brw_fs_visitor.cpp revision d1f70a8a6c6ec7007bad22d3d6013415be2d243a
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM ||
146	     (this->result.file == GRF &&
147	      this->result.reg != 0));
148      this->result.reg_offset += index->value.i[0] * element_size;
149   } else {
150      assert(!"FINISHME: non-constant array element");
151   }
152}
153
154/* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157bool
158fs_visitor::try_emit_saturate(ir_expression *ir)
159{
160   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162   if (!sat_val)
163      return false;
164
165   this->result = reg_undef;
166   sat_val->accept(this);
167   fs_reg src = this->result;
168
169   this->result = fs_reg(this, ir->type);
170   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171   inst->saturate = true;
172
173   return true;
174}
175
176void
177fs_visitor::visit(ir_expression *ir)
178{
179   unsigned int operand;
180   fs_reg op[2], temp;
181   fs_inst *inst;
182
183   assert(ir->get_num_operands() <= 2);
184
185   if (try_emit_saturate(ir))
186      return;
187
188   /* This is where our caller would like us to put the result, if possible. */
189   fs_reg saved_result_storage = this->result;
190
191   for (operand = 0; operand < ir->get_num_operands(); operand++) {
192      this->result = reg_undef;
193      ir->operands[operand]->accept(this);
194      if (this->result.file == BAD_FILE) {
195	 ir_print_visitor v;
196	 fail("Failed to get tree for expression operand:\n");
197	 ir->operands[operand]->accept(&v);
198      }
199      op[operand] = this->result;
200
201      /* Matrix expression operands should have been broken down to vector
202       * operations already.
203       */
204      assert(!ir->operands[operand]->type->is_matrix());
205      /* And then those vector operands should have been broken down to scalar.
206       */
207      assert(!ir->operands[operand]->type->is_vector());
208   }
209
210   /* Inherit storage from our parent if possible, and otherwise we
211    * alloc a temporary.
212    */
213   if (saved_result_storage.file == BAD_FILE) {
214      this->result = fs_reg(this, ir->type);
215   } else {
216      this->result = saved_result_storage;
217   }
218
219   switch (ir->operation) {
220   case ir_unop_logic_not:
221      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222       * ones complement of the whole register, not just bit 0.
223       */
224      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225      break;
226   case ir_unop_neg:
227      op[0].negate = !op[0].negate;
228      this->result = op[0];
229      break;
230   case ir_unop_abs:
231      op[0].abs = true;
232      op[0].negate = false;
233      this->result = op[0];
234      break;
235   case ir_unop_sign:
236      temp = fs_reg(this, ir->type);
237
238      /* Unalias the destination.  (imagine a = sign(a)) */
239      this->result = fs_reg(this, ir->type);
240
241      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244      inst->conditional_mod = BRW_CONDITIONAL_G;
245      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246      inst->predicated = true;
247
248      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249      inst->conditional_mod = BRW_CONDITIONAL_L;
250      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251      inst->predicated = true;
252
253      break;
254   case ir_unop_rcp:
255      emit_math(FS_OPCODE_RCP, this->result, op[0]);
256      break;
257
258   case ir_unop_exp2:
259      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260      break;
261   case ir_unop_log2:
262      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263      break;
264   case ir_unop_exp:
265   case ir_unop_log:
266      assert(!"not reached: should be handled by ir_explog_to_explog2");
267      break;
268   case ir_unop_sin:
269   case ir_unop_sin_reduced:
270      emit_math(FS_OPCODE_SIN, this->result, op[0]);
271      break;
272   case ir_unop_cos:
273   case ir_unop_cos_reduced:
274      emit_math(FS_OPCODE_COS, this->result, op[0]);
275      break;
276
277   case ir_unop_dFdx:
278      emit(FS_OPCODE_DDX, this->result, op[0]);
279      break;
280   case ir_unop_dFdy:
281      emit(FS_OPCODE_DDY, this->result, op[0]);
282      break;
283
284   case ir_binop_add:
285      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286      break;
287   case ir_binop_sub:
288      assert(!"not reached: should be handled by ir_sub_to_add_neg");
289      break;
290
291   case ir_binop_mul:
292      emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293      break;
294   case ir_binop_div:
295      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296      break;
297   case ir_binop_mod:
298      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299      break;
300
301   case ir_binop_less:
302   case ir_binop_greater:
303   case ir_binop_lequal:
304   case ir_binop_gequal:
305   case ir_binop_equal:
306   case ir_binop_all_equal:
307   case ir_binop_nequal:
308   case ir_binop_any_nequal:
309      temp = this->result;
310      /* original gen4 does implicit conversion before comparison. */
311      if (intel->gen < 5)
312	 temp.type = op[0].type;
313
314      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317      break;
318
319   case ir_binop_logic_xor:
320      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321      break;
322
323   case ir_binop_logic_or:
324      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325      break;
326
327   case ir_binop_logic_and:
328      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329      break;
330
331   case ir_binop_dot:
332   case ir_unop_any:
333      assert(!"not reached: should be handled by brw_fs_channel_expressions");
334      break;
335
336   case ir_unop_noise:
337      assert(!"not reached: should be handled by lower_noise");
338      break;
339
340   case ir_quadop_vector:
341      assert(!"not reached: should be handled by lower_quadop_vector");
342      break;
343
344   case ir_unop_sqrt:
345      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346      break;
347
348   case ir_unop_rsq:
349      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350      break;
351
352   case ir_unop_i2f:
353   case ir_unop_b2f:
354   case ir_unop_b2i:
355   case ir_unop_f2i:
356      emit(BRW_OPCODE_MOV, this->result, op[0]);
357      break;
358   case ir_unop_f2b:
359   case ir_unop_i2b:
360      temp = this->result;
361      /* original gen4 does implicit conversion before comparison. */
362      if (intel->gen < 5)
363	 temp.type = op[0].type;
364
365      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
366      inst->conditional_mod = BRW_CONDITIONAL_NZ;
367      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
368      break;
369
370   case ir_unop_trunc:
371      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
372      break;
373   case ir_unop_ceil:
374      op[0].negate = !op[0].negate;
375      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
376      this->result.negate = true;
377      break;
378   case ir_unop_floor:
379      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
380      break;
381   case ir_unop_fract:
382      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
383      break;
384   case ir_unop_round_even:
385      emit(BRW_OPCODE_RNDE, this->result, op[0]);
386      break;
387
388   case ir_binop_min:
389      /* Unalias the destination */
390      this->result = fs_reg(this, ir->type);
391
392      inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
393      inst->conditional_mod = BRW_CONDITIONAL_L;
394
395      inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
396      inst->predicated = true;
397      break;
398   case ir_binop_max:
399      /* Unalias the destination */
400      this->result = fs_reg(this, ir->type);
401
402      inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
403      inst->conditional_mod = BRW_CONDITIONAL_G;
404
405      inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
406      inst->predicated = true;
407      break;
408
409   case ir_binop_pow:
410      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
411      break;
412
413   case ir_unop_bit_not:
414      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
415      break;
416   case ir_binop_bit_and:
417      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
418      break;
419   case ir_binop_bit_xor:
420      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
421      break;
422   case ir_binop_bit_or:
423      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
424      break;
425
426   case ir_unop_u2f:
427   case ir_binop_lshift:
428   case ir_binop_rshift:
429      assert(!"GLSL 1.30 features unsupported");
430      break;
431   }
432}
433
434void
435fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
436				   const glsl_type *type, bool predicated)
437{
438   switch (type->base_type) {
439   case GLSL_TYPE_FLOAT:
440   case GLSL_TYPE_UINT:
441   case GLSL_TYPE_INT:
442   case GLSL_TYPE_BOOL:
443      for (unsigned int i = 0; i < type->components(); i++) {
444	 l.type = brw_type_for_base_type(type);
445	 r.type = brw_type_for_base_type(type);
446
447	 if (predicated || !l.equals(&r)) {
448	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
449	    inst->predicated = predicated;
450	 }
451
452	 l.reg_offset++;
453	 r.reg_offset++;
454      }
455      break;
456   case GLSL_TYPE_ARRAY:
457      for (unsigned int i = 0; i < type->length; i++) {
458	 emit_assignment_writes(l, r, type->fields.array, predicated);
459      }
460      break;
461
462   case GLSL_TYPE_STRUCT:
463      for (unsigned int i = 0; i < type->length; i++) {
464	 emit_assignment_writes(l, r, type->fields.structure[i].type,
465				predicated);
466      }
467      break;
468
469   case GLSL_TYPE_SAMPLER:
470      break;
471
472   default:
473      assert(!"not reached");
474      break;
475   }
476}
477
478void
479fs_visitor::visit(ir_assignment *ir)
480{
481   struct fs_reg l, r;
482   fs_inst *inst;
483
484   /* FINISHME: arrays on the lhs */
485   this->result = reg_undef;
486   ir->lhs->accept(this);
487   l = this->result;
488
489   /* If we're doing a direct assignment, an RHS expression could
490    * drop its result right into our destination.  Otherwise, tell it
491    * not to.
492    */
493   if (ir->condition ||
494       !(ir->lhs->type->is_scalar() ||
495	 (ir->lhs->type->is_vector() &&
496	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
497      this->result = reg_undef;
498   }
499
500   ir->rhs->accept(this);
501   r = this->result;
502
503   assert(l.file != BAD_FILE);
504   assert(r.file != BAD_FILE);
505
506   if (ir->condition) {
507      emit_bool_to_cond_code(ir->condition);
508   }
509
510   if (ir->lhs->type->is_scalar() ||
511       ir->lhs->type->is_vector()) {
512      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
513	 if (ir->write_mask & (1 << i)) {
514	    if (ir->condition) {
515	       inst = emit(BRW_OPCODE_MOV, l, r);
516	       inst->predicated = true;
517	    } else if (!l.equals(&r)) {
518	       inst = emit(BRW_OPCODE_MOV, l, r);
519	    }
520
521	    r.reg_offset++;
522	 }
523	 l.reg_offset++;
524      }
525   } else {
526      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
527   }
528}
529
530fs_inst *
531fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
532			      int sampler)
533{
534   int mlen;
535   int base_mrf = 1;
536   bool simd16 = false;
537   fs_reg orig_dst;
538
539   /* g0 header. */
540   mlen = 1;
541
542   if (ir->shadow_comparitor) {
543      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
544	 fs_inst *inst = emit(BRW_OPCODE_MOV,
545			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
546	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
547	    inst->saturate = true;
548
549	 coordinate.reg_offset++;
550      }
551      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
552      mlen += 3;
553
554      if (ir->op == ir_tex) {
555	 /* There's no plain shadow compare message, so we use shadow
556	  * compare with a bias of 0.0.
557	  */
558	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
559	 mlen++;
560      } else if (ir->op == ir_txb) {
561	 this->result = reg_undef;
562	 ir->lod_info.bias->accept(this);
563	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
564	 mlen++;
565      } else {
566	 assert(ir->op == ir_txl);
567	 this->result = reg_undef;
568	 ir->lod_info.lod->accept(this);
569	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
570	 mlen++;
571      }
572
573      this->result = reg_undef;
574      ir->shadow_comparitor->accept(this);
575      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
576      mlen++;
577   } else if (ir->op == ir_tex) {
578      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
579	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
580			      coordinate);
581	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
582	    inst->saturate = true;
583	 coordinate.reg_offset++;
584      }
585      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
586      mlen += 3;
587   } else if (ir->op == ir_txd) {
588      assert(!"TXD isn't supported on gen4 yet.");
589   } else {
590      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
591       * instructions.  We'll need to do SIMD16 here.
592       */
593      assert(ir->op == ir_txb || ir->op == ir_txl);
594
595      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
596	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
597						     base_mrf + mlen + i * 2),
598			      coordinate);
599	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
600	    inst->saturate = true;
601	 coordinate.reg_offset++;
602      }
603
604      /* lod/bias appears after u/v/r. */
605      mlen += 6;
606
607      if (ir->op == ir_txb) {
608	 this->result = reg_undef;
609	 ir->lod_info.bias->accept(this);
610	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
611	 mlen++;
612      } else {
613	 this->result = reg_undef;
614	 ir->lod_info.lod->accept(this);
615	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
616	 mlen++;
617      }
618
619      /* The unused upper half. */
620      mlen++;
621
622      /* Now, since we're doing simd16, the return is 2 interleaved
623       * vec4s where the odd-indexed ones are junk. We'll need to move
624       * this weirdness around to the expected layout.
625       */
626      simd16 = true;
627      orig_dst = dst;
628      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
629						       2));
630      dst.type = BRW_REGISTER_TYPE_F;
631   }
632
633   fs_inst *inst = NULL;
634   switch (ir->op) {
635   case ir_tex:
636      inst = emit(FS_OPCODE_TEX, dst);
637      break;
638   case ir_txb:
639      inst = emit(FS_OPCODE_TXB, dst);
640      break;
641   case ir_txl:
642      inst = emit(FS_OPCODE_TXL, dst);
643      break;
644   case ir_txd:
645      inst = emit(FS_OPCODE_TXD, dst);
646      break;
647   case ir_txf:
648      assert(!"GLSL 1.30 features unsupported");
649      break;
650   }
651   inst->base_mrf = base_mrf;
652   inst->mlen = mlen;
653   inst->header_present = true;
654
655   if (simd16) {
656      for (int i = 0; i < 4; i++) {
657	 emit(BRW_OPCODE_MOV, orig_dst, dst);
658	 orig_dst.reg_offset++;
659	 dst.reg_offset += 2;
660      }
661   }
662
663   return inst;
664}
665
666/* gen5's sampler has slots for u, v, r, array index, then optional
667 * parameters like shadow comparitor or LOD bias.  If optional
668 * parameters aren't present, those base slots are optional and don't
669 * need to be included in the message.
670 *
671 * We don't fill in the unnecessary slots regardless, which may look
672 * surprising in the disassembly.
673 */
674fs_inst *
675fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
676			      int sampler)
677{
678   int mlen = 0;
679   int base_mrf = 2;
680   int reg_width = c->dispatch_width / 8;
681   bool header_present = false;
682
683   if (ir->offset) {
684      /* The offsets set up by the ir_texture visitor are in the
685       * m1 header, so we can't go headerless.
686       */
687      header_present = true;
688      mlen++;
689      base_mrf--;
690   }
691
692   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
693      fs_inst *inst = emit(BRW_OPCODE_MOV,
694			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
695			   coordinate);
696      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
697	 inst->saturate = true;
698      coordinate.reg_offset++;
699   }
700   mlen += ir->coordinate->type->vector_elements * reg_width;
701
702   if (ir->shadow_comparitor) {
703      mlen = MAX2(mlen, header_present + 4 * reg_width);
704
705      this->result = reg_undef;
706      ir->shadow_comparitor->accept(this);
707      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
708      mlen += reg_width;
709   }
710
711   fs_inst *inst = NULL;
712   switch (ir->op) {
713   case ir_tex:
714      inst = emit(FS_OPCODE_TEX, dst);
715      break;
716   case ir_txb:
717      this->result = reg_undef;
718      ir->lod_info.bias->accept(this);
719      mlen = MAX2(mlen, header_present + 4 * reg_width);
720      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
721      mlen += reg_width;
722
723      inst = emit(FS_OPCODE_TXB, dst);
724
725      break;
726   case ir_txl:
727      this->result = reg_undef;
728      ir->lod_info.lod->accept(this);
729      mlen = MAX2(mlen, header_present + 4 * reg_width);
730      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
731      mlen += reg_width;
732
733      inst = emit(FS_OPCODE_TXL, dst);
734      break;
735   case ir_txd:
736   case ir_txf:
737      assert(!"GLSL 1.30 features unsupported");
738      break;
739   }
740   inst->base_mrf = base_mrf;
741   inst->mlen = mlen;
742   inst->header_present = header_present;
743
744   if (mlen > 11) {
745      fail("Message length >11 disallowed by hardware\n");
746   }
747
748   return inst;
749}
750
751fs_inst *
752fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
753			      int sampler)
754{
755   int mlen = 0;
756   int base_mrf = 2;
757   int reg_width = c->dispatch_width / 8;
758   bool header_present = false;
759
760   if (ir->offset) {
761      /* The offsets set up by the ir_texture visitor are in the
762       * m1 header, so we can't go headerless.
763       */
764      header_present = true;
765      mlen++;
766      base_mrf--;
767   }
768
769   if (ir->shadow_comparitor) {
770      ir->shadow_comparitor->accept(this);
771      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
772      mlen += reg_width;
773   }
774
775   /* Set up the LOD info */
776   switch (ir->op) {
777   case ir_tex:
778      break;
779   case ir_txb:
780      ir->lod_info.bias->accept(this);
781      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
782      mlen += reg_width;
783      break;
784   case ir_txl:
785      ir->lod_info.lod->accept(this);
786      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
787      mlen += reg_width;
788      break;
789   case ir_txd:
790   case ir_txf:
791      assert(!"GLSL 1.30 features unsupported");
792      break;
793   }
794
795   /* Set up the coordinate */
796   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
797      fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
798			   coordinate);
799      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
800	 inst->saturate = true;
801      coordinate.reg_offset++;
802      mlen += reg_width;
803   }
804
805   /* Generate the SEND */
806   fs_inst *inst = NULL;
807   switch (ir->op) {
808   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
809   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
810   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
811   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
812   case ir_txf: assert(!"TXF unsupported.");
813   }
814   inst->base_mrf = base_mrf;
815   inst->mlen = mlen;
816   inst->header_present = header_present;
817
818   if (mlen > 11) {
819      fail("Message length >11 disallowed by hardware\n");
820   }
821
822   return inst;
823}
824
825void
826fs_visitor::visit(ir_texture *ir)
827{
828   int sampler;
829   fs_inst *inst = NULL;
830
831   this->result = reg_undef;
832   ir->coordinate->accept(this);
833   fs_reg coordinate = this->result;
834
835   if (ir->offset != NULL) {
836      ir_constant *offset = ir->offset->as_constant();
837      assert(offset != NULL);
838
839      signed char offsets[3];
840      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
841	 offsets[i] = (signed char) offset->value.i[i];
842
843      /* Combine all three offsets into a single unsigned dword:
844       *
845       *    bits 11:8 - U Offset (X component)
846       *    bits  7:4 - V Offset (Y component)
847       *    bits  3:0 - R Offset (Z component)
848       */
849      unsigned offset_bits = 0;
850      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
851	 const unsigned shift = 4 * (2 - i);
852	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
853      }
854
855      /* Explicitly set up the message header by copying g0 to msg reg m1. */
856      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
857	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
858
859      /* Then set the offset bits in DWord 2 of the message header. */
860      emit(BRW_OPCODE_MOV,
861	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
862			 BRW_REGISTER_TYPE_UD)),
863	   fs_reg(brw_imm_uw(offset_bits)));
864   }
865
866   /* Should be lowered by do_lower_texture_projection */
867   assert(!ir->projector);
868
869   sampler = _mesa_get_sampler_uniform_value(ir->sampler,
870					     ctx->Shader.CurrentFragmentProgram,
871					     &brw->fragment_program->Base);
872   sampler = c->fp->program.Base.SamplerUnits[sampler];
873
874   /* The 965 requires the EU to do the normalization of GL rectangle
875    * texture coordinates.  We use the program parameter state
876    * tracking to get the scaling factor.
877    */
878   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
879      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
880      int tokens[STATE_LENGTH] = {
881	 STATE_INTERNAL,
882	 STATE_TEXRECT_SCALE,
883	 sampler,
884	 0,
885	 0
886      };
887
888      if (c->dispatch_width == 16) {
889	 fail("rectangle scale uniform setup not supported on 16-wide\n");
890	 this->result = fs_reg(this, ir->type);
891	 return;
892      }
893
894      c->prog_data.param_convert[c->prog_data.nr_params] =
895	 PARAM_NO_CONVERT;
896      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
897	 PARAM_NO_CONVERT;
898
899      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
900      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
901      GLuint index = _mesa_add_state_reference(params,
902					       (gl_state_index *)tokens);
903
904      this->param_index[c->prog_data.nr_params] = index;
905      this->param_offset[c->prog_data.nr_params] = 0;
906      c->prog_data.nr_params++;
907      this->param_index[c->prog_data.nr_params] = index;
908      this->param_offset[c->prog_data.nr_params] = 1;
909      c->prog_data.nr_params++;
910
911      fs_reg dst = fs_reg(this, ir->coordinate->type);
912      fs_reg src = coordinate;
913      coordinate = dst;
914
915      emit(BRW_OPCODE_MUL, dst, src, scale_x);
916      dst.reg_offset++;
917      src.reg_offset++;
918      emit(BRW_OPCODE_MUL, dst, src, scale_y);
919   }
920
921   /* Writemasking doesn't eliminate channels on SIMD8 texture
922    * samples, so don't worry about them.
923    */
924   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
925
926   if (intel->gen >= 7) {
927      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
928   } else if (intel->gen >= 5) {
929      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
930   } else {
931      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
932   }
933
934   /* If there's an offset, we already set up m1.  To avoid the implied move,
935    * use the null register.  Otherwise, we want an implied move from g0.
936    */
937   if (ir->offset != NULL || !inst->header_present)
938      inst->src[0] = reg_undef;
939   else
940      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
941
942   inst->sampler = sampler;
943
944   this->result = dst;
945
946   if (ir->shadow_comparitor)
947      inst->shadow_compare = true;
948
949   if (ir->type == glsl_type::float_type) {
950      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
951      assert(ir->sampler->type->sampler_shadow);
952   } else if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
953      fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
954
955      for (int i = 0; i < 4; i++) {
956	 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
957	 fs_reg l = swizzle_dst;
958	 l.reg_offset += i;
959
960	 if (swiz == SWIZZLE_ZERO) {
961	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
962	 } else if (swiz == SWIZZLE_ONE) {
963	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
964	 } else {
965	    fs_reg r = dst;
966	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
967	    emit(BRW_OPCODE_MOV, l, r);
968	 }
969      }
970      this->result = swizzle_dst;
971   }
972}
973
974void
975fs_visitor::visit(ir_swizzle *ir)
976{
977   this->result = reg_undef;
978   ir->val->accept(this);
979   fs_reg val = this->result;
980
981   if (ir->type->vector_elements == 1) {
982      this->result.reg_offset += ir->mask.x;
983      return;
984   }
985
986   fs_reg result = fs_reg(this, ir->type);
987   this->result = result;
988
989   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
990      fs_reg channel = val;
991      int swiz = 0;
992
993      switch (i) {
994      case 0:
995	 swiz = ir->mask.x;
996	 break;
997      case 1:
998	 swiz = ir->mask.y;
999	 break;
1000      case 2:
1001	 swiz = ir->mask.z;
1002	 break;
1003      case 3:
1004	 swiz = ir->mask.w;
1005	 break;
1006      }
1007
1008      channel.reg_offset += swiz;
1009      emit(BRW_OPCODE_MOV, result, channel);
1010      result.reg_offset++;
1011   }
1012}
1013
1014void
1015fs_visitor::visit(ir_discard *ir)
1016{
1017   assert(ir->condition == NULL); /* FINISHME */
1018
1019   emit(FS_OPCODE_DISCARD);
1020   kill_emitted = true;
1021}
1022
1023void
1024fs_visitor::visit(ir_constant *ir)
1025{
1026   /* Set this->result to reg at the bottom of the function because some code
1027    * paths will cause this visitor to be applied to other fields.  This will
1028    * cause the value stored in this->result to be modified.
1029    *
1030    * Make reg constant so that it doesn't get accidentally modified along the
1031    * way.  Yes, I actually had this problem. :(
1032    */
1033   const fs_reg reg(this, ir->type);
1034   fs_reg dst_reg = reg;
1035
1036   if (ir->type->is_array()) {
1037      const unsigned size = type_size(ir->type->fields.array);
1038
1039      for (unsigned i = 0; i < ir->type->length; i++) {
1040	 this->result = reg_undef;
1041	 ir->array_elements[i]->accept(this);
1042	 fs_reg src_reg = this->result;
1043
1044	 dst_reg.type = src_reg.type;
1045	 for (unsigned j = 0; j < size; j++) {
1046	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1047	    src_reg.reg_offset++;
1048	    dst_reg.reg_offset++;
1049	 }
1050      }
1051   } else if (ir->type->is_record()) {
1052      foreach_list(node, &ir->components) {
1053	 ir_instruction *const field = (ir_instruction *) node;
1054	 const unsigned size = type_size(field->type);
1055
1056	 this->result = reg_undef;
1057	 field->accept(this);
1058	 fs_reg src_reg = this->result;
1059
1060	 dst_reg.type = src_reg.type;
1061	 for (unsigned j = 0; j < size; j++) {
1062	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1063	    src_reg.reg_offset++;
1064	    dst_reg.reg_offset++;
1065	 }
1066      }
1067   } else {
1068      const unsigned size = type_size(ir->type);
1069
1070      for (unsigned i = 0; i < size; i++) {
1071	 switch (ir->type->base_type) {
1072	 case GLSL_TYPE_FLOAT:
1073	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1074	    break;
1075	 case GLSL_TYPE_UINT:
1076	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1077	    break;
1078	 case GLSL_TYPE_INT:
1079	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1080	    break;
1081	 case GLSL_TYPE_BOOL:
1082	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1083	    break;
1084	 default:
1085	    assert(!"Non-float/uint/int/bool constant");
1086	 }
1087	 dst_reg.reg_offset++;
1088      }
1089   }
1090
1091   this->result = reg;
1092}
1093
1094void
1095fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1096{
1097   ir_expression *expr = ir->as_expression();
1098
1099   if (expr) {
1100      fs_reg op[2];
1101      fs_inst *inst;
1102
1103      assert(expr->get_num_operands() <= 2);
1104      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1105	 assert(expr->operands[i]->type->is_scalar());
1106
1107	 this->result = reg_undef;
1108	 expr->operands[i]->accept(this);
1109	 op[i] = this->result;
1110      }
1111
1112      switch (expr->operation) {
1113      case ir_unop_logic_not:
1114	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1115	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1116	 break;
1117
1118      case ir_binop_logic_xor:
1119	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1120	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1121	 break;
1122
1123      case ir_binop_logic_or:
1124	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1125	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1126	 break;
1127
1128      case ir_binop_logic_and:
1129	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1130	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1131	 break;
1132
1133      case ir_unop_f2b:
1134	 if (intel->gen >= 6) {
1135	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1136	 } else {
1137	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1138	 }
1139	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1140	 break;
1141
1142      case ir_unop_i2b:
1143	 if (intel->gen >= 6) {
1144	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1145	 } else {
1146	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1147	 }
1148	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1149	 break;
1150
1151      case ir_binop_greater:
1152      case ir_binop_gequal:
1153      case ir_binop_less:
1154      case ir_binop_lequal:
1155      case ir_binop_equal:
1156      case ir_binop_all_equal:
1157      case ir_binop_nequal:
1158      case ir_binop_any_nequal:
1159	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1160	 inst->conditional_mod =
1161	    brw_conditional_for_comparison(expr->operation);
1162	 break;
1163
1164      default:
1165	 assert(!"not reached");
1166	 fail("bad cond code\n");
1167	 break;
1168      }
1169      return;
1170   }
1171
1172   this->result = reg_undef;
1173   ir->accept(this);
1174
1175   if (intel->gen >= 6) {
1176      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1177      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1178   } else {
1179      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1180      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1181   }
1182}
1183
1184/**
1185 * Emit a gen6 IF statement with the comparison folded into the IF
1186 * instruction.
1187 */
1188void
1189fs_visitor::emit_if_gen6(ir_if *ir)
1190{
1191   ir_expression *expr = ir->condition->as_expression();
1192
1193   if (expr) {
1194      fs_reg op[2];
1195      fs_inst *inst;
1196      fs_reg temp;
1197
1198      assert(expr->get_num_operands() <= 2);
1199      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1200	 assert(expr->operands[i]->type->is_scalar());
1201
1202	 this->result = reg_undef;
1203	 expr->operands[i]->accept(this);
1204	 op[i] = this->result;
1205      }
1206
1207      switch (expr->operation) {
1208      case ir_unop_logic_not:
1209	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1210	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1211	 return;
1212
1213      case ir_binop_logic_xor:
1214	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1215	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1216	 return;
1217
1218      case ir_binop_logic_or:
1219	 temp = fs_reg(this, glsl_type::bool_type);
1220	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1221	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1222	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1223	 return;
1224
1225      case ir_binop_logic_and:
1226	 temp = fs_reg(this, glsl_type::bool_type);
1227	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1228	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1229	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1230	 return;
1231
1232      case ir_unop_f2b:
1233	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1234	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1235	 return;
1236
1237      case ir_unop_i2b:
1238	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1239	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1240	 return;
1241
1242      case ir_binop_greater:
1243      case ir_binop_gequal:
1244      case ir_binop_less:
1245      case ir_binop_lequal:
1246      case ir_binop_equal:
1247      case ir_binop_all_equal:
1248      case ir_binop_nequal:
1249      case ir_binop_any_nequal:
1250	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1251	 inst->conditional_mod =
1252	    brw_conditional_for_comparison(expr->operation);
1253	 return;
1254      default:
1255	 assert(!"not reached");
1256	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1257	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1258	 fail("bad condition\n");
1259	 return;
1260      }
1261      return;
1262   }
1263
1264   this->result = reg_undef;
1265   ir->condition->accept(this);
1266
1267   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1268   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1269}
1270
1271void
1272fs_visitor::visit(ir_if *ir)
1273{
1274   fs_inst *inst;
1275
1276   if (intel->gen != 6 && c->dispatch_width == 16) {
1277      fail("Can't support (non-uniform) control flow on 16-wide\n");
1278   }
1279
1280   /* Don't point the annotation at the if statement, because then it plus
1281    * the then and else blocks get printed.
1282    */
1283   this->base_ir = ir->condition;
1284
1285   if (intel->gen == 6) {
1286      emit_if_gen6(ir);
1287   } else {
1288      emit_bool_to_cond_code(ir->condition);
1289
1290      inst = emit(BRW_OPCODE_IF);
1291      inst->predicated = true;
1292   }
1293
1294   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1295      ir_instruction *ir = (ir_instruction *)iter.get();
1296      this->base_ir = ir;
1297      this->result = reg_undef;
1298      ir->accept(this);
1299   }
1300
1301   if (!ir->else_instructions.is_empty()) {
1302      emit(BRW_OPCODE_ELSE);
1303
1304      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1305	 ir_instruction *ir = (ir_instruction *)iter.get();
1306	 this->base_ir = ir;
1307	 this->result = reg_undef;
1308	 ir->accept(this);
1309      }
1310   }
1311
1312   emit(BRW_OPCODE_ENDIF);
1313}
1314
1315void
1316fs_visitor::visit(ir_loop *ir)
1317{
1318   fs_reg counter = reg_undef;
1319
1320   if (c->dispatch_width == 16) {
1321      fail("Can't support (non-uniform) control flow on 16-wide\n");
1322   }
1323
1324   if (ir->counter) {
1325      this->base_ir = ir->counter;
1326      ir->counter->accept(this);
1327      counter = *(variable_storage(ir->counter));
1328
1329      if (ir->from) {
1330	 this->result = counter;
1331
1332	 this->base_ir = ir->from;
1333	 this->result = counter;
1334	 ir->from->accept(this);
1335
1336	 if (!this->result.equals(&counter))
1337	    emit(BRW_OPCODE_MOV, counter, this->result);
1338      }
1339   }
1340
1341   emit(BRW_OPCODE_DO);
1342
1343   if (ir->to) {
1344      this->base_ir = ir->to;
1345      this->result = reg_undef;
1346      ir->to->accept(this);
1347
1348      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1349      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1350
1351      inst = emit(BRW_OPCODE_BREAK);
1352      inst->predicated = true;
1353   }
1354
1355   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1356      ir_instruction *ir = (ir_instruction *)iter.get();
1357
1358      this->base_ir = ir;
1359      this->result = reg_undef;
1360      ir->accept(this);
1361   }
1362
1363   if (ir->increment) {
1364      this->base_ir = ir->increment;
1365      this->result = reg_undef;
1366      ir->increment->accept(this);
1367      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1368   }
1369
1370   emit(BRW_OPCODE_WHILE);
1371}
1372
1373void
1374fs_visitor::visit(ir_loop_jump *ir)
1375{
1376   switch (ir->mode) {
1377   case ir_loop_jump::jump_break:
1378      emit(BRW_OPCODE_BREAK);
1379      break;
1380   case ir_loop_jump::jump_continue:
1381      emit(BRW_OPCODE_CONTINUE);
1382      break;
1383   }
1384}
1385
1386void
1387fs_visitor::visit(ir_call *ir)
1388{
1389   assert(!"FINISHME");
1390}
1391
1392void
1393fs_visitor::visit(ir_return *ir)
1394{
1395   assert(!"FINISHME");
1396}
1397
1398void
1399fs_visitor::visit(ir_function *ir)
1400{
1401   /* Ignore function bodies other than main() -- we shouldn't see calls to
1402    * them since they should all be inlined before we get to ir_to_mesa.
1403    */
1404   if (strcmp(ir->name, "main") == 0) {
1405      const ir_function_signature *sig;
1406      exec_list empty;
1407
1408      sig = ir->matching_signature(&empty);
1409
1410      assert(sig);
1411
1412      foreach_iter(exec_list_iterator, iter, sig->body) {
1413	 ir_instruction *ir = (ir_instruction *)iter.get();
1414	 this->base_ir = ir;
1415	 this->result = reg_undef;
1416	 ir->accept(this);
1417      }
1418   }
1419}
1420
1421void
1422fs_visitor::visit(ir_function_signature *ir)
1423{
1424   assert(!"not reached");
1425   (void)ir;
1426}
1427
1428fs_inst *
1429fs_visitor::emit(fs_inst inst)
1430{
1431   fs_inst *list_inst = new(mem_ctx) fs_inst;
1432   *list_inst = inst;
1433
1434   if (force_uncompressed_stack > 0)
1435      list_inst->force_uncompressed = true;
1436   else if (force_sechalf_stack > 0)
1437      list_inst->force_sechalf = true;
1438
1439   list_inst->annotation = this->current_annotation;
1440   list_inst->ir = this->base_ir;
1441
1442   this->instructions.push_tail(list_inst);
1443
1444   return list_inst;
1445}
1446
1447/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1448void
1449fs_visitor::emit_dummy_fs()
1450{
1451   /* Everyone's favorite color. */
1452   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1453   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1454   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1455   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1456
1457   fs_inst *write;
1458   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1459   write->base_mrf = 0;
1460}
1461
1462/* The register location here is relative to the start of the URB
1463 * data.  It will get adjusted to be a real location before
1464 * generate_code() time.
1465 */
1466struct brw_reg
1467fs_visitor::interp_reg(int location, int channel)
1468{
1469   int regnr = urb_setup[location] * 2 + channel / 2;
1470   int stride = (channel & 1) * 4;
1471
1472   assert(urb_setup[location] != -1);
1473
1474   return brw_vec1_grf(regnr, stride);
1475}
1476
1477/** Emits the interpolation for the varying inputs. */
1478void
1479fs_visitor::emit_interpolation_setup_gen4()
1480{
1481   this->current_annotation = "compute pixel centers";
1482   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1483   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1484   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1485   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1486
1487   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1488   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1489
1490   this->current_annotation = "compute pixel deltas from v0";
1491   if (brw->has_pln) {
1492      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1493      this->delta_y = this->delta_x;
1494      this->delta_y.reg_offset++;
1495   } else {
1496      this->delta_x = fs_reg(this, glsl_type::float_type);
1497      this->delta_y = fs_reg(this, glsl_type::float_type);
1498   }
1499   emit(BRW_OPCODE_ADD, this->delta_x,
1500	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1501   emit(BRW_OPCODE_ADD, this->delta_y,
1502	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1503
1504   this->current_annotation = "compute pos.w and 1/pos.w";
1505   /* Compute wpos.w.  It's always in our setup, since it's needed to
1506    * interpolate the other attributes.
1507    */
1508   this->wpos_w = fs_reg(this, glsl_type::float_type);
1509   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1510	interp_reg(FRAG_ATTRIB_WPOS, 3));
1511   /* Compute the pixel 1/W value from wpos.w. */
1512   this->pixel_w = fs_reg(this, glsl_type::float_type);
1513   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1514   this->current_annotation = NULL;
1515}
1516
1517/** Emits the interpolation for the varying inputs. */
1518void
1519fs_visitor::emit_interpolation_setup_gen6()
1520{
1521   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1522
1523   /* If the pixel centers end up used, the setup is the same as for gen4. */
1524   this->current_annotation = "compute pixel centers";
1525   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1526   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1527   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1528   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1529   emit(BRW_OPCODE_ADD,
1530	int_pixel_x,
1531	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1532	fs_reg(brw_imm_v(0x10101010)));
1533   emit(BRW_OPCODE_ADD,
1534	int_pixel_y,
1535	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1536	fs_reg(brw_imm_v(0x11001100)));
1537
1538   /* As of gen6, we can no longer mix float and int sources.  We have
1539    * to turn the integer pixel centers into floats for their actual
1540    * use.
1541    */
1542   this->pixel_x = fs_reg(this, glsl_type::float_type);
1543   this->pixel_y = fs_reg(this, glsl_type::float_type);
1544   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1545   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1546
1547   this->current_annotation = "compute pos.w";
1548   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1549   this->wpos_w = fs_reg(this, glsl_type::float_type);
1550   emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1551
1552   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1553   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1554
1555   this->current_annotation = NULL;
1556}
1557
1558void
1559fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1560{
1561   int reg_width = c->dispatch_width / 8;
1562
1563   if (c->dispatch_width == 8 || intel->gen == 6) {
1564      /* SIMD8 write looks like:
1565       * m + 0: r0
1566       * m + 1: r1
1567       * m + 2: g0
1568       * m + 3: g1
1569       *
1570       * gen6 SIMD16 DP write looks like:
1571       * m + 0: r0
1572       * m + 1: r1
1573       * m + 2: g0
1574       * m + 3: g1
1575       * m + 4: b0
1576       * m + 5: b1
1577       * m + 6: a0
1578       * m + 7: a1
1579       */
1580      emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index * reg_width),
1581	   color);
1582   } else {
1583      /* pre-gen6 SIMD16 single source DP write looks like:
1584       * m + 0: r0
1585       * m + 1: g0
1586       * m + 2: b0
1587       * m + 3: a0
1588       * m + 4: r1
1589       * m + 5: g1
1590       * m + 6: b1
1591       * m + 7: a1
1592       */
1593      if (brw->has_compr4) {
1594	 /* By setting the high bit of the MRF register number, we
1595	  * indicate that we want COMPR4 mode - instead of doing the
1596	  * usual destination + 1 for the second half we get
1597	  * destination + 4.
1598	  */
1599	 emit(BRW_OPCODE_MOV,
1600	      fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index), color);
1601      } else {
1602	 push_force_uncompressed();
1603	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index), color);
1604	 pop_force_uncompressed();
1605
1606	 push_force_sechalf();
1607	 color.sechalf = true;
1608	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4), color);
1609	 pop_force_sechalf();
1610	 color.sechalf = false;
1611      }
1612   }
1613}
1614
1615void
1616fs_visitor::emit_fb_writes()
1617{
1618   this->current_annotation = "FB write header";
1619   GLboolean header_present = GL_TRUE;
1620   int nr = 0;
1621   int reg_width = c->dispatch_width / 8;
1622
1623   if (intel->gen >= 6 &&
1624       !this->kill_emitted &&
1625       c->key.nr_color_regions == 1) {
1626      header_present = false;
1627   }
1628
1629   if (header_present) {
1630      /* m0, m1 header */
1631      nr += 2;
1632   }
1633
1634   if (c->aa_dest_stencil_reg) {
1635      push_force_uncompressed();
1636      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1637	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1638      pop_force_uncompressed();
1639   }
1640
1641   /* Reserve space for color. It'll be filled in per MRT below. */
1642   int color_mrf = nr;
1643   nr += 4 * reg_width;
1644
1645   if (c->source_depth_to_render_target) {
1646      if (intel->gen == 6 && c->dispatch_width == 16) {
1647	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1648	  * used.  This would require 8-wide moves of each half to
1649	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1650	  * Just bail on doing so for now.
1651	  */
1652	 fail("Missing support for simd16 depth writes on gen6\n");
1653      }
1654
1655      if (c->computes_depth) {
1656	 /* Hand over gl_FragDepth. */
1657	 assert(this->frag_depth);
1658	 fs_reg depth = *(variable_storage(this->frag_depth));
1659
1660	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1661      } else {
1662	 /* Pass through the payload depth. */
1663	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1664	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1665      }
1666      nr += reg_width;
1667   }
1668
1669   if (c->dest_depth_reg) {
1670      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1671	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1672      nr += reg_width;
1673   }
1674
1675   fs_reg color = reg_undef;
1676   if (this->frag_color)
1677      color = *(variable_storage(this->frag_color));
1678   else if (this->frag_data) {
1679      color = *(variable_storage(this->frag_data));
1680      color.type = BRW_REGISTER_TYPE_F;
1681   }
1682
1683   for (int target = 0; target < c->key.nr_color_regions; target++) {
1684      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1685						 "FB write target %d",
1686						 target);
1687      if (this->frag_color || this->frag_data) {
1688	 for (int i = 0; i < 4; i++) {
1689	    emit_color_write(i, color_mrf, color);
1690	    color.reg_offset++;
1691	 }
1692      }
1693
1694      if (this->frag_color)
1695	 color.reg_offset -= 4;
1696
1697      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1698      inst->target = target;
1699      inst->base_mrf = 0;
1700      inst->mlen = nr;
1701      if (target == c->key.nr_color_regions - 1)
1702	 inst->eot = true;
1703      inst->header_present = header_present;
1704   }
1705
1706   if (c->key.nr_color_regions == 0) {
1707      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1708	 /* If the alpha test is enabled but there's no color buffer,
1709	  * we still need to send alpha out the pipeline to our null
1710	  * renderbuffer.
1711	  */
1712	 color.reg_offset += 3;
1713	 emit_color_write(3, color_mrf, color);
1714      }
1715
1716      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1717      inst->base_mrf = 0;
1718      inst->mlen = nr;
1719      inst->eot = true;
1720      inst->header_present = header_present;
1721   }
1722
1723   this->current_annotation = NULL;
1724}
1725