brw_fs_visitor.cpp revision dc42910e98dc00760255cc4579da458de09175b9
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->location == FRAG_RESULT_COLOR) {
76	 /* Writing gl_FragColor outputs to all color regions. */
77	 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78	    this->outputs[i] = *reg;
79	 }
80      } else if (ir->location == FRAG_RESULT_DEPTH) {
81	 this->frag_depth = ir;
82      } else {
83	 /* gl_FragData or a user-defined FS output */
84	 assert(ir->location >= FRAG_RESULT_DATA0 &&
85		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87	 /* General color output. */
88	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89	    int output = ir->location - FRAG_RESULT_DATA0 + i;
90	    this->outputs[output] = *reg;
91	    this->outputs[output].reg_offset += 4 * i;
92	 }
93      }
94   } else if (ir->mode == ir_var_uniform) {
95      int param_index = c->prog_data.nr_params;
96
97      if (c->dispatch_width == 16) {
98	 if (!variable_storage(ir)) {
99	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100	 }
101	 return;
102      }
103
104      if (!strncmp(ir->name, "gl_", 3)) {
105	 setup_builtin_uniform_values(ir);
106      } else {
107	 setup_uniform_values(ir->location, ir->type);
108      }
109
110      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111      reg->type = brw_type_for_base_type(ir->type);
112   }
113
114   if (!reg)
115      reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117   hash_table_insert(this->variable_ht, reg, ir);
118}
119
120void
121fs_visitor::visit(ir_dereference_variable *ir)
122{
123   fs_reg *reg = variable_storage(ir->var);
124   this->result = *reg;
125}
126
127void
128fs_visitor::visit(ir_dereference_record *ir)
129{
130   const glsl_type *struct_type = ir->record->type;
131
132   ir->record->accept(this);
133
134   unsigned int offset = 0;
135   for (unsigned int i = 0; i < struct_type->length; i++) {
136      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137	 break;
138      offset += type_size(struct_type->fields.structure[i].type);
139   }
140   this->result.reg_offset += offset;
141   this->result.type = brw_type_for_base_type(ir->type);
142}
143
144void
145fs_visitor::visit(ir_dereference_array *ir)
146{
147   ir_constant *index;
148   int element_size;
149
150   ir->array->accept(this);
151   index = ir->array_index->as_constant();
152
153   element_size = type_size(ir->type);
154   this->result.type = brw_type_for_base_type(ir->type);
155
156   if (index) {
157      assert(this->result.file == UNIFORM || this->result.file == GRF);
158      this->result.reg_offset += index->value.i[0] * element_size;
159   } else {
160      assert(!"FINISHME: non-constant array element");
161   }
162}
163
164/* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167bool
168fs_visitor::try_emit_saturate(ir_expression *ir)
169{
170   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172   if (!sat_val)
173      return false;
174
175   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
176
177   sat_val->accept(this);
178   fs_reg src = this->result;
179
180   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
181
182   /* If the last instruction from our accept() didn't generate our
183    * src, generate a saturated MOV
184    */
185   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
186   if (!modify || modify->regs_written() != 1) {
187      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
188      inst->saturate = true;
189   } else {
190      modify->saturate = true;
191      this->result = src;
192   }
193
194
195   return true;
196}
197
198bool
199fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
200{
201   /* 3-src instructions were introduced in gen6. */
202   if (intel->gen < 6)
203      return false;
204
205   /* MAD can only handle floating-point data. */
206   if (ir->type != glsl_type::float_type)
207      return false;
208
209   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
210   ir_expression *mul = ir->operands[mul_arg]->as_expression();
211
212   if (!mul || mul->operation != ir_binop_mul)
213      return false;
214
215   if (nonmul->as_constant() ||
216       mul->operands[0]->as_constant() ||
217       mul->operands[1]->as_constant())
218      return false;
219
220   nonmul->accept(this);
221   fs_reg src0 = this->result;
222
223   mul->operands[0]->accept(this);
224   fs_reg src1 = this->result;
225
226   mul->operands[1]->accept(this);
227   fs_reg src2 = this->result;
228
229   this->result = fs_reg(this, ir->type);
230   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
231
232   return true;
233}
234
235void
236fs_visitor::visit(ir_expression *ir)
237{
238   unsigned int operand;
239   fs_reg op[2], temp;
240   fs_inst *inst;
241
242   assert(ir->get_num_operands() <= 2);
243
244   if (try_emit_saturate(ir))
245      return;
246   if (ir->operation == ir_binop_add) {
247      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
248	 return;
249   }
250
251   for (operand = 0; operand < ir->get_num_operands(); operand++) {
252      ir->operands[operand]->accept(this);
253      if (this->result.file == BAD_FILE) {
254	 ir_print_visitor v;
255	 fail("Failed to get tree for expression operand:\n");
256	 ir->operands[operand]->accept(&v);
257      }
258      op[operand] = this->result;
259
260      /* Matrix expression operands should have been broken down to vector
261       * operations already.
262       */
263      assert(!ir->operands[operand]->type->is_matrix());
264      /* And then those vector operands should have been broken down to scalar.
265       */
266      assert(!ir->operands[operand]->type->is_vector());
267   }
268
269   /* Storage for our result.  If our result goes into an assignment, it will
270    * just get copy-propagated out, so no worries.
271    */
272   this->result = fs_reg(this, ir->type);
273
274   switch (ir->operation) {
275   case ir_unop_logic_not:
276      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
277       * ones complement of the whole register, not just bit 0.
278       */
279      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
280      break;
281   case ir_unop_neg:
282      op[0].negate = !op[0].negate;
283      this->result = op[0];
284      break;
285   case ir_unop_abs:
286      op[0].abs = true;
287      op[0].negate = false;
288      this->result = op[0];
289      break;
290   case ir_unop_sign:
291      temp = fs_reg(this, ir->type);
292
293      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
294
295      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
296      inst->conditional_mod = BRW_CONDITIONAL_G;
297      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
298      inst->predicated = true;
299
300      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
301      inst->conditional_mod = BRW_CONDITIONAL_L;
302      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
303      inst->predicated = true;
304
305      break;
306   case ir_unop_rcp:
307      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
308      break;
309
310   case ir_unop_exp2:
311      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
312      break;
313   case ir_unop_log2:
314      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
315      break;
316   case ir_unop_exp:
317   case ir_unop_log:
318      assert(!"not reached: should be handled by ir_explog_to_explog2");
319      break;
320   case ir_unop_sin:
321   case ir_unop_sin_reduced:
322      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
323      break;
324   case ir_unop_cos:
325   case ir_unop_cos_reduced:
326      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
327      break;
328
329   case ir_unop_dFdx:
330      emit(FS_OPCODE_DDX, this->result, op[0]);
331      break;
332   case ir_unop_dFdy:
333      emit(FS_OPCODE_DDY, this->result, op[0]);
334      break;
335
336   case ir_binop_add:
337      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
338      break;
339   case ir_binop_sub:
340      assert(!"not reached: should be handled by ir_sub_to_add_neg");
341      break;
342
343   case ir_binop_mul:
344      if (ir->type->is_integer()) {
345	 /* For integer multiplication, the MUL uses the low 16 bits
346	  * of one of the operands (src0 on gen6, src1 on gen7).  The
347	  * MACH accumulates in the contribution of the upper 16 bits
348	  * of that operand.
349	  *
350	  * FINISHME: Emit just the MUL if we know an operand is small
351	  * enough.
352	  */
353	 if (intel->gen >= 7 && c->dispatch_width == 16)
354	    fail("16-wide explicit accumulator operands unsupported\n");
355
356	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
357
358	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
359	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
360	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
361      } else {
362	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
363      }
364      break;
365   case ir_binop_div:
366      if (intel->gen >= 7 && c->dispatch_width == 16)
367	 fail("16-wide INTDIV unsupported\n");
368
369      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
370      assert(ir->type->is_integer());
371      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
372      break;
373   case ir_binop_mod:
374      if (intel->gen >= 7 && c->dispatch_width == 16)
375	 fail("16-wide INTDIV unsupported\n");
376
377      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
378      assert(ir->type->is_integer());
379      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
380      break;
381
382   case ir_binop_less:
383   case ir_binop_greater:
384   case ir_binop_lequal:
385   case ir_binop_gequal:
386   case ir_binop_equal:
387   case ir_binop_all_equal:
388   case ir_binop_nequal:
389   case ir_binop_any_nequal:
390      temp = this->result;
391      /* original gen4 does implicit conversion before comparison. */
392      if (intel->gen < 5)
393	 temp.type = op[0].type;
394
395      resolve_ud_negate(&op[0]);
396      resolve_ud_negate(&op[1]);
397
398      resolve_bool_comparison(ir->operands[0], &op[0]);
399      resolve_bool_comparison(ir->operands[1], &op[1]);
400
401      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
402      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
403      break;
404
405   case ir_binop_logic_xor:
406      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
407      break;
408
409   case ir_binop_logic_or:
410      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
411      break;
412
413   case ir_binop_logic_and:
414      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
415      break;
416
417   case ir_binop_dot:
418   case ir_unop_any:
419      assert(!"not reached: should be handled by brw_fs_channel_expressions");
420      break;
421
422   case ir_unop_noise:
423      assert(!"not reached: should be handled by lower_noise");
424      break;
425
426   case ir_quadop_vector:
427      assert(!"not reached: should be handled by lower_quadop_vector");
428      break;
429
430   case ir_unop_sqrt:
431      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
432      break;
433
434   case ir_unop_rsq:
435      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
436      break;
437
438   case ir_unop_i2u:
439      op[0].type = BRW_REGISTER_TYPE_UD;
440      this->result = op[0];
441      break;
442   case ir_unop_u2i:
443      op[0].type = BRW_REGISTER_TYPE_D;
444      this->result = op[0];
445      break;
446   case ir_unop_i2f:
447   case ir_unop_u2f:
448   case ir_unop_f2i:
449      emit(BRW_OPCODE_MOV, this->result, op[0]);
450      break;
451
452   case ir_unop_b2i:
453      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
454      break;
455   case ir_unop_b2f:
456      temp = fs_reg(this, glsl_type::int_type);
457      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
458      emit(BRW_OPCODE_MOV, this->result, temp);
459      break;
460
461   case ir_unop_f2b:
462   case ir_unop_i2b:
463      temp = this->result;
464      /* original gen4 does implicit conversion before comparison. */
465      if (intel->gen < 5)
466	 temp.type = op[0].type;
467
468      resolve_ud_negate(&op[0]);
469
470      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
471      inst->conditional_mod = BRW_CONDITIONAL_NZ;
472      break;
473
474   case ir_unop_trunc:
475      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
476      break;
477   case ir_unop_ceil:
478      op[0].negate = !op[0].negate;
479      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
480      this->result.negate = true;
481      break;
482   case ir_unop_floor:
483      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
484      break;
485   case ir_unop_fract:
486      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
487      break;
488   case ir_unop_round_even:
489      emit(BRW_OPCODE_RNDE, this->result, op[0]);
490      break;
491
492   case ir_binop_min:
493      resolve_ud_negate(&op[0]);
494      resolve_ud_negate(&op[1]);
495
496      if (intel->gen >= 6) {
497	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
498	 inst->conditional_mod = BRW_CONDITIONAL_L;
499      } else {
500	 /* Unalias the destination */
501	 this->result = fs_reg(this, ir->type);
502
503	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
504	 inst->conditional_mod = BRW_CONDITIONAL_L;
505
506	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
507	 inst->predicated = true;
508      }
509      break;
510   case ir_binop_max:
511      resolve_ud_negate(&op[0]);
512      resolve_ud_negate(&op[1]);
513
514      if (intel->gen >= 6) {
515	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
516	 inst->conditional_mod = BRW_CONDITIONAL_GE;
517      } else {
518	 /* Unalias the destination */
519	 this->result = fs_reg(this, ir->type);
520
521	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
522	 inst->conditional_mod = BRW_CONDITIONAL_G;
523
524	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
525	 inst->predicated = true;
526      }
527      break;
528
529   case ir_binop_pow:
530      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
531      break;
532
533   case ir_unop_bit_not:
534      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
535      break;
536   case ir_binop_bit_and:
537      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
538      break;
539   case ir_binop_bit_xor:
540      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
541      break;
542   case ir_binop_bit_or:
543      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
544      break;
545
546   case ir_binop_lshift:
547      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
548      break;
549
550   case ir_binop_rshift:
551      if (ir->type->base_type == GLSL_TYPE_INT)
552	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
553      else
554	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
555      break;
556   }
557}
558
559void
560fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
561				   const glsl_type *type, bool predicated)
562{
563   switch (type->base_type) {
564   case GLSL_TYPE_FLOAT:
565   case GLSL_TYPE_UINT:
566   case GLSL_TYPE_INT:
567   case GLSL_TYPE_BOOL:
568      for (unsigned int i = 0; i < type->components(); i++) {
569	 l.type = brw_type_for_base_type(type);
570	 r.type = brw_type_for_base_type(type);
571
572	 if (predicated || !l.equals(&r)) {
573	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
574	    inst->predicated = predicated;
575	 }
576
577	 l.reg_offset++;
578	 r.reg_offset++;
579      }
580      break;
581   case GLSL_TYPE_ARRAY:
582      for (unsigned int i = 0; i < type->length; i++) {
583	 emit_assignment_writes(l, r, type->fields.array, predicated);
584      }
585      break;
586
587   case GLSL_TYPE_STRUCT:
588      for (unsigned int i = 0; i < type->length; i++) {
589	 emit_assignment_writes(l, r, type->fields.structure[i].type,
590				predicated);
591      }
592      break;
593
594   case GLSL_TYPE_SAMPLER:
595      break;
596
597   default:
598      assert(!"not reached");
599      break;
600   }
601}
602
603/* If the RHS processing resulted in an instruction generating a
604 * temporary value, and it would be easy to rewrite the instruction to
605 * generate its result right into the LHS instead, do so.  This ends
606 * up reliably removing instructions where it can be tricky to do so
607 * later without real UD chain information.
608 */
609bool
610fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
611                                   fs_reg dst,
612                                   fs_reg src,
613                                   fs_inst *pre_rhs_inst,
614                                   fs_inst *last_rhs_inst)
615{
616   /* Only attempt if we're doing a direct assignment. */
617   if (ir->condition ||
618       !(ir->lhs->type->is_scalar() ||
619        (ir->lhs->type->is_vector() &&
620         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
621      return false;
622
623   /* Make sure the last instruction generated our source reg. */
624   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
625						    last_rhs_inst,
626						    src);
627   if (!modify)
628      return false;
629
630   /* If last_rhs_inst wrote a different number of components than our LHS,
631    * we can't safely rewrite it.
632    */
633   if (ir->lhs->type->vector_elements != modify->regs_written())
634      return false;
635
636   /* Success!  Rewrite the instruction. */
637   modify->dst = dst;
638
639   return true;
640}
641
642void
643fs_visitor::visit(ir_assignment *ir)
644{
645   fs_reg l, r;
646   fs_inst *inst;
647
648   /* FINISHME: arrays on the lhs */
649   ir->lhs->accept(this);
650   l = this->result;
651
652   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
653
654   ir->rhs->accept(this);
655   r = this->result;
656
657   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
658
659   assert(l.file != BAD_FILE);
660   assert(r.file != BAD_FILE);
661
662   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
663      return;
664
665   if (ir->condition) {
666      emit_bool_to_cond_code(ir->condition);
667   }
668
669   if (ir->lhs->type->is_scalar() ||
670       ir->lhs->type->is_vector()) {
671      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
672	 if (ir->write_mask & (1 << i)) {
673	    inst = emit(BRW_OPCODE_MOV, l, r);
674	    if (ir->condition)
675	       inst->predicated = true;
676	    r.reg_offset++;
677	 }
678	 l.reg_offset++;
679      }
680   } else {
681      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
682   }
683}
684
685fs_inst *
686fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
687			      int sampler)
688{
689   int mlen;
690   int base_mrf = 1;
691   bool simd16 = false;
692   fs_reg orig_dst;
693
694   /* g0 header. */
695   mlen = 1;
696
697   if (ir->shadow_comparitor && ir->op != ir_txd) {
698      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
699	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
700	 coordinate.reg_offset++;
701      }
702      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
703      mlen += 3;
704
705      if (ir->op == ir_tex) {
706	 /* There's no plain shadow compare message, so we use shadow
707	  * compare with a bias of 0.0.
708	  */
709	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
710	 mlen++;
711      } else if (ir->op == ir_txb) {
712	 ir->lod_info.bias->accept(this);
713	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
714	 mlen++;
715      } else {
716	 assert(ir->op == ir_txl);
717	 ir->lod_info.lod->accept(this);
718	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
719	 mlen++;
720      }
721
722      ir->shadow_comparitor->accept(this);
723      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
724      mlen++;
725   } else if (ir->op == ir_tex) {
726      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
727	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
728	 coordinate.reg_offset++;
729      }
730      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
731      mlen += 3;
732   } else if (ir->op == ir_txd) {
733      ir->lod_info.grad.dPdx->accept(this);
734      fs_reg dPdx = this->result;
735
736      ir->lod_info.grad.dPdy->accept(this);
737      fs_reg dPdy = this->result;
738
739      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
740	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
741	 coordinate.reg_offset++;
742      }
743      /* the slots for u and v are always present, but r is optional */
744      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
745
746      /*  P   = u, v, r
747       * dPdx = dudx, dvdx, drdx
748       * dPdy = dudy, dvdy, drdy
749       *
750       * 1-arg: Does not exist.
751       *
752       * 2-arg: dudx   dvdx   dudy   dvdy
753       *        dPdx.x dPdx.y dPdy.x dPdy.y
754       *        m4     m5     m6     m7
755       *
756       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
757       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
758       *        m5     m6     m7     m8     m9     m10
759       */
760      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
761	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
762	 dPdx.reg_offset++;
763      }
764      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
765
766      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
767	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
768	 dPdy.reg_offset++;
769      }
770      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
771   } else if (ir->op == ir_txs) {
772      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
773      simd16 = true;
774      ir->lod_info.lod->accept(this);
775      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
776      mlen += 2;
777   } else {
778      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
779       * instructions.  We'll need to do SIMD16 here.
780       */
781      simd16 = true;
782      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
783
784      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
785	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
786	      coordinate);
787	 coordinate.reg_offset++;
788      }
789
790      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
791       * be necessary for TXF (ld), but seems wise to do for all messages.
792       */
793      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
794	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
795      }
796
797      /* lod/bias appears after u/v/r. */
798      mlen += 6;
799
800      if (ir->op == ir_txb) {
801	 ir->lod_info.bias->accept(this);
802	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
803	 mlen++;
804      } else {
805	 ir->lod_info.lod->accept(this);
806	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
807			      this->result);
808	 mlen++;
809      }
810
811      /* The unused upper half. */
812      mlen++;
813   }
814
815   if (simd16) {
816      /* Now, since we're doing simd16, the return is 2 interleaved
817       * vec4s where the odd-indexed ones are junk. We'll need to move
818       * this weirdness around to the expected layout.
819       */
820      orig_dst = dst;
821      const glsl_type *vec_type =
822	 glsl_type::get_instance(ir->type->base_type, 4, 1);
823      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
824      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
825			       : BRW_REGISTER_TYPE_F;
826   }
827
828   fs_inst *inst = NULL;
829   switch (ir->op) {
830   case ir_tex:
831      inst = emit(SHADER_OPCODE_TEX, dst);
832      break;
833   case ir_txb:
834      inst = emit(FS_OPCODE_TXB, dst);
835      break;
836   case ir_txl:
837      inst = emit(SHADER_OPCODE_TXL, dst);
838      break;
839   case ir_txd:
840      inst = emit(SHADER_OPCODE_TXD, dst);
841      break;
842   case ir_txs:
843      inst = emit(SHADER_OPCODE_TXS, dst);
844      break;
845   case ir_txf:
846      inst = emit(SHADER_OPCODE_TXF, dst);
847      break;
848   }
849   inst->base_mrf = base_mrf;
850   inst->mlen = mlen;
851   inst->header_present = true;
852
853   if (simd16) {
854      for (int i = 0; i < 4; i++) {
855	 emit(BRW_OPCODE_MOV, orig_dst, dst);
856	 orig_dst.reg_offset++;
857	 dst.reg_offset += 2;
858      }
859   }
860
861   return inst;
862}
863
864/* gen5's sampler has slots for u, v, r, array index, then optional
865 * parameters like shadow comparitor or LOD bias.  If optional
866 * parameters aren't present, those base slots are optional and don't
867 * need to be included in the message.
868 *
869 * We don't fill in the unnecessary slots regardless, which may look
870 * surprising in the disassembly.
871 */
872fs_inst *
873fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
874			      int sampler)
875{
876   int mlen = 0;
877   int base_mrf = 2;
878   int reg_width = c->dispatch_width / 8;
879   bool header_present = false;
880   const int vector_elements =
881      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
882
883   if (ir->offset) {
884      /* The offsets set up by the ir_texture visitor are in the
885       * m1 header, so we can't go headerless.
886       */
887      header_present = true;
888      mlen++;
889      base_mrf--;
890   }
891
892   for (int i = 0; i < vector_elements; i++) {
893      emit(BRW_OPCODE_MOV,
894	   fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
895	   coordinate);
896      coordinate.reg_offset++;
897   }
898   mlen += vector_elements * reg_width;
899
900   if (ir->shadow_comparitor && ir->op != ir_txd) {
901      mlen = MAX2(mlen, header_present + 4 * reg_width);
902
903      ir->shadow_comparitor->accept(this);
904      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
905      mlen += reg_width;
906   }
907
908   fs_inst *inst = NULL;
909   switch (ir->op) {
910   case ir_tex:
911      inst = emit(SHADER_OPCODE_TEX, dst);
912      break;
913   case ir_txb:
914      ir->lod_info.bias->accept(this);
915      mlen = MAX2(mlen, header_present + 4 * reg_width);
916      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
917      mlen += reg_width;
918
919      inst = emit(FS_OPCODE_TXB, dst);
920
921      break;
922   case ir_txl:
923      ir->lod_info.lod->accept(this);
924      mlen = MAX2(mlen, header_present + 4 * reg_width);
925      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
926      mlen += reg_width;
927
928      inst = emit(SHADER_OPCODE_TXL, dst);
929      break;
930   case ir_txd: {
931      ir->lod_info.grad.dPdx->accept(this);
932      fs_reg dPdx = this->result;
933
934      ir->lod_info.grad.dPdy->accept(this);
935      fs_reg dPdy = this->result;
936
937      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
938
939      /**
940       *  P   =  u,    v,    r
941       * dPdx = dudx, dvdx, drdx
942       * dPdy = dudy, dvdy, drdy
943       *
944       * Load up these values:
945       * - dudx   dudy   dvdx   dvdy   drdx   drdy
946       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
947       */
948      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
949	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
950	 dPdx.reg_offset++;
951	 mlen += reg_width;
952
953	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
954	 dPdy.reg_offset++;
955	 mlen += reg_width;
956      }
957
958      inst = emit(SHADER_OPCODE_TXD, dst);
959      break;
960   }
961   case ir_txs:
962      ir->lod_info.lod->accept(this);
963      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
964      mlen += reg_width;
965      inst = emit(SHADER_OPCODE_TXS, dst);
966      break;
967   case ir_txf:
968      mlen = header_present + 4 * reg_width;
969
970      ir->lod_info.lod->accept(this);
971      emit(BRW_OPCODE_MOV,
972	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
973	   this->result);
974      inst = emit(SHADER_OPCODE_TXF, dst);
975      break;
976   }
977   inst->base_mrf = base_mrf;
978   inst->mlen = mlen;
979   inst->header_present = header_present;
980
981   if (mlen > 11) {
982      fail("Message length >11 disallowed by hardware\n");
983   }
984
985   return inst;
986}
987
988fs_inst *
989fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
990			      int sampler)
991{
992   int mlen = 0;
993   int base_mrf = 2;
994   int reg_width = c->dispatch_width / 8;
995   bool header_present = false;
996   int offsets[3];
997
998   if (ir->offset && ir->op != ir_txf) {
999      /* The offsets set up by the ir_texture visitor are in the
1000       * m1 header, so we can't go headerless.
1001       */
1002      header_present = true;
1003      mlen++;
1004      base_mrf--;
1005   }
1006
1007   if (ir->shadow_comparitor && ir->op != ir_txd) {
1008      ir->shadow_comparitor->accept(this);
1009      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1010      mlen += reg_width;
1011   }
1012
1013   /* Set up the LOD info */
1014   switch (ir->op) {
1015   case ir_tex:
1016      break;
1017   case ir_txb:
1018      ir->lod_info.bias->accept(this);
1019      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1020      mlen += reg_width;
1021      break;
1022   case ir_txl:
1023      ir->lod_info.lod->accept(this);
1024      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1025      mlen += reg_width;
1026      break;
1027   case ir_txd: {
1028      if (c->dispatch_width == 16)
1029	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1030
1031      ir->lod_info.grad.dPdx->accept(this);
1032      fs_reg dPdx = this->result;
1033
1034      ir->lod_info.grad.dPdy->accept(this);
1035      fs_reg dPdy = this->result;
1036
1037      /* Load dPdx and the coordinate together:
1038       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1039       */
1040      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1041	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1042	 coordinate.reg_offset++;
1043	 mlen += reg_width;
1044
1045	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1046	 dPdx.reg_offset++;
1047	 mlen += reg_width;
1048
1049	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1050	 dPdy.reg_offset++;
1051	 mlen += reg_width;
1052      }
1053      break;
1054   }
1055   case ir_txs:
1056      ir->lod_info.lod->accept(this);
1057      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1058      mlen += reg_width;
1059      break;
1060   case ir_txf:
1061      /* It appears that the ld instruction used for txf does its
1062       * address bounds check before adding in the offset.  To work
1063       * around this, just add the integer offset to the integer texel
1064       * coordinate, and don't put the offset in the header.
1065       */
1066      if (ir->offset) {
1067	 ir_constant *offset = ir->offset->as_constant();
1068	 offsets[0] = offset->value.i[0];
1069	 offsets[1] = offset->value.i[1];
1070	 offsets[2] = offset->value.i[2];
1071      } else {
1072	 memset(offsets, 0, sizeof(offsets));
1073      }
1074
1075      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1076      emit(BRW_OPCODE_ADD,
1077	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1078      coordinate.reg_offset++;
1079      mlen += reg_width;
1080
1081      ir->lod_info.lod->accept(this);
1082      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1083      mlen += reg_width;
1084
1085      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1086	 emit(BRW_OPCODE_ADD,
1087	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1088	 coordinate.reg_offset++;
1089	 mlen += reg_width;
1090      }
1091      break;
1092   }
1093
1094   /* Set up the coordinate (except for cases where it was done above) */
1095   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1096      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1097	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1098	 coordinate.reg_offset++;
1099	 mlen += reg_width;
1100      }
1101   }
1102
1103   /* Generate the SEND */
1104   fs_inst *inst = NULL;
1105   switch (ir->op) {
1106   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1107   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1108   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1109   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1110   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1111   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1112   }
1113   inst->base_mrf = base_mrf;
1114   inst->mlen = mlen;
1115   inst->header_present = header_present;
1116
1117   if (mlen > 11) {
1118      fail("Message length >11 disallowed by hardware\n");
1119   }
1120
1121   return inst;
1122}
1123
1124void
1125fs_visitor::visit(ir_texture *ir)
1126{
1127   fs_inst *inst = NULL;
1128
1129   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1130   sampler = fp->Base.SamplerUnits[sampler];
1131
1132   /* Our hardware doesn't have a sample_d_c message, so shadow compares
1133    * for textureGrad/TXD need to be emulated with instructions.
1134    */
1135   bool hw_compare_supported = ir->op != ir_txd;
1136   if (ir->shadow_comparitor && !hw_compare_supported) {
1137      assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1138      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1139      if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1140	 return swizzle_result(ir, fs_reg(1.0f), sampler);
1141      else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1142	 return swizzle_result(ir, fs_reg(0.0f), sampler);
1143   }
1144
1145   if (ir->coordinate)
1146      ir->coordinate->accept(this);
1147   fs_reg coordinate = this->result;
1148
1149   if (ir->offset != NULL && !(intel->gen == 7 && ir->op == ir_txf)) {
1150      uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1151
1152      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1153      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1154	   fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1155
1156      /* Then set the offset bits in DWord 2 of the message header. */
1157      emit(BRW_OPCODE_MOV,
1158	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1159			 BRW_REGISTER_TYPE_UD)),
1160	   fs_reg(brw_imm_uw(offset_bits)));
1161   }
1162
1163   /* Should be lowered by do_lower_texture_projection */
1164   assert(!ir->projector);
1165
1166   bool needs_gl_clamp = true;
1167
1168   fs_reg scale_x, scale_y;
1169
1170   /* The 965 requires the EU to do the normalization of GL rectangle
1171    * texture coordinates.  We use the program parameter state
1172    * tracking to get the scaling factor.
1173    */
1174   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1175       (intel->gen < 6 ||
1176	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1177			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1178      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1179      int tokens[STATE_LENGTH] = {
1180	 STATE_INTERNAL,
1181	 STATE_TEXRECT_SCALE,
1182	 sampler,
1183	 0,
1184	 0
1185      };
1186
1187      if (c->dispatch_width == 16) {
1188	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1189	 this->result = fs_reg(this, ir->type);
1190	 return;
1191      }
1192
1193      c->prog_data.param_convert[c->prog_data.nr_params] =
1194	 PARAM_NO_CONVERT;
1195      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1196	 PARAM_NO_CONVERT;
1197
1198      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1199      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1200
1201      GLuint index = _mesa_add_state_reference(params,
1202					       (gl_state_index *)tokens);
1203
1204      this->param_index[c->prog_data.nr_params] = index;
1205      this->param_offset[c->prog_data.nr_params] = 0;
1206      c->prog_data.nr_params++;
1207      this->param_index[c->prog_data.nr_params] = index;
1208      this->param_offset[c->prog_data.nr_params] = 1;
1209      c->prog_data.nr_params++;
1210   }
1211
1212   /* The 965 requires the EU to do the normalization of GL rectangle
1213    * texture coordinates.  We use the program parameter state
1214    * tracking to get the scaling factor.
1215    */
1216   if (intel->gen < 6 &&
1217       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1218      fs_reg dst = fs_reg(this, ir->coordinate->type);
1219      fs_reg src = coordinate;
1220      coordinate = dst;
1221
1222      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1223      dst.reg_offset++;
1224      src.reg_offset++;
1225      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1226   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1227      /* On gen6+, the sampler handles the rectangle coordinates
1228       * natively, without needing rescaling.  But that means we have
1229       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1230       * not [0, 1] like the default case below.
1231       */
1232      needs_gl_clamp = false;
1233
1234      for (int i = 0; i < 2; i++) {
1235	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1236	    fs_reg chan = coordinate;
1237	    chan.reg_offset += i;
1238
1239	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1240	    inst->conditional_mod = BRW_CONDITIONAL_G;
1241
1242	    /* Our parameter comes in as 1.0/width or 1.0/height,
1243	     * because that's what people normally want for doing
1244	     * texture rectangle handling.  We need width or height
1245	     * for clamping, but we don't care enough to make a new
1246	     * parameter type, so just invert back.
1247	     */
1248	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1249	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1250	    emit(SHADER_OPCODE_RCP, limit, limit);
1251
1252	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1253	    inst->conditional_mod = BRW_CONDITIONAL_L;
1254	 }
1255      }
1256   }
1257
1258   if (ir->coordinate && needs_gl_clamp) {
1259      for (int i = 0; i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1260	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1261	    fs_reg chan = coordinate;
1262	    chan.reg_offset += i;
1263
1264	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1265	    inst->saturate = true;
1266	 }
1267      }
1268   }
1269
1270   /* Writemasking doesn't eliminate channels on SIMD8 texture
1271    * samples, so don't worry about them.
1272    */
1273   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1274
1275   if (intel->gen >= 7) {
1276      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1277   } else if (intel->gen >= 5) {
1278      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1279   } else {
1280      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1281   }
1282
1283   /* If there's an offset, we already set up m1.  To avoid the implied move,
1284    * use the null register.  Otherwise, we want an implied move from g0.
1285    */
1286   if (ir->offset != NULL || !inst->header_present)
1287      inst->src[0] = reg_undef;
1288   else
1289      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1290
1291   inst->sampler = sampler;
1292
1293   if (ir->shadow_comparitor) {
1294      if (hw_compare_supported) {
1295	 inst->shadow_compare = true;
1296      } else {
1297	 ir->shadow_comparitor->accept(this);
1298	 fs_reg ref = this->result;
1299
1300	 fs_reg value = dst;
1301	 dst = fs_reg(this, glsl_type::vec4_type);
1302
1303	 /* FINISHME: This needs to be done pre-filtering. */
1304
1305	 uint32_t conditional = 0;
1306	 switch (c->key.tex.compare_funcs[sampler]) {
1307	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1308	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1309	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1310	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1311	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1312	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1313	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1314	 default: assert(!"Should not get here: bad shadow compare function");
1315	 }
1316
1317	 /* Use conditional moves to load 0 or 1 as the result */
1318	 this->current_annotation = "manual shadow comparison";
1319	 for (int i = 0; i < 4; i++) {
1320	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1321
1322	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1323	    inst->conditional_mod = conditional;
1324
1325	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1326	    inst->predicated = true;
1327
1328	    dst.reg_offset++;
1329	    value.reg_offset++;
1330	 }
1331	 dst.reg_offset = 0;
1332      }
1333   }
1334
1335   swizzle_result(ir, dst, sampler);
1336}
1337
1338/**
1339 * Swizzle the result of a texture result.  This is necessary for
1340 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1341 */
1342void
1343fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1344{
1345   this->result = orig_val;
1346
1347   if (ir->op == ir_txs)
1348      return;
1349
1350   if (ir->type == glsl_type::float_type) {
1351      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1352      assert(ir->sampler->type->sampler_shadow);
1353   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1354      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1355
1356      for (int i = 0; i < 4; i++) {
1357	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1358	 fs_reg l = swizzled_result;
1359	 l.reg_offset += i;
1360
1361	 if (swiz == SWIZZLE_ZERO) {
1362	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1363	 } else if (swiz == SWIZZLE_ONE) {
1364	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1365	 } else {
1366	    fs_reg r = orig_val;
1367	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1368	    emit(BRW_OPCODE_MOV, l, r);
1369	 }
1370      }
1371      this->result = swizzled_result;
1372   }
1373}
1374
1375void
1376fs_visitor::visit(ir_swizzle *ir)
1377{
1378   ir->val->accept(this);
1379   fs_reg val = this->result;
1380
1381   if (ir->type->vector_elements == 1) {
1382      this->result.reg_offset += ir->mask.x;
1383      return;
1384   }
1385
1386   fs_reg result = fs_reg(this, ir->type);
1387   this->result = result;
1388
1389   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1390      fs_reg channel = val;
1391      int swiz = 0;
1392
1393      switch (i) {
1394      case 0:
1395	 swiz = ir->mask.x;
1396	 break;
1397      case 1:
1398	 swiz = ir->mask.y;
1399	 break;
1400      case 2:
1401	 swiz = ir->mask.z;
1402	 break;
1403      case 3:
1404	 swiz = ir->mask.w;
1405	 break;
1406      }
1407
1408      channel.reg_offset += swiz;
1409      emit(BRW_OPCODE_MOV, result, channel);
1410      result.reg_offset++;
1411   }
1412}
1413
1414void
1415fs_visitor::visit(ir_discard *ir)
1416{
1417   assert(ir->condition == NULL); /* FINISHME */
1418
1419   emit(FS_OPCODE_DISCARD);
1420   kill_emitted = true;
1421}
1422
1423void
1424fs_visitor::visit(ir_constant *ir)
1425{
1426   /* Set this->result to reg at the bottom of the function because some code
1427    * paths will cause this visitor to be applied to other fields.  This will
1428    * cause the value stored in this->result to be modified.
1429    *
1430    * Make reg constant so that it doesn't get accidentally modified along the
1431    * way.  Yes, I actually had this problem. :(
1432    */
1433   const fs_reg reg(this, ir->type);
1434   fs_reg dst_reg = reg;
1435
1436   if (ir->type->is_array()) {
1437      const unsigned size = type_size(ir->type->fields.array);
1438
1439      for (unsigned i = 0; i < ir->type->length; i++) {
1440	 ir->array_elements[i]->accept(this);
1441	 fs_reg src_reg = this->result;
1442
1443	 dst_reg.type = src_reg.type;
1444	 for (unsigned j = 0; j < size; j++) {
1445	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1446	    src_reg.reg_offset++;
1447	    dst_reg.reg_offset++;
1448	 }
1449      }
1450   } else if (ir->type->is_record()) {
1451      foreach_list(node, &ir->components) {
1452	 ir_constant *const field = (ir_constant *) node;
1453	 const unsigned size = type_size(field->type);
1454
1455	 field->accept(this);
1456	 fs_reg src_reg = this->result;
1457
1458	 dst_reg.type = src_reg.type;
1459	 for (unsigned j = 0; j < size; j++) {
1460	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1461	    src_reg.reg_offset++;
1462	    dst_reg.reg_offset++;
1463	 }
1464      }
1465   } else {
1466      const unsigned size = type_size(ir->type);
1467
1468      for (unsigned i = 0; i < size; i++) {
1469	 switch (ir->type->base_type) {
1470	 case GLSL_TYPE_FLOAT:
1471	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1472	    break;
1473	 case GLSL_TYPE_UINT:
1474	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1475	    break;
1476	 case GLSL_TYPE_INT:
1477	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1478	    break;
1479	 case GLSL_TYPE_BOOL:
1480	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1481	    break;
1482	 default:
1483	    assert(!"Non-float/uint/int/bool constant");
1484	 }
1485	 dst_reg.reg_offset++;
1486      }
1487   }
1488
1489   this->result = reg;
1490}
1491
1492void
1493fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1494{
1495   ir_expression *expr = ir->as_expression();
1496
1497   if (expr) {
1498      fs_reg op[2];
1499      fs_inst *inst;
1500
1501      assert(expr->get_num_operands() <= 2);
1502      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1503	 assert(expr->operands[i]->type->is_scalar());
1504
1505	 expr->operands[i]->accept(this);
1506	 op[i] = this->result;
1507
1508	 resolve_ud_negate(&op[i]);
1509      }
1510
1511      switch (expr->operation) {
1512      case ir_unop_logic_not:
1513	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1514	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1515	 break;
1516
1517      case ir_binop_logic_xor:
1518      case ir_binop_logic_or:
1519      case ir_binop_logic_and:
1520	 goto out;
1521
1522      case ir_unop_f2b:
1523	 if (intel->gen >= 6) {
1524	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1525	 } else {
1526	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1527	 }
1528	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1529	 break;
1530
1531      case ir_unop_i2b:
1532	 if (intel->gen >= 6) {
1533	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1534	 } else {
1535	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1536	 }
1537	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1538	 break;
1539
1540      case ir_binop_greater:
1541      case ir_binop_gequal:
1542      case ir_binop_less:
1543      case ir_binop_lequal:
1544      case ir_binop_equal:
1545      case ir_binop_all_equal:
1546      case ir_binop_nequal:
1547      case ir_binop_any_nequal:
1548	 resolve_bool_comparison(expr->operands[0], &op[0]);
1549	 resolve_bool_comparison(expr->operands[1], &op[1]);
1550
1551	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1552	 inst->conditional_mod =
1553	    brw_conditional_for_comparison(expr->operation);
1554	 break;
1555
1556      default:
1557	 assert(!"not reached");
1558	 fail("bad cond code\n");
1559	 break;
1560      }
1561      return;
1562   }
1563
1564out:
1565   ir->accept(this);
1566
1567   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1568   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1569}
1570
1571/**
1572 * Emit a gen6 IF statement with the comparison folded into the IF
1573 * instruction.
1574 */
1575void
1576fs_visitor::emit_if_gen6(ir_if *ir)
1577{
1578   ir_expression *expr = ir->condition->as_expression();
1579
1580   if (expr) {
1581      fs_reg op[2];
1582      fs_inst *inst;
1583      fs_reg temp;
1584
1585      assert(expr->get_num_operands() <= 2);
1586      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1587	 assert(expr->operands[i]->type->is_scalar());
1588
1589	 expr->operands[i]->accept(this);
1590	 op[i] = this->result;
1591      }
1592
1593      switch (expr->operation) {
1594      case ir_unop_logic_not:
1595	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1596	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1597	 return;
1598
1599      case ir_binop_logic_xor:
1600	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1601	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1602	 return;
1603
1604      case ir_binop_logic_or:
1605	 temp = fs_reg(this, glsl_type::bool_type);
1606	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1607	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1608	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1609	 return;
1610
1611      case ir_binop_logic_and:
1612	 temp = fs_reg(this, glsl_type::bool_type);
1613	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1614	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1615	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1616	 return;
1617
1618      case ir_unop_f2b:
1619	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1620	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1621	 return;
1622
1623      case ir_unop_i2b:
1624	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1625	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1626	 return;
1627
1628      case ir_binop_greater:
1629      case ir_binop_gequal:
1630      case ir_binop_less:
1631      case ir_binop_lequal:
1632      case ir_binop_equal:
1633      case ir_binop_all_equal:
1634      case ir_binop_nequal:
1635      case ir_binop_any_nequal:
1636	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1637	 inst->conditional_mod =
1638	    brw_conditional_for_comparison(expr->operation);
1639	 return;
1640      default:
1641	 assert(!"not reached");
1642	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1643	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1644	 fail("bad condition\n");
1645	 return;
1646      }
1647      return;
1648   }
1649
1650   ir->condition->accept(this);
1651
1652   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1653   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1654}
1655
1656void
1657fs_visitor::visit(ir_if *ir)
1658{
1659   fs_inst *inst;
1660
1661   if (intel->gen < 6 && c->dispatch_width == 16) {
1662      fail("Can't support (non-uniform) control flow on 16-wide\n");
1663   }
1664
1665   /* Don't point the annotation at the if statement, because then it plus
1666    * the then and else blocks get printed.
1667    */
1668   this->base_ir = ir->condition;
1669
1670   if (intel->gen == 6) {
1671      emit_if_gen6(ir);
1672   } else {
1673      emit_bool_to_cond_code(ir->condition);
1674
1675      inst = emit(BRW_OPCODE_IF);
1676      inst->predicated = true;
1677   }
1678
1679   foreach_list(node, &ir->then_instructions) {
1680      ir_instruction *ir = (ir_instruction *)node;
1681      this->base_ir = ir;
1682
1683      ir->accept(this);
1684   }
1685
1686   if (!ir->else_instructions.is_empty()) {
1687      emit(BRW_OPCODE_ELSE);
1688
1689      foreach_list(node, &ir->else_instructions) {
1690	 ir_instruction *ir = (ir_instruction *)node;
1691	 this->base_ir = ir;
1692
1693	 ir->accept(this);
1694      }
1695   }
1696
1697   emit(BRW_OPCODE_ENDIF);
1698}
1699
1700void
1701fs_visitor::visit(ir_loop *ir)
1702{
1703   fs_reg counter = reg_undef;
1704
1705   if (intel->gen < 6 && c->dispatch_width == 16) {
1706      fail("Can't support (non-uniform) control flow on 16-wide\n");
1707   }
1708
1709   if (ir->counter) {
1710      this->base_ir = ir->counter;
1711      ir->counter->accept(this);
1712      counter = *(variable_storage(ir->counter));
1713
1714      if (ir->from) {
1715	 this->base_ir = ir->from;
1716	 ir->from->accept(this);
1717
1718	 emit(BRW_OPCODE_MOV, counter, this->result);
1719      }
1720   }
1721
1722   this->base_ir = NULL;
1723   emit(BRW_OPCODE_DO);
1724
1725   if (ir->to) {
1726      this->base_ir = ir->to;
1727      ir->to->accept(this);
1728
1729      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1730      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1731
1732      inst = emit(BRW_OPCODE_BREAK);
1733      inst->predicated = true;
1734   }
1735
1736   foreach_list(node, &ir->body_instructions) {
1737      ir_instruction *ir = (ir_instruction *)node;
1738
1739      this->base_ir = ir;
1740      ir->accept(this);
1741   }
1742
1743   if (ir->increment) {
1744      this->base_ir = ir->increment;
1745      ir->increment->accept(this);
1746      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1747   }
1748
1749   this->base_ir = NULL;
1750   emit(BRW_OPCODE_WHILE);
1751}
1752
1753void
1754fs_visitor::visit(ir_loop_jump *ir)
1755{
1756   switch (ir->mode) {
1757   case ir_loop_jump::jump_break:
1758      emit(BRW_OPCODE_BREAK);
1759      break;
1760   case ir_loop_jump::jump_continue:
1761      emit(BRW_OPCODE_CONTINUE);
1762      break;
1763   }
1764}
1765
1766void
1767fs_visitor::visit(ir_call *ir)
1768{
1769   assert(!"FINISHME");
1770}
1771
1772void
1773fs_visitor::visit(ir_return *ir)
1774{
1775   assert(!"FINISHME");
1776}
1777
1778void
1779fs_visitor::visit(ir_function *ir)
1780{
1781   /* Ignore function bodies other than main() -- we shouldn't see calls to
1782    * them since they should all be inlined before we get to ir_to_mesa.
1783    */
1784   if (strcmp(ir->name, "main") == 0) {
1785      const ir_function_signature *sig;
1786      exec_list empty;
1787
1788      sig = ir->matching_signature(&empty);
1789
1790      assert(sig);
1791
1792      foreach_list(node, &sig->body) {
1793	 ir_instruction *ir = (ir_instruction *)node;
1794	 this->base_ir = ir;
1795
1796	 ir->accept(this);
1797      }
1798   }
1799}
1800
1801void
1802fs_visitor::visit(ir_function_signature *ir)
1803{
1804   assert(!"not reached");
1805   (void)ir;
1806}
1807
1808fs_inst *
1809fs_visitor::emit(fs_inst inst)
1810{
1811   fs_inst *list_inst = new(mem_ctx) fs_inst;
1812   *list_inst = inst;
1813
1814   if (force_uncompressed_stack > 0)
1815      list_inst->force_uncompressed = true;
1816   else if (force_sechalf_stack > 0)
1817      list_inst->force_sechalf = true;
1818
1819   list_inst->annotation = this->current_annotation;
1820   list_inst->ir = this->base_ir;
1821
1822   this->instructions.push_tail(list_inst);
1823
1824   return list_inst;
1825}
1826
1827/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1828void
1829fs_visitor::emit_dummy_fs()
1830{
1831   int reg_width = c->dispatch_width / 8;
1832
1833   /* Everyone's favorite color. */
1834   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1835   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1836   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1837   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1838
1839   fs_inst *write;
1840   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1841   write->base_mrf = 2;
1842   write->mlen = 4 * reg_width;
1843   write->eot = true;
1844}
1845
1846/* The register location here is relative to the start of the URB
1847 * data.  It will get adjusted to be a real location before
1848 * generate_code() time.
1849 */
1850struct brw_reg
1851fs_visitor::interp_reg(int location, int channel)
1852{
1853   int regnr = urb_setup[location] * 2 + channel / 2;
1854   int stride = (channel & 1) * 4;
1855
1856   assert(urb_setup[location] != -1);
1857
1858   return brw_vec1_grf(regnr, stride);
1859}
1860
1861/** Emits the interpolation for the varying inputs. */
1862void
1863fs_visitor::emit_interpolation_setup_gen4()
1864{
1865   this->current_annotation = "compute pixel centers";
1866   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1867   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1868   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1869   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1870
1871   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1872   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1873
1874   this->current_annotation = "compute pixel deltas from v0";
1875   if (brw->has_pln) {
1876      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1877         fs_reg(this, glsl_type::vec2_type);
1878      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1879         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1880      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1881   } else {
1882      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1883         fs_reg(this, glsl_type::float_type);
1884      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1885         fs_reg(this, glsl_type::float_type);
1886   }
1887   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1888	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1889   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1890	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1891
1892   this->current_annotation = "compute pos.w and 1/pos.w";
1893   /* Compute wpos.w.  It's always in our setup, since it's needed to
1894    * interpolate the other attributes.
1895    */
1896   this->wpos_w = fs_reg(this, glsl_type::float_type);
1897   emit(FS_OPCODE_LINTERP, wpos_w,
1898        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1899        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1900	interp_reg(FRAG_ATTRIB_WPOS, 3));
1901   /* Compute the pixel 1/W value from wpos.w. */
1902   this->pixel_w = fs_reg(this, glsl_type::float_type);
1903   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1904   this->current_annotation = NULL;
1905}
1906
1907/** Emits the interpolation for the varying inputs. */
1908void
1909fs_visitor::emit_interpolation_setup_gen6()
1910{
1911   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1912
1913   /* If the pixel centers end up used, the setup is the same as for gen4. */
1914   this->current_annotation = "compute pixel centers";
1915   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1916   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1917   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1918   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1919   emit(BRW_OPCODE_ADD,
1920	int_pixel_x,
1921	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1922	fs_reg(brw_imm_v(0x10101010)));
1923   emit(BRW_OPCODE_ADD,
1924	int_pixel_y,
1925	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1926	fs_reg(brw_imm_v(0x11001100)));
1927
1928   /* As of gen6, we can no longer mix float and int sources.  We have
1929    * to turn the integer pixel centers into floats for their actual
1930    * use.
1931    */
1932   this->pixel_x = fs_reg(this, glsl_type::float_type);
1933   this->pixel_y = fs_reg(this, glsl_type::float_type);
1934   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1935   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1936
1937   this->current_annotation = "compute pos.w";
1938   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1939   this->wpos_w = fs_reg(this, glsl_type::float_type);
1940   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1941
1942   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1943      uint8_t reg = c->barycentric_coord_reg[i];
1944      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1945      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1946   }
1947
1948   this->current_annotation = NULL;
1949}
1950
1951void
1952fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1953{
1954   int reg_width = c->dispatch_width / 8;
1955   fs_inst *inst;
1956   fs_reg color = outputs[target];
1957   fs_reg mrf;
1958
1959   /* If there's no color data to be written, skip it. */
1960   if (color.file == BAD_FILE)
1961      return;
1962
1963   color.reg_offset += index;
1964
1965   if (c->dispatch_width == 8 || intel->gen >= 6) {
1966      /* SIMD8 write looks like:
1967       * m + 0: r0
1968       * m + 1: r1
1969       * m + 2: g0
1970       * m + 3: g1
1971       *
1972       * gen6 SIMD16 DP write looks like:
1973       * m + 0: r0
1974       * m + 1: r1
1975       * m + 2: g0
1976       * m + 3: g1
1977       * m + 4: b0
1978       * m + 5: b1
1979       * m + 6: a0
1980       * m + 7: a1
1981       */
1982      inst = emit(BRW_OPCODE_MOV,
1983		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1984		  color);
1985      inst->saturate = c->key.clamp_fragment_color;
1986   } else {
1987      /* pre-gen6 SIMD16 single source DP write looks like:
1988       * m + 0: r0
1989       * m + 1: g0
1990       * m + 2: b0
1991       * m + 3: a0
1992       * m + 4: r1
1993       * m + 5: g1
1994       * m + 6: b1
1995       * m + 7: a1
1996       */
1997      if (brw->has_compr4) {
1998	 /* By setting the high bit of the MRF register number, we
1999	  * indicate that we want COMPR4 mode - instead of doing the
2000	  * usual destination + 1 for the second half we get
2001	  * destination + 4.
2002	  */
2003	 inst = emit(BRW_OPCODE_MOV,
2004		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2005			    color.type),
2006		     color);
2007	 inst->saturate = c->key.clamp_fragment_color;
2008      } else {
2009	 push_force_uncompressed();
2010	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
2011					    color.type),
2012		     color);
2013	 inst->saturate = c->key.clamp_fragment_color;
2014	 pop_force_uncompressed();
2015
2016	 push_force_sechalf();
2017	 color.sechalf = true;
2018	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
2019					    color.type),
2020		     color);
2021	 inst->saturate = c->key.clamp_fragment_color;
2022	 pop_force_sechalf();
2023	 color.sechalf = false;
2024      }
2025   }
2026}
2027
2028void
2029fs_visitor::emit_fb_writes()
2030{
2031   this->current_annotation = "FB write header";
2032   bool header_present = true;
2033   /* We can potentially have a message length of up to 15, so we have to set
2034    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2035    */
2036   int base_mrf = 1;
2037   int nr = base_mrf;
2038   int reg_width = c->dispatch_width / 8;
2039
2040   if (intel->gen >= 6 &&
2041       !this->kill_emitted &&
2042       c->key.nr_color_regions == 1) {
2043      header_present = false;
2044   }
2045
2046   if (header_present) {
2047      /* m2, m3 header */
2048      nr += 2;
2049   }
2050
2051   if (c->aa_dest_stencil_reg) {
2052      push_force_uncompressed();
2053      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2054	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2055      pop_force_uncompressed();
2056   }
2057
2058   /* Reserve space for color. It'll be filled in per MRT below. */
2059   int color_mrf = nr;
2060   nr += 4 * reg_width;
2061
2062   if (c->source_depth_to_render_target) {
2063      if (intel->gen == 6 && c->dispatch_width == 16) {
2064	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2065	  * used.  This would require 8-wide moves of each half to
2066	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2067	  * Just bail on doing so for now.
2068	  */
2069	 fail("Missing support for simd16 depth writes on gen6\n");
2070      }
2071
2072      if (c->computes_depth) {
2073	 /* Hand over gl_FragDepth. */
2074	 assert(this->frag_depth);
2075	 fs_reg depth = *(variable_storage(this->frag_depth));
2076
2077	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2078      } else {
2079	 /* Pass through the payload depth. */
2080	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2081	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2082      }
2083      nr += reg_width;
2084   }
2085
2086   if (c->dest_depth_reg) {
2087      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2088	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2089      nr += reg_width;
2090   }
2091
2092   for (int target = 0; target < c->key.nr_color_regions; target++) {
2093      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2094						 "FB write target %d",
2095						 target);
2096      for (int i = 0; i < 4; i++)
2097	 emit_color_write(target, i, color_mrf);
2098
2099      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2100      inst->target = target;
2101      inst->base_mrf = base_mrf;
2102      inst->mlen = nr - base_mrf;
2103      if (target == c->key.nr_color_regions - 1)
2104	 inst->eot = true;
2105      inst->header_present = header_present;
2106   }
2107
2108   if (c->key.nr_color_regions == 0) {
2109      if (c->key.alpha_test) {
2110	 /* If the alpha test is enabled but there's no color buffer,
2111	  * we still need to send alpha out the pipeline to our null
2112	  * renderbuffer.
2113	  */
2114	 emit_color_write(0, 3, color_mrf);
2115      }
2116
2117      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2118      inst->base_mrf = base_mrf;
2119      inst->mlen = nr - base_mrf;
2120      inst->eot = true;
2121      inst->header_present = header_present;
2122   }
2123
2124   this->current_annotation = NULL;
2125}
2126
2127void
2128fs_visitor::resolve_ud_negate(fs_reg *reg)
2129{
2130   if (reg->type != BRW_REGISTER_TYPE_UD ||
2131       !reg->negate)
2132      return;
2133
2134   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2135   emit(BRW_OPCODE_MOV, temp, *reg);
2136   *reg = temp;
2137}
2138
2139void
2140fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2141{
2142   if (rvalue->type != glsl_type::bool_type)
2143      return;
2144
2145   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2146   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2147   *reg = temp;
2148}
2149