   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1033      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1034      int tokens[STATE_LENGTH] = {
1035	 STATE_INTERNAL,
1036	 STATE_TEXRECT_SCALE,
1037	 sampler,
1038	 0,
1039	 0
1040      };
1041
1042      if (c->dispatch_width == 16) {
1043	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1044	 this->result = fs_reg(this, ir->type);
1045	 return;
1046      }
1047
1048      c->prog_data.param_convert[c->prog_data.nr_params] =
1049	 PARAM_NO_CONVERT;
1050      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1051	 PARAM_NO_CONVERT;
1052
1053      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1054      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1055      GLuint index = _mesa_add_state_reference(params,
1056					       (gl_state_index *)tokens);
1057
1058      this->param_index[c->prog_data.nr_params] = index;
1059      this->param_offset[c->prog_data.nr_params] = 0;
1060      c->prog_data.nr_params++;
1061      this->param_index[c->prog_data.nr_params] = index;
1062      this->param_offset[c->prog_data.nr_params] = 1;
1063      c->prog_data.nr_params++;
1064
1065      fs_reg dst = fs_reg(this, ir->coordinate->type);
1066      fs_reg src = coordinate;
1067      coordinate = dst;
1068
1069      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1070      dst.reg_offset++;
1071      src.reg_offset++;
1072      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1073   }
1074
1075   /* Writemasking doesn't eliminate channels on SIMD8 texture
1076    * samples, so don't worry about them.
1077    */
1078   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1079
1080   if (intel->gen >= 7) {
1081      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1082   } else if (intel->gen >= 5) {
1083      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1084   } else {
1085      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1086   }
1087
1088   /* If there's an offset, we already set up m1.  To avoid the implied move,
1089    * use the null register.  Otherwise, we want an implied move from g0.
1090    */
1091   if (ir->offset != NULL || !inst->header_present)
1092      inst->src[0] = reg_undef;
1093   else
1094      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1095
1096   inst->sampler = sampler;
1097
1098   if (ir->shadow_comparitor) {
1099      if (hw_compare_supported) {
1100	 inst->shadow_compare = true;
1101      } else {
1102	 this->result = reg_undef;
1103	 ir->shadow_comparitor->accept(this);
1104	 fs_reg ref = this->result;
1105
1106	 fs_reg value = dst;
1107	 dst = fs_reg(this, glsl_type::vec4_type);
1108
1109	 /* FINISHME: This needs to be done pre-filtering. */
1110
1111	 uint32_t conditional = 0;
1112	 switch (c->key.compare_funcs[sampler]) {
1113	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1114	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1115	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1116	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1117	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1118	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1119	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1120	 default: assert(!"Should not get here: bad shadow compare function");
1121	 }
1122
1123	 /* Use conditional moves to load 0 or 1 as the result */
1124	 this->current_annotation = "manual shadow comparison";
1125	 for (int i = 0; i < 4; i++) {
1126	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1127
1128	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1129	    inst->conditional_mod = conditional;
1130
1131	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1132	    inst->predicated = true;
1133
1134	    dst.reg_offset++;
1135	    value.reg_offset++;
1136	 }
1137	 dst.reg_offset = 0;
1138      }
1139   }
1140
1141   swizzle_result(ir, dst, sampler);
1142}
1143
1144/**
1145 * Swizzle the result of a texture result.  This is necessary for
1146 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1147 */
1148void
1149fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1150{
1151   this->result = orig_val;
1152
1153   if (ir->type == glsl_type::float_type) {
1154      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1155      assert(ir->sampler->type->sampler_shadow);
1156   } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1157      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1158
1159      for (int i = 0; i < 4; i++) {
1160	 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1161	 fs_reg l = swizzled_result;
1162	 l.reg_offset += i;
1163
1164	 if (swiz == SWIZZLE_ZERO) {
1165	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1166	 } else if (swiz == SWIZZLE_ONE) {
1167	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1168	 } else {
1169	    fs_reg r = orig_val;
1170	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1171	    emit(BRW_OPCODE_MOV, l, r);
1172	 }
1173      }
1174      this->result = swizzled_result;
1175   }
1176}
1177
1178void
1179fs_visitor::visit(ir_swizzle *ir)
1180{
1181   this->result = reg_undef;
1182   ir->val->accept(this);
1183   fs_reg val = this->result;
1184
1185   if (ir->type->vector_elements == 1) {
1186      this->result.reg_offset += ir->mask.x;
1187      return;
1188   }
1189
1190   fs_reg result = fs_reg(this, ir->type);
1191   this->result = result;
1192
1193   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1194      fs_reg channel = val;
1195      int swiz = 0;
1196
1197      switch (i) {
1198      case 0:
1199	 swiz = ir->mask.x;
1200	 break;
1201      case 1:
1202	 swiz = ir->mask.y;
1203	 break;
1204      case 2:
1205	 swiz = ir->mask.z;
1206	 break;
1207      case 3:
1208	 swiz = ir->mask.w;
1209	 break;
1210      }
1211
1212      channel.reg_offset += swiz;
1213      emit(BRW_OPCODE_MOV, result, channel);
1214      result.reg_offset++;
1215   }
1216}
1217
1218void
1219fs_visitor::visit(ir_discard *ir)
1220{
1221   assert(ir->condition == NULL); /* FINISHME */
1222
1223   emit(FS_OPCODE_DISCARD);
1224   kill_emitted = true;
1225}
1226
1227void
1228fs_visitor::visit(ir_constant *ir)
1229{
1230   /* Set this->result to reg at the bottom of the function because some code
1231    * paths will cause this visitor to be applied to other fields.  This will
1232    * cause the value stored in this->result to be modified.
1233    *
1234    * Make reg constant so that it doesn't get accidentally modified along the
1235    * way.  Yes, I actually had this problem. :(
1236    */
1237   const fs_reg reg(this, ir->type);
1238   fs_reg dst_reg = reg;
1239
1240   if (ir->type->is_array()) {
1241      const unsigned size = type_size(ir->type->fields.array);
1242
1243      for (unsigned i = 0; i < ir->type->length; i++) {
1244	 this->result = reg_undef;
1245	 ir->array_elements[i]->accept(this);
1246	 fs_reg src_reg = this->result;
1247
1248	 dst_reg.type = src_reg.type;
1249	 for (unsigned j = 0; j < size; j++) {
1250	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1251	    src_reg.reg_offset++;
1252	    dst_reg.reg_offset++;
1253	 }
1254      }
1255   } else if (ir->type->is_record()) {
1256      foreach_list(node, &ir->components) {
1257	 ir_instruction *const field = (ir_instruction *) node;
1258	 const unsigned size = type_size(field->type);
1259
1260	 this->result = reg_undef;
1261	 field->accept(this);
1262	 fs_reg src_reg = this->result;
1263
1264	 dst_reg.type = src_reg.type;
1265	 for (unsigned j = 0; j < size; j++) {
1266	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1267	    src_reg.reg_offset++;
1268	    dst_reg.reg_offset++;
1269	 }
1270      }
1271   } else {
1272      const unsigned size = type_size(ir->type);
1273
1274      for (unsigned i = 0; i < size; i++) {
1275	 switch (ir->type->base_type) {
1276	 case GLSL_TYPE_FLOAT:
1277	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1278	    break;
1279	 case GLSL_TYPE_UINT:
1280	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1281	    break;
1282	 case GLSL_TYPE_INT:
1283	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1284	    break;
1285	 case GLSL_TYPE_BOOL:
1286	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1287	    break;
1288	 default:
1289	    assert(!"Non-float/uint/int/bool constant");
1290	 }
1291	 dst_reg.reg_offset++;
1292      }
1293   }
1294
1295   this->result = reg;
1296}
1297
1298void
1299fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1300{
1301   ir_expression *expr = ir->as_expression();
1302
1303   if (expr) {
1304      fs_reg op[2];
1305      fs_inst *inst;
1306
1307      assert(expr->get_num_operands() <= 2);
1308      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1309	 assert(expr->operands[i]->type->is_scalar());
1310
1311	 this->result = reg_undef;
1312	 expr->operands[i]->accept(this);
1313	 op[i] = this->result;
1314      }
1315
1316      switch (expr->operation) {
1317      case ir_unop_logic_not:
1318	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1319	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1320	 break;
1321
1322      case ir_binop_logic_xor:
1323	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1324	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1325	 break;
1326
1327      case ir_binop_logic_or:
1328	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1329	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1330	 break;
1331
1332      case ir_binop_logic_and:
1333	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1334	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1335	 break;
1336
1337      case ir_unop_f2b:
1338	 if (intel->gen >= 6) {
1339	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1340	 } else {
1341	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1342	 }
1343	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1344	 break;
1345
1346      case ir_unop_i2b:
1347	 if (intel->gen >= 6) {
1348	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1349	 } else {
1350	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1351	 }
1352	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1353	 break;
1354
1355      case ir_binop_greater:
1356      case ir_binop_gequal:
1357      case ir_binop_less:
1358      case ir_binop_lequal:
1359      case ir_binop_equal:
1360      case ir_binop_all_equal:
1361      case ir_binop_nequal:
1362      case ir_binop_any_nequal:
1363	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1364	 inst->conditional_mod =
1365	    brw_conditional_for_comparison(expr->operation);
1366	 break;
1367
1368      default:
1369	 assert(!"not reached");
1370	 fail("bad cond code\n");
1371	 break;
1372      }
1373      return;
1374   }
1375
1376   this->result = reg_undef;
1377   ir->accept(this);
1378
1379   if (intel->gen >= 6) {
1380      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1381      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1382   } else {
1383      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1384      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1385   }
1386}
1387
1388/**
1389 * Emit a gen6 IF statement with the comparison folded into the IF
1390 * instruction.
1391 */
1392void
1393fs_visitor::emit_if_gen6(ir_if *ir)
1394{
1395   ir_expression *expr = ir->condition->as_expression();
1396
1397   if (expr) {
1398      fs_reg op[2];
1399      fs_inst *inst;
1400      fs_reg temp;
1401
1402      assert(expr->get_num_operands() <= 2);
1403      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1404	 assert(expr->operands[i]->type->is_scalar());
1405
1406	 this->result = reg_undef;
1407	 expr->operands[i]->accept(this);
1408	 op[i] = this->result;
1409      }
1410
1411      switch (expr->operation) {
1412      case ir_unop_logic_not:
1413	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1414	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1415	 return;
1416
1417      case ir_binop_logic_xor:
1418	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1419	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1420	 return;
1421
1422      case ir_binop_logic_or:
1423	 temp = fs_reg(this, glsl_type::bool_type);
1424	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1425	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1426	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1427	 return;
1428
1429      case ir_binop_logic_and:
1430	 temp = fs_reg(this, glsl_type::bool_type);
1431	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1432	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1433	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1434	 return;
1435
1436      case ir_unop_f2b:
1437	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1438	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1439	 return;
1440
1441      case ir_unop_i2b:
1442	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1443	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1444	 return;
1445
1446      case ir_binop_greater:
1447      case ir_binop_gequal:
1448      case ir_binop_less:
1449      case ir_binop_lequal:
1450      case ir_binop_equal:
1451      case ir_binop_all_equal:
1452      case ir_binop_nequal:
1453      case ir_binop_any_nequal:
1454	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1455	 inst->conditional_mod =
1456	    brw_conditional_for_comparison(expr->operation);
1457	 return;
1458      default:
1459	 assert(!"not reached");
1460	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1461	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1462	 fail("bad condition\n");
1463	 return;
1464      }
1465      return;
1466   }
1467
1468   this->result = reg_undef;
1469   ir->condition->accept(this);
1470
1471   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1472   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1473}
1474
1475void
1476fs_visitor::visit(ir_if *ir)
1477{
1478   fs_inst *inst;
1479
1480   if (intel->gen != 6 && c->dispatch_width == 16) {
1481      fail("Can't support (non-uniform) control flow on 16-wide\n");
1482   }
1483
1484   /* Don't point the annotation at the if statement, because then it plus
1485    * the then and else blocks get printed.
1486    */
1487   this->base_ir = ir->condition;
1488
1489   if (intel->gen == 6) {
1490      emit_if_gen6(ir);
1491   } else {
1492      emit_bool_to_cond_code(ir->condition);
1493
1494      inst = emit(BRW_OPCODE_IF);
1495      inst->predicated = true;
1496   }
1497
1498   foreach_list(node, &ir->then_instructions) {
1499      ir_instruction *ir = (ir_instruction *)node;
1500      this->base_ir = ir;
1501      this->result = reg_undef;
1502      ir->accept(this);
1503   }
1504
1505   if (!ir->else_instructions.is_empty()) {
1506      emit(BRW_OPCODE_ELSE);
1507
1508      foreach_list(node, &ir->else_instructions) {
1509	 ir_instruction *ir = (ir_instruction *)node;
1510	 this->base_ir = ir;
1511	 this->result = reg_undef;
1512	 ir->accept(this);
1513      }
1514   }
1515
1516   emit(BRW_OPCODE_ENDIF);
1517}
1518
1519void
1520fs_visitor::visit(ir_loop *ir)
1521{
1522   fs_reg counter = reg_undef;
1523
1524   if (c->dispatch_width == 16) {
1525      fail("Can't support (non-uniform) control flow on 16-wide\n");
1526   }
1527
1528   if (ir->counter) {
1529      this->base_ir = ir->counter;
1530      ir->counter->accept(this);
1531      counter = *(variable_storage(ir->counter));
1532
1533      if (ir->from) {
1534	 this->result = counter;
1535
1536	 this->base_ir = ir->from;
1537	 this->result = counter;
1538	 ir->from->accept(this);
1539
1540	 if (!this->result.equals(&counter))
1541	    emit(BRW_OPCODE_MOV, counter, this->result);
1542      }
1543   }
1544
1545   emit(BRW_OPCODE_DO);
1546
1547   if (ir->to) {
1548      this->base_ir = ir->to;
1549      this->result = reg_undef;
1550      ir->to->accept(this);
1551
1552      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1553      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1554
1555      inst = emit(BRW_OPCODE_BREAK);
1556      inst->predicated = true;
1557   }
1558
1559   foreach_list(node, &ir->body_instructions) {
1560      ir_instruction *ir = (ir_instruction *)node;
1561
1562      this->base_ir = ir;
1563      this->result = reg_undef;
1564      ir->accept(this);
1565   }
1566
1567   if (ir->increment) {
1568      this->base_ir = ir->increment;
1569      this->result = reg_undef;
1570      ir->increment->accept(this);
1571      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1572   }
1573
1574   emit(BRW_OPCODE_WHILE);
1575}
1576
1577void
1578fs_visitor::visit(ir_loop_jump *ir)
1579{
1580   switch (ir->mode) {
1581   case ir_loop_jump::jump_break:
1582      emit(BRW_OPCODE_BREAK);
1583      break;
1584   case ir_loop_jump::jump_continue:
1585      emit(BRW_OPCODE_CONTINUE);
1586      break;
1587   }
1588}
1589
1590void
1591fs_visitor::visit(ir_call *ir)
1592{
1593   assert(!"FINISHME");
1594}
1595
1596void
1597fs_visitor::visit(ir_return *ir)
1598{
1599   assert(!"FINISHME");
1600}
1601
1602void
1603fs_visitor::visit(ir_function *ir)
1604{
1605   /* Ignore function bodies other than main() -- we shouldn't see calls to
1606    * them since they should all be inlined before we get to ir_to_mesa.
1607    */
1608   if (strcmp(ir->name, "main") == 0) {
1609      const ir_function_signature *sig;
1610      exec_list empty;
1611
1612      sig = ir->matching_signature(&empty);
1613
1614      assert(sig);
1615
1616      foreach_list(node, &sig->body) {
1617	 ir_instruction *ir = (ir_instruction *)node;
1618	 this->base_ir = ir;
1619	 this->result = reg_undef;
1620	 ir->accept(this);
1621      }
1622   }
1623}
1624
1625void
1626fs_visitor::visit(ir_function_signature *ir)
1627{
1628   assert(!"not reached");
1629   (void)ir;
1630}
1631
1632fs_inst *
1633fs_visitor::emit(fs_inst inst)
1634{
1635   fs_inst *list_inst = new(mem_ctx) fs_inst;
1636   *list_inst = inst;
1637
1638   if (force_uncompressed_stack > 0)
1639      list_inst->force_uncompressed = true;
1640   else if (force_sechalf_stack > 0)
1641      list_inst->force_sechalf = true;
1642
1643   list_inst->annotation = this->current_annotation;
1644   list_inst->ir = this->base_ir;
1645
1646   this->instructions.push_tail(list_inst);
1647
1648   return list_inst;
1649}
1650
1651/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1652void
1653fs_visitor::emit_dummy_fs()
1654{
1655   /* Everyone's favorite color. */
1656   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1657   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1658   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1659   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1660
1661   fs_inst *write;
1662   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1663   write->base_mrf = 2;
1664}
1665
1666/* The register location here is relative to the start of the URB
1667 * data.  It will get adjusted to be a real location before
1668 * generate_code() time.
1669 */
1670struct brw_reg
1671fs_visitor::interp_reg(int location, int channel)
1672{
1673   int regnr = urb_setup[location] * 2 + channel / 2;
1674   int stride = (channel & 1) * 4;
1675
1676   assert(urb_setup[location] != -1);
1677
1678   return brw_vec1_grf(regnr, stride);
1679}
1680
1681/** Emits the interpolation for the varying inputs. */
1682void
1683fs_visitor::emit_interpolation_setup_gen4()
1684{
1685   this->current_annotation = "compute pixel centers";
1686   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1687   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1688   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1689   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1690
1691   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1692   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1693
1694   this->current_annotation = "compute pixel deltas from v0";
1695   if (brw->has_pln) {
1696      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1697      this->delta_y = this->delta_x;
1698      this->delta_y.reg_offset++;
1699   } else {
1700      this->delta_x = fs_reg(this, glsl_type::float_type);
1701      this->delta_y = fs_reg(this, glsl_type::float_type);
1702   }
1703   emit(BRW_OPCODE_ADD, this->delta_x,
1704	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1705   emit(BRW_OPCODE_ADD, this->delta_y,
1706	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1707
1708   this->current_annotation = "compute pos.w and 1/pos.w";
1709   /* Compute wpos.w.  It's always in our setup, since it's needed to
1710    * interpolate the other attributes.
1711    */
1712   this->wpos_w = fs_reg(this, glsl_type::float_type);
1713   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1714	interp_reg(FRAG_ATTRIB_WPOS, 3));
1715   /* Compute the pixel 1/W value from wpos.w. */
1716   this->pixel_w = fs_reg(this, glsl_type::float_type);
1717   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1718   this->current_annotation = NULL;
1719}
1720
1721/** Emits the interpolation for the varying inputs. */
1722void
1723fs_visitor::emit_interpolation_setup_gen6()
1724{
1725   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1726
1727   /* If the pixel centers end up used, the setup is the same as for gen4. */
1728   this->current_annotation = "compute pixel centers";
1729   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1730   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1731   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1732   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1733   emit(BRW_OPCODE_ADD,
1734	int_pixel_x,
1735	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1736	fs_reg(brw_imm_v(0x10101010)));
1737   emit(BRW_OPCODE_ADD,
1738	int_pixel_y,
1739	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1740	fs_reg(brw_imm_v(0x11001100)));
1741
1742   /* As of gen6, we can no longer mix float and int sources.  We have
1743    * to turn the integer pixel centers into floats for their actual
1744    * use.
1745    */
1746   this->pixel_x = fs_reg(this, glsl_type::float_type);
1747   this->pixel_y = fs_reg(this, glsl_type::float_type);
1748   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1749   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1750
1751   this->current_annotation = "compute pos.w";
1752   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1753   this->wpos_w = fs_reg(this, glsl_type::float_type);
1754   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1755
1756   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1757   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1758
1759   this->current_annotation = NULL;
1760}
1761
1762void
1763fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1764{
1765   int reg_width = c->dispatch_width / 8;
1766   fs_inst *inst;
1767
1768   if (c->dispatch_width == 8 || intel->gen == 6) {
1769      /* SIMD8 write looks like:
1770       * m + 0: r0
1771       * m + 1: r1
1772       * m + 2: g0
1773       * m + 3: g1
1774       *
1775       * gen6 SIMD16 DP write looks like:
1776       * m + 0: r0
1777       * m + 1: r1
1778       * m + 2: g0
1779       * m + 3: g1
1780       * m + 4: b0
1781       * m + 5: b1
1782       * m + 6: a0
1783       * m + 7: a1
1784       */
1785      inst = emit(BRW_OPCODE_MOV,
1786		  fs_reg(MRF, first_color_mrf + index * reg_width),
1787		  color);
1788      inst->saturate = c->key.clamp_fragment_color;
1789   } else {
1790      /* pre-gen6 SIMD16 single source DP write looks like:
1791       * m + 0: r0
1792       * m + 1: g0
1793       * m + 2: b0
1794       * m + 3: a0
1795       * m + 4: r1
1796       * m + 5: g1
1797       * m + 6: b1
1798       * m + 7: a1
1799       */
1800      if (brw->has_compr4) {
1801	 /* By setting the high bit of the MRF register number, we
1802	  * indicate that we want COMPR4 mode - instead of doing the
1803	  * usual destination + 1 for the second half we get
1804	  * destination + 4.
1805	  */
1806	 inst = emit(BRW_OPCODE_MOV,
1807		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index),
1808		     color);
1809	 inst->saturate = c->key.clamp_fragment_color;
1810      } else {
1811	 push_force_uncompressed();
1812	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index),
1813		     color);
1814	 inst->saturate = c->key.clamp_fragment_color;
1815	 pop_force_uncompressed();
1816
1817	 push_force_sechalf();
1818	 color.sechalf = true;
1819	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4),
1820		     color);
1821	 inst->saturate = c->key.clamp_fragment_color;
1822	 pop_force_sechalf();
1823	 color.sechalf = false;
1824      }
1825   }
1826}
1827
1828void
1829fs_visitor::emit_fb_writes()
1830{
1831   this->current_annotation = "FB write header";
1832   GLboolean header_present = GL_TRUE;
1833   int base_mrf = 2;
1834   int nr = base_mrf;
1835   int reg_width = c->dispatch_width / 8;
1836
1837   if (intel->gen >= 6 &&
1838       !this->kill_emitted &&
1839       c->key.nr_color_regions == 1) {
1840      header_present = false;
1841   }
1842
1843   if (header_present) {
1844      /* m2, m3 header */
1845      nr += 2;
1846   }
1847
1848   if (c->aa_dest_stencil_reg) {
1849      push_force_uncompressed();
1850      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1851	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1852      pop_force_uncompressed();
1853   }
1854
1855   /* Reserve space for color. It'll be filled in per MRT below. */
1856   int color_mrf = nr;
1857   nr += 4 * reg_width;
1858
1859   if (c->source_depth_to_render_target) {
1860      if (intel->gen == 6 && c->dispatch_width == 16) {
1861	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1862	  * used.  This would require 8-wide moves of each half to
1863	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1864	  * Just bail on doing so for now.
1865	  */
1866	 fail("Missing support for simd16 depth writes on gen6\n");
1867      }
1868
1869      if (c->computes_depth) {
1870	 /* Hand over gl_FragDepth. */
1871	 assert(this->frag_depth);
1872	 fs_reg depth = *(variable_storage(this->frag_depth));
1873
1874	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1875      } else {
1876	 /* Pass through the payload depth. */
1877	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1878	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1879      }
1880      nr += reg_width;
1881   }
1882
1883   if (c->dest_depth_reg) {
1884      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1885	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1886      nr += reg_width;
1887   }
1888
1889   fs_reg color = reg_undef;
1890   if (this->frag_color)
1891      color = *(variable_storage(this->frag_color));
1892   else if (this->frag_data) {
1893      color = *(variable_storage(this->frag_data));
1894      color.type = BRW_REGISTER_TYPE_F;
1895   }
1896
1897   for (int target = 0; target < c->key.nr_color_regions; target++) {
1898      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1899						 "FB write target %d",
1900						 target);
1901      if (this->frag_color || this->frag_data) {
1902	 for (int i = 0; i < 4; i++) {
1903	    emit_color_write(i, color_mrf, color);
1904	    color.reg_offset++;
1905	 }
1906      }
1907
1908      if (this->frag_color)
1909	 color.reg_offset -= 4;
1910
1911      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1912      inst->target = target;
1913      inst->base_mrf = base_mrf;
1914      inst->mlen = nr - base_mrf;
1915      if (target == c->key.nr_color_regions - 1)
1916	 inst->eot = true;
1917      inst->header_present = header_present;
1918   }
1919
1920   if (c->key.nr_color_regions == 0) {
1921      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1922	 /* If the alpha test is enabled but there's no color buffer,
1923	  * we still need to send alpha out the pipeline to our null
1924	  * renderbuffer.
1925	  */
1926	 color.reg_offset += 3;
1927	 emit_color_write(3, color_mrf, color);
1928      }
1929
1930      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1931      inst->base_mrf = base_mrf;
1932      inst->mlen = nr - base_mrf;
1933      inst->eot = true;
1934      inst->header_present = header_present;
1935   }
1936
1937   this->current_annotation = NULL;
1938}
1939