brw_vec4_visitor.cpp revision 29e2bc8b13be0f7ec48f8514e47322353e041365
1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25extern "C" {
26#include "main/macros.h"
27#include "program/prog_parameter.h"
28}
29
30namespace brw {
31
32src_reg::src_reg(dst_reg reg)
33{
34   init();
35
36   this->file = reg.file;
37   this->reg = reg.reg;
38   this->reg_offset = reg.reg_offset;
39   this->type = reg.type;
40   this->reladdr = reg.reladdr;
41   this->fixed_hw_reg = reg.fixed_hw_reg;
42
43   int swizzles[4];
44   int next_chan = 0;
45   int last = 0;
46
47   for (int i = 0; i < 4; i++) {
48      if (!(reg.writemask & (1 << i)))
49	 continue;
50
51      swizzles[next_chan++] = last = i;
52   }
53
54   for (; next_chan < 4; next_chan++) {
55      swizzles[next_chan] = last;
56   }
57
58   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
59				swizzles[2], swizzles[3]);
60}
61
62dst_reg::dst_reg(src_reg reg)
63{
64   init();
65
66   this->file = reg.file;
67   this->reg = reg.reg;
68   this->reg_offset = reg.reg_offset;
69   this->type = reg.type;
70   this->writemask = WRITEMASK_XYZW;
71   this->reladdr = reg.reladdr;
72   this->fixed_hw_reg = reg.fixed_hw_reg;
73}
74
75vec4_instruction::vec4_instruction(vec4_visitor *v,
76				   enum opcode opcode, dst_reg dst,
77				   src_reg src0, src_reg src1, src_reg src2)
78{
79   this->opcode = opcode;
80   this->dst = dst;
81   this->src[0] = src0;
82   this->src[1] = src1;
83   this->src[2] = src2;
84   this->ir = v->base_ir;
85   this->annotation = v->current_annotation;
86}
87
88vec4_instruction *
89vec4_visitor::emit(vec4_instruction *inst)
90{
91   this->instructions.push_tail(inst);
92
93   return inst;
94}
95
96vec4_instruction *
97vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
98{
99   new_inst->ir = inst->ir;
100   new_inst->annotation = inst->annotation;
101
102   inst->insert_before(new_inst);
103
104   return inst;
105}
106
107vec4_instruction *
108vec4_visitor::emit(enum opcode opcode, dst_reg dst,
109		   src_reg src0, src_reg src1, src_reg src2)
110{
111   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
112					     src0, src1, src2));
113}
114
115
116vec4_instruction *
117vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
118{
119   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
120}
121
122vec4_instruction *
123vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
124{
125   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
126}
127
128vec4_instruction *
129vec4_visitor::emit(enum opcode opcode)
130{
131   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
132}
133
134#define ALU1(op)							\
135   vec4_instruction *							\
136   vec4_visitor::op(dst_reg dst, src_reg src0)				\
137   {									\
138      return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst,	\
139					   src0);			\
140   }
141
142#define ALU2(op)							\
143   vec4_instruction *							\
144   vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1)		\
145   {									\
146      return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst,	\
147					   src0, src1);			\
148   }
149
150ALU1(NOT)
151ALU1(MOV)
152ALU1(FRC)
153ALU1(RNDD)
154ALU1(RNDE)
155ALU1(RNDZ)
156ALU2(ADD)
157ALU2(MUL)
158ALU2(MACH)
159ALU2(AND)
160ALU2(OR)
161ALU2(XOR)
162ALU2(DP3)
163ALU2(DP4)
164
165/** Gen4 predicated IF. */
166vec4_instruction *
167vec4_visitor::IF(uint32_t predicate)
168{
169   vec4_instruction *inst;
170
171   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
172   inst->predicate = predicate;
173
174   return inst;
175}
176
177/** Gen6+ IF with embedded comparison. */
178vec4_instruction *
179vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
180{
181   assert(intel->gen >= 6);
182
183   vec4_instruction *inst;
184
185   resolve_ud_negate(&src0);
186   resolve_ud_negate(&src1);
187
188   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
189					src0, src1);
190   inst->conditional_mod = condition;
191
192   return inst;
193}
194
195/**
196 * CMP: Sets the low bit of the destination channels with the result
197 * of the comparison, while the upper bits are undefined, and updates
198 * the flag register with the packed 16 bits of the result.
199 */
200vec4_instruction *
201vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
202{
203   vec4_instruction *inst;
204
205   /* original gen4 does type conversion to the destination type
206    * before before comparison, producing garbage results for floating
207    * point comparisons.
208    */
209   if (intel->gen == 4) {
210      dst.type = src0.type;
211      if (dst.file == HW_REG)
212	 dst.fixed_hw_reg.type = dst.type;
213   }
214
215   resolve_ud_negate(&src0);
216   resolve_ud_negate(&src1);
217
218   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
219   inst->conditional_mod = condition;
220
221   return inst;
222}
223
224vec4_instruction *
225vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
226{
227   vec4_instruction *inst;
228
229   inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
230					dst, index);
231   inst->base_mrf = 14;
232   inst->mlen = 1;
233
234   return inst;
235}
236
237vec4_instruction *
238vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
239{
240   vec4_instruction *inst;
241
242   inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
243					dst, src, index);
244   inst->base_mrf = 13;
245   inst->mlen = 2;
246
247   return inst;
248}
249
250void
251vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
252{
253   static enum opcode dot_opcodes[] = {
254      BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
255   };
256
257   emit(dot_opcodes[elements - 2], dst, src0, src1);
258}
259
260void
261vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
262{
263   /* The gen6 math instruction ignores the source modifiers --
264    * swizzle, abs, negate, and at least some parts of the register
265    * region description.
266    *
267    * While it would seem that this MOV could be avoided at this point
268    * in the case that the swizzle is matched up with the destination
269    * writemask, note that uniform packing and register allocation
270    * could rearrange our swizzle, so let's leave this matter up to
271    * copy propagation later.
272    */
273   src_reg temp_src = src_reg(this, glsl_type::vec4_type);
274   emit(MOV(dst_reg(temp_src), src));
275
276   if (dst.writemask != WRITEMASK_XYZW) {
277      /* The gen6 math instruction must be align1, so we can't do
278       * writemasks.
279       */
280      dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
281
282      emit(opcode, temp_dst, temp_src);
283
284      emit(MOV(dst, src_reg(temp_dst)));
285   } else {
286      emit(opcode, dst, temp_src);
287   }
288}
289
290void
291vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
292{
293   vec4_instruction *inst = emit(opcode, dst, src);
294   inst->base_mrf = 1;
295   inst->mlen = 1;
296}
297
298void
299vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
300{
301   switch (opcode) {
302   case SHADER_OPCODE_RCP:
303   case SHADER_OPCODE_RSQ:
304   case SHADER_OPCODE_SQRT:
305   case SHADER_OPCODE_EXP2:
306   case SHADER_OPCODE_LOG2:
307   case SHADER_OPCODE_SIN:
308   case SHADER_OPCODE_COS:
309      break;
310   default:
311      assert(!"not reached: bad math opcode");
312      return;
313   }
314
315   if (intel->gen >= 6) {
316      return emit_math1_gen6(opcode, dst, src);
317   } else {
318      return emit_math1_gen4(opcode, dst, src);
319   }
320}
321
322void
323vec4_visitor::emit_math2_gen6(enum opcode opcode,
324			      dst_reg dst, src_reg src0, src_reg src1)
325{
326   src_reg expanded;
327
328   /* The gen6 math instruction ignores the source modifiers --
329    * swizzle, abs, negate, and at least some parts of the register
330    * region description.  Move the sources to temporaries to make it
331    * generally work.
332    */
333
334   expanded = src_reg(this, glsl_type::vec4_type);
335   expanded.type = src0.type;
336   emit(MOV(dst_reg(expanded), src0));
337   src0 = expanded;
338
339   expanded = src_reg(this, glsl_type::vec4_type);
340   expanded.type = src1.type;
341   emit(MOV(dst_reg(expanded), src1));
342   src1 = expanded;
343
344   if (dst.writemask != WRITEMASK_XYZW) {
345      /* The gen6 math instruction must be align1, so we can't do
346       * writemasks.
347       */
348      dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
349      temp_dst.type = dst.type;
350
351      emit(opcode, temp_dst, src0, src1);
352
353      emit(MOV(dst, src_reg(temp_dst)));
354   } else {
355      emit(opcode, dst, src0, src1);
356   }
357}
358
359void
360vec4_visitor::emit_math2_gen4(enum opcode opcode,
361			      dst_reg dst, src_reg src0, src_reg src1)
362{
363   vec4_instruction *inst = emit(opcode, dst, src0, src1);
364   inst->base_mrf = 1;
365   inst->mlen = 2;
366}
367
368void
369vec4_visitor::emit_math(enum opcode opcode,
370			dst_reg dst, src_reg src0, src_reg src1)
371{
372   switch (opcode) {
373   case SHADER_OPCODE_POW:
374   case SHADER_OPCODE_INT_QUOTIENT:
375   case SHADER_OPCODE_INT_REMAINDER:
376      break;
377   default:
378      assert(!"not reached: unsupported binary math opcode");
379      return;
380   }
381
382   if (intel->gen >= 6) {
383      return emit_math2_gen6(opcode, dst, src0, src1);
384   } else {
385      return emit_math2_gen4(opcode, dst, src0, src1);
386   }
387}
388
389void
390vec4_visitor::visit_instructions(const exec_list *list)
391{
392   foreach_list(node, list) {
393      ir_instruction *ir = (ir_instruction *)node;
394
395      base_ir = ir;
396      ir->accept(this);
397   }
398}
399
400
401static int
402type_size(const struct glsl_type *type)
403{
404   unsigned int i;
405   int size;
406
407   switch (type->base_type) {
408   case GLSL_TYPE_UINT:
409   case GLSL_TYPE_INT:
410   case GLSL_TYPE_FLOAT:
411   case GLSL_TYPE_BOOL:
412      if (type->is_matrix()) {
413	 return type->matrix_columns;
414      } else {
415	 /* Regardless of size of vector, it gets a vec4. This is bad
416	  * packing for things like floats, but otherwise arrays become a
417	  * mess.  Hopefully a later pass over the code can pack scalars
418	  * down if appropriate.
419	  */
420	 return 1;
421      }
422   case GLSL_TYPE_ARRAY:
423      assert(type->length > 0);
424      return type_size(type->fields.array) * type->length;
425   case GLSL_TYPE_STRUCT:
426      size = 0;
427      for (i = 0; i < type->length; i++) {
428	 size += type_size(type->fields.structure[i].type);
429      }
430      return size;
431   case GLSL_TYPE_SAMPLER:
432      /* Samplers take up one slot in UNIFORMS[], but they're baked in
433       * at link time.
434       */
435      return 1;
436   default:
437      assert(0);
438      return 0;
439   }
440}
441
442int
443vec4_visitor::virtual_grf_alloc(int size)
444{
445   if (virtual_grf_array_size <= virtual_grf_count) {
446      if (virtual_grf_array_size == 0)
447	 virtual_grf_array_size = 16;
448      else
449	 virtual_grf_array_size *= 2;
450      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
451				   virtual_grf_array_size);
452      virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
453				     virtual_grf_array_size);
454   }
455   virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
456   virtual_grf_reg_count += size;
457   virtual_grf_sizes[virtual_grf_count] = size;
458   return virtual_grf_count++;
459}
460
461src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
462{
463   init();
464
465   this->file = GRF;
466   this->reg = v->virtual_grf_alloc(type_size(type));
467
468   if (type->is_array() || type->is_record()) {
469      this->swizzle = BRW_SWIZZLE_NOOP;
470   } else {
471      this->swizzle = swizzle_for_size(type->vector_elements);
472   }
473
474   this->type = brw_type_for_base_type(type);
475}
476
477dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
478{
479   init();
480
481   this->file = GRF;
482   this->reg = v->virtual_grf_alloc(type_size(type));
483
484   if (type->is_array() || type->is_record()) {
485      this->writemask = WRITEMASK_XYZW;
486   } else {
487      this->writemask = (1 << type->vector_elements) - 1;
488   }
489
490   this->type = brw_type_for_base_type(type);
491}
492
493/* Our support for uniforms is piggy-backed on the struct
494 * gl_fragment_program, because that's where the values actually
495 * get stored, rather than in some global gl_shader_program uniform
496 * store.
497 */
498int
499vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
500{
501   unsigned int offset = 0;
502   float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
503
504   if (type->is_matrix()) {
505      const glsl_type *column = type->column_type();
506
507      for (unsigned int i = 0; i < type->matrix_columns; i++) {
508	 offset += setup_uniform_values(loc + offset, column);
509      }
510
511      return offset;
512   }
513
514   switch (type->base_type) {
515   case GLSL_TYPE_FLOAT:
516   case GLSL_TYPE_UINT:
517   case GLSL_TYPE_INT:
518   case GLSL_TYPE_BOOL:
519      for (unsigned int i = 0; i < type->vector_elements; i++) {
520	 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
521      }
522
523      /* Set up pad elements to get things aligned to a vec4 boundary. */
524      for (unsigned int i = type->vector_elements; i < 4; i++) {
525	 static float zero = 0;
526
527	 c->prog_data.param[this->uniforms * 4 + i] = &zero;
528      }
529
530      /* Track the size of this uniform vector, for future packing of
531       * uniforms.
532       */
533      this->uniform_vector_size[this->uniforms] = type->vector_elements;
534      this->uniforms++;
535
536      return 1;
537
538   case GLSL_TYPE_STRUCT:
539      for (unsigned int i = 0; i < type->length; i++) {
540	 offset += setup_uniform_values(loc + offset,
541					type->fields.structure[i].type);
542      }
543      return offset;
544
545   case GLSL_TYPE_ARRAY:
546      for (unsigned int i = 0; i < type->length; i++) {
547	 offset += setup_uniform_values(loc + offset, type->fields.array);
548      }
549      return offset;
550
551   case GLSL_TYPE_SAMPLER:
552      /* The sampler takes up a slot, but we don't use any values from it. */
553      return 1;
554
555   default:
556      assert(!"not reached");
557      return 0;
558   }
559}
560
561void
562vec4_visitor::setup_uniform_clipplane_values()
563{
564   gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
565
566   /* Pre-Gen6, we compact clip planes.  For example, if the user
567    * enables just clip planes 0, 1, and 3, we will enable clip planes
568    * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
569    * plane 2.  This simplifies the implementation of the Gen6 clip
570    * thread.
571    *
572    * In Gen6 and later, we don't compact clip planes, because this
573    * simplifies the implementation of gl_ClipDistance.
574    */
575   int compacted_clipplane_index = 0;
576   for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
577      if (intel->gen < 6 &&
578          !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
579         continue;
580      }
581      this->uniform_vector_size[this->uniforms] = 4;
582      this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
583      this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
584      for (int j = 0; j < 4; ++j) {
585         c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
586      }
587      ++compacted_clipplane_index;
588      ++this->uniforms;
589   }
590}
591
592/* Our support for builtin uniforms is even scarier than non-builtin.
593 * It sits on top of the PROG_STATE_VAR parameters that are
594 * automatically updated from GL context state.
595 */
596void
597vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
598{
599   const ir_state_slot *const slots = ir->state_slots;
600   assert(ir->state_slots != NULL);
601
602   for (unsigned int i = 0; i < ir->num_state_slots; i++) {
603      /* This state reference has already been setup by ir_to_mesa,
604       * but we'll get the same index back here.  We can reference
605       * ParameterValues directly, since unlike brw_fs.cpp, we never
606       * add new state references during compile.
607       */
608      int index = _mesa_add_state_reference(this->vp->Base.Parameters,
609					    (gl_state_index *)slots[i].tokens);
610      float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
611
612      this->uniform_vector_size[this->uniforms] = 0;
613      /* Add each of the unique swizzled channels of the element.
614       * This will end up matching the size of the glsl_type of this field.
615       */
616      int last_swiz = -1;
617      for (unsigned int j = 0; j < 4; j++) {
618	 int swiz = GET_SWZ(slots[i].swizzle, j);
619	 last_swiz = swiz;
620
621	 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
622	 if (swiz <= last_swiz)
623	    this->uniform_vector_size[this->uniforms]++;
624      }
625      this->uniforms++;
626   }
627}
628
629dst_reg *
630vec4_visitor::variable_storage(ir_variable *var)
631{
632   return (dst_reg *)hash_table_find(this->variable_ht, var);
633}
634
635void
636vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
637{
638   ir_expression *expr = ir->as_expression();
639
640   *predicate = BRW_PREDICATE_NORMAL;
641
642   if (expr) {
643      src_reg op[2];
644      vec4_instruction *inst;
645
646      assert(expr->get_num_operands() <= 2);
647      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
648	 expr->operands[i]->accept(this);
649	 op[i] = this->result;
650
651	 resolve_ud_negate(&op[i]);
652      }
653
654      switch (expr->operation) {
655      case ir_unop_logic_not:
656	 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
657	 inst->conditional_mod = BRW_CONDITIONAL_Z;
658	 break;
659
660      case ir_binop_logic_xor:
661	 inst = emit(XOR(dst_null_d(), op[0], op[1]));
662	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
663	 break;
664
665      case ir_binop_logic_or:
666	 inst = emit(OR(dst_null_d(), op[0], op[1]));
667	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
668	 break;
669
670      case ir_binop_logic_and:
671	 inst = emit(AND(dst_null_d(), op[0], op[1]));
672	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
673	 break;
674
675      case ir_unop_f2b:
676	 if (intel->gen >= 6) {
677	    emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
678	 } else {
679	    inst = emit(MOV(dst_null_f(), op[0]));
680	    inst->conditional_mod = BRW_CONDITIONAL_NZ;
681	 }
682	 break;
683
684      case ir_unop_i2b:
685	 if (intel->gen >= 6) {
686	    emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
687	 } else {
688	    inst = emit(MOV(dst_null_d(), op[0]));
689	    inst->conditional_mod = BRW_CONDITIONAL_NZ;
690	 }
691	 break;
692
693      case ir_binop_all_equal:
694	 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
695	 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
696	 break;
697
698      case ir_binop_any_nequal:
699	 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
700	 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
701	 break;
702
703      case ir_unop_any:
704	 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
705	 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
706	 break;
707
708      case ir_binop_greater:
709      case ir_binop_gequal:
710      case ir_binop_less:
711      case ir_binop_lequal:
712      case ir_binop_equal:
713      case ir_binop_nequal:
714	 emit(CMP(dst_null_d(), op[0], op[1],
715		  brw_conditional_for_comparison(expr->operation)));
716	 break;
717
718      default:
719	 assert(!"not reached");
720	 break;
721      }
722      return;
723   }
724
725   ir->accept(this);
726
727   resolve_ud_negate(&this->result);
728
729   if (intel->gen >= 6) {
730      vec4_instruction *inst = emit(AND(dst_null_d(),
731					this->result, src_reg(1)));
732      inst->conditional_mod = BRW_CONDITIONAL_NZ;
733   } else {
734      vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
735      inst->conditional_mod = BRW_CONDITIONAL_NZ;
736   }
737}
738
739/**
740 * Emit a gen6 IF statement with the comparison folded into the IF
741 * instruction.
742 */
743void
744vec4_visitor::emit_if_gen6(ir_if *ir)
745{
746   ir_expression *expr = ir->condition->as_expression();
747
748   if (expr) {
749      src_reg op[2];
750      dst_reg temp;
751
752      assert(expr->get_num_operands() <= 2);
753      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
754	 expr->operands[i]->accept(this);
755	 op[i] = this->result;
756      }
757
758      switch (expr->operation) {
759      case ir_unop_logic_not:
760	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
761	 return;
762
763      case ir_binop_logic_xor:
764	 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
765	 return;
766
767      case ir_binop_logic_or:
768	 temp = dst_reg(this, glsl_type::bool_type);
769	 emit(OR(temp, op[0], op[1]));
770	 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
771	 return;
772
773      case ir_binop_logic_and:
774	 temp = dst_reg(this, glsl_type::bool_type);
775	 emit(AND(temp, op[0], op[1]));
776	 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
777	 return;
778
779      case ir_unop_f2b:
780	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
781	 return;
782
783      case ir_unop_i2b:
784	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
785	 return;
786
787      case ir_binop_greater:
788      case ir_binop_gequal:
789      case ir_binop_less:
790      case ir_binop_lequal:
791      case ir_binop_equal:
792      case ir_binop_nequal:
793	 emit(IF(op[0], op[1],
794		 brw_conditional_for_comparison(expr->operation)));
795	 return;
796
797      case ir_binop_all_equal:
798	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
799	 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
800	 return;
801
802      case ir_binop_any_nequal:
803	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
804	 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
805	 return;
806
807      case ir_unop_any:
808	 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
809	 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
810	 return;
811
812      default:
813	 assert(!"not reached");
814	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
815	 return;
816      }
817      return;
818   }
819
820   ir->condition->accept(this);
821
822   emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
823}
824
825void
826vec4_visitor::visit(ir_variable *ir)
827{
828   dst_reg *reg = NULL;
829
830   if (variable_storage(ir))
831      return;
832
833   switch (ir->mode) {
834   case ir_var_in:
835      reg = new(mem_ctx) dst_reg(ATTR, ir->location);
836
837      /* Do GL_FIXED rescaling for GLES2.0.  Our GL_FIXED attributes
838       * come in as floating point conversions of the integer values.
839       */
840      for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
841	 if (!c->key.gl_fixed_input_size[i])
842	    continue;
843
844	 dst_reg dst = *reg;
845         dst.type = brw_type_for_base_type(ir->type);
846	 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
847	 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
848      }
849      break;
850
851   case ir_var_out:
852      reg = new(mem_ctx) dst_reg(this, ir->type);
853
854      for (int i = 0; i < type_size(ir->type); i++) {
855	 output_reg[ir->location + i] = *reg;
856	 output_reg[ir->location + i].reg_offset = i;
857	 output_reg[ir->location + i].type =
858            brw_type_for_base_type(ir->type->get_scalar_type());
859	 output_reg_annotation[ir->location + i] = ir->name;
860      }
861      break;
862
863   case ir_var_auto:
864   case ir_var_temporary:
865      reg = new(mem_ctx) dst_reg(this, ir->type);
866      break;
867
868   case ir_var_uniform:
869      reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
870
871      /* Track how big the whole uniform variable is, in case we need to put a
872       * copy of its data into pull constants for array access.
873       */
874      this->uniform_size[this->uniforms] = type_size(ir->type);
875
876      if (!strncmp(ir->name, "gl_", 3)) {
877	 setup_builtin_uniform_values(ir);
878      } else {
879	 setup_uniform_values(ir->location, ir->type);
880      }
881      break;
882
883   default:
884      assert(!"not reached");
885   }
886
887   reg->type = brw_type_for_base_type(ir->type);
888   hash_table_insert(this->variable_ht, reg, ir);
889}
890
891void
892vec4_visitor::visit(ir_loop *ir)
893{
894   dst_reg counter;
895
896   /* We don't want debugging output to print the whole body of the
897    * loop as the annotation.
898    */
899   this->base_ir = NULL;
900
901   if (ir->counter != NULL) {
902      this->base_ir = ir->counter;
903      ir->counter->accept(this);
904      counter = *(variable_storage(ir->counter));
905
906      if (ir->from != NULL) {
907	 this->base_ir = ir->from;
908	 ir->from->accept(this);
909
910	 emit(MOV(counter, this->result));
911      }
912   }
913
914   emit(BRW_OPCODE_DO);
915
916   if (ir->to) {
917      this->base_ir = ir->to;
918      ir->to->accept(this);
919
920      emit(CMP(dst_null_d(), src_reg(counter), this->result,
921	       brw_conditional_for_comparison(ir->cmp)));
922
923      vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
924      inst->predicate = BRW_PREDICATE_NORMAL;
925   }
926
927   visit_instructions(&ir->body_instructions);
928
929
930   if (ir->increment) {
931      this->base_ir = ir->increment;
932      ir->increment->accept(this);
933      emit(ADD(counter, src_reg(counter), this->result));
934   }
935
936   emit(BRW_OPCODE_WHILE);
937}
938
939void
940vec4_visitor::visit(ir_loop_jump *ir)
941{
942   switch (ir->mode) {
943   case ir_loop_jump::jump_break:
944      emit(BRW_OPCODE_BREAK);
945      break;
946   case ir_loop_jump::jump_continue:
947      emit(BRW_OPCODE_CONTINUE);
948      break;
949   }
950}
951
952
953void
954vec4_visitor::visit(ir_function_signature *ir)
955{
956   assert(0);
957   (void)ir;
958}
959
960void
961vec4_visitor::visit(ir_function *ir)
962{
963   /* Ignore function bodies other than main() -- we shouldn't see calls to
964    * them since they should all be inlined.
965    */
966   if (strcmp(ir->name, "main") == 0) {
967      const ir_function_signature *sig;
968      exec_list empty;
969
970      sig = ir->matching_signature(&empty);
971
972      assert(sig);
973
974      visit_instructions(&sig->body);
975   }
976}
977
978bool
979vec4_visitor::try_emit_sat(ir_expression *ir)
980{
981   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
982   if (!sat_src)
983      return false;
984
985   sat_src->accept(this);
986   src_reg src = this->result;
987
988   this->result = src_reg(this, ir->type);
989   vec4_instruction *inst;
990   inst = emit(MOV(dst_reg(this->result), src));
991   inst->saturate = true;
992
993   return true;
994}
995
996void
997vec4_visitor::emit_bool_comparison(unsigned int op,
998				 dst_reg dst, src_reg src0, src_reg src1)
999{
1000   /* original gen4 does destination conversion before comparison. */
1001   if (intel->gen < 5)
1002      dst.type = src0.type;
1003
1004   emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1005
1006   dst.type = BRW_REGISTER_TYPE_D;
1007   emit(AND(dst, src_reg(dst), src_reg(0x1)));
1008}
1009
1010void
1011vec4_visitor::visit(ir_expression *ir)
1012{
1013   unsigned int operand;
1014   src_reg op[Elements(ir->operands)];
1015   src_reg result_src;
1016   dst_reg result_dst;
1017   vec4_instruction *inst;
1018
1019   if (try_emit_sat(ir))
1020      return;
1021
1022   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1023      this->result.file = BAD_FILE;
1024      ir->operands[operand]->accept(this);
1025      if (this->result.file == BAD_FILE) {
1026	 printf("Failed to get tree for expression operand:\n");
1027	 ir->operands[operand]->print();
1028	 exit(1);
1029      }
1030      op[operand] = this->result;
1031
1032      /* Matrix expression operands should have been broken down to vector
1033       * operations already.
1034       */
1035      assert(!ir->operands[operand]->type->is_matrix());
1036   }
1037
1038   int vector_elements = ir->operands[0]->type->vector_elements;
1039   if (ir->operands[1]) {
1040      vector_elements = MAX2(vector_elements,
1041			     ir->operands[1]->type->vector_elements);
1042   }
1043
1044   this->result.file = BAD_FILE;
1045
1046   /* Storage for our result.  Ideally for an assignment we'd be using
1047    * the actual storage for the result here, instead.
1048    */
1049   result_src = src_reg(this, ir->type);
1050   /* convenience for the emit functions below. */
1051   result_dst = dst_reg(result_src);
1052   /* If nothing special happens, this is the result. */
1053   this->result = result_src;
1054   /* Limit writes to the channels that will be used by result_src later.
1055    * This does limit this temp's use as a temporary for multi-instruction
1056    * sequences.
1057    */
1058   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1059
1060   switch (ir->operation) {
1061   case ir_unop_logic_not:
1062      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1063       * ones complement of the whole register, not just bit 0.
1064       */
1065      emit(XOR(result_dst, op[0], src_reg(1)));
1066      break;
1067   case ir_unop_neg:
1068      op[0].negate = !op[0].negate;
1069      this->result = op[0];
1070      break;
1071   case ir_unop_abs:
1072      op[0].abs = true;
1073      op[0].negate = false;
1074      this->result = op[0];
1075      break;
1076
1077   case ir_unop_sign:
1078      emit(MOV(result_dst, src_reg(0.0f)));
1079
1080      emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1081      inst = emit(MOV(result_dst, src_reg(1.0f)));
1082      inst->predicate = BRW_PREDICATE_NORMAL;
1083
1084      emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1085      inst = emit(MOV(result_dst, src_reg(-1.0f)));
1086      inst->predicate = BRW_PREDICATE_NORMAL;
1087
1088      break;
1089
1090   case ir_unop_rcp:
1091      emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1092      break;
1093
1094   case ir_unop_exp2:
1095      emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1096      break;
1097   case ir_unop_log2:
1098      emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1099      break;
1100   case ir_unop_exp:
1101   case ir_unop_log:
1102      assert(!"not reached: should be handled by ir_explog_to_explog2");
1103      break;
1104   case ir_unop_sin:
1105   case ir_unop_sin_reduced:
1106      emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1107      break;
1108   case ir_unop_cos:
1109   case ir_unop_cos_reduced:
1110      emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1111      break;
1112
1113   case ir_unop_dFdx:
1114   case ir_unop_dFdy:
1115      assert(!"derivatives not valid in vertex shader");
1116      break;
1117
1118   case ir_unop_noise:
1119      assert(!"not reached: should be handled by lower_noise");
1120      break;
1121
1122   case ir_binop_add:
1123      emit(ADD(result_dst, op[0], op[1]));
1124      break;
1125   case ir_binop_sub:
1126      assert(!"not reached: should be handled by ir_sub_to_add_neg");
1127      break;
1128
1129   case ir_binop_mul:
1130      if (ir->type->is_integer()) {
1131	 /* For integer multiplication, the MUL uses the low 16 bits
1132	  * of one of the operands (src0 on gen6, src1 on gen7).  The
1133	  * MACH accumulates in the contribution of the upper 16 bits
1134	  * of that operand.
1135	  *
1136	  * FINISHME: Emit just the MUL if we know an operand is small
1137	  * enough.
1138	  */
1139	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1140
1141	 emit(MUL(acc, op[0], op[1]));
1142	 emit(MACH(dst_null_d(), op[0], op[1]));
1143	 emit(MOV(result_dst, src_reg(acc)));
1144      } else {
1145	 emit(MUL(result_dst, op[0], op[1]));
1146      }
1147      break;
1148   case ir_binop_div:
1149      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1150      assert(ir->type->is_integer());
1151      emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1152      break;
1153   case ir_binop_mod:
1154      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1155      assert(ir->type->is_integer());
1156      emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1157      break;
1158
1159   case ir_binop_less:
1160   case ir_binop_greater:
1161   case ir_binop_lequal:
1162   case ir_binop_gequal:
1163   case ir_binop_equal:
1164   case ir_binop_nequal: {
1165      emit(CMP(result_dst, op[0], op[1],
1166	       brw_conditional_for_comparison(ir->operation)));
1167      emit(AND(result_dst, result_src, src_reg(0x1)));
1168      break;
1169   }
1170
1171   case ir_binop_all_equal:
1172      /* "==" operator producing a scalar boolean. */
1173      if (ir->operands[0]->type->is_vector() ||
1174	  ir->operands[1]->type->is_vector()) {
1175	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1176	 emit(MOV(result_dst, src_reg(0)));
1177	 inst = emit(MOV(result_dst, src_reg(1)));
1178	 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1179      } else {
1180	 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1181	 emit(AND(result_dst, result_src, src_reg(0x1)));
1182      }
1183      break;
1184   case ir_binop_any_nequal:
1185      /* "!=" operator producing a scalar boolean. */
1186      if (ir->operands[0]->type->is_vector() ||
1187	  ir->operands[1]->type->is_vector()) {
1188	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1189
1190	 emit(MOV(result_dst, src_reg(0)));
1191	 inst = emit(MOV(result_dst, src_reg(1)));
1192	 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1193      } else {
1194	 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1195	 emit(AND(result_dst, result_src, src_reg(0x1)));
1196      }
1197      break;
1198
1199   case ir_unop_any:
1200      emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1201      emit(MOV(result_dst, src_reg(0)));
1202
1203      inst = emit(MOV(result_dst, src_reg(1)));
1204      inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1205      break;
1206
1207   case ir_binop_logic_xor:
1208      emit(XOR(result_dst, op[0], op[1]));
1209      break;
1210
1211   case ir_binop_logic_or:
1212      emit(OR(result_dst, op[0], op[1]));
1213      break;
1214
1215   case ir_binop_logic_and:
1216      emit(AND(result_dst, op[0], op[1]));
1217      break;
1218
1219   case ir_binop_dot:
1220      assert(ir->operands[0]->type->is_vector());
1221      assert(ir->operands[0]->type == ir->operands[1]->type);
1222      emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1223      break;
1224
1225   case ir_unop_sqrt:
1226      emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1227      break;
1228   case ir_unop_rsq:
1229      emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1230      break;
1231   case ir_unop_i2f:
1232   case ir_unop_i2u:
1233   case ir_unop_u2i:
1234   case ir_unop_u2f:
1235   case ir_unop_b2f:
1236   case ir_unop_b2i:
1237   case ir_unop_f2i:
1238      emit(MOV(result_dst, op[0]));
1239      break;
1240   case ir_unop_f2b:
1241   case ir_unop_i2b: {
1242      emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1243      emit(AND(result_dst, result_src, src_reg(1)));
1244      break;
1245   }
1246
1247   case ir_unop_trunc:
1248      emit(RNDZ(result_dst, op[0]));
1249      break;
1250   case ir_unop_ceil:
1251      op[0].negate = !op[0].negate;
1252      inst = emit(RNDD(result_dst, op[0]));
1253      this->result.negate = true;
1254      break;
1255   case ir_unop_floor:
1256      inst = emit(RNDD(result_dst, op[0]));
1257      break;
1258   case ir_unop_fract:
1259      inst = emit(FRC(result_dst, op[0]));
1260      break;
1261   case ir_unop_round_even:
1262      emit(RNDE(result_dst, op[0]));
1263      break;
1264
1265   case ir_binop_min:
1266      emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1267
1268      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1269      inst->predicate = BRW_PREDICATE_NORMAL;
1270      break;
1271   case ir_binop_max:
1272      emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1273
1274      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1275      inst->predicate = BRW_PREDICATE_NORMAL;
1276      break;
1277
1278   case ir_binop_pow:
1279      emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1280      break;
1281
1282   case ir_unop_bit_not:
1283      inst = emit(NOT(result_dst, op[0]));
1284      break;
1285   case ir_binop_bit_and:
1286      inst = emit(AND(result_dst, op[0], op[1]));
1287      break;
1288   case ir_binop_bit_xor:
1289      inst = emit(XOR(result_dst, op[0], op[1]));
1290      break;
1291   case ir_binop_bit_or:
1292      inst = emit(OR(result_dst, op[0], op[1]));
1293      break;
1294
1295   case ir_binop_lshift:
1296      inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1297      break;
1298
1299   case ir_binop_rshift:
1300      if (ir->type->base_type == GLSL_TYPE_INT)
1301	 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1302      else
1303	 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1304      break;
1305
1306   case ir_quadop_vector:
1307      assert(!"not reached: should be handled by lower_quadop_vector");
1308      break;
1309   }
1310}
1311
1312
1313void
1314vec4_visitor::visit(ir_swizzle *ir)
1315{
1316   src_reg src;
1317   int i = 0;
1318   int swizzle[4];
1319
1320   /* Note that this is only swizzles in expressions, not those on the left
1321    * hand side of an assignment, which do write masking.  See ir_assignment
1322    * for that.
1323    */
1324
1325   ir->val->accept(this);
1326   src = this->result;
1327   assert(src.file != BAD_FILE);
1328
1329   for (i = 0; i < ir->type->vector_elements; i++) {
1330      switch (i) {
1331      case 0:
1332	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1333	 break;
1334      case 1:
1335	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1336	 break;
1337      case 2:
1338	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1339	 break;
1340      case 3:
1341	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1342	    break;
1343      }
1344   }
1345   for (; i < 4; i++) {
1346      /* Replicate the last channel out. */
1347      swizzle[i] = swizzle[ir->type->vector_elements - 1];
1348   }
1349
1350   src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1351
1352   this->result = src;
1353}
1354
1355void
1356vec4_visitor::visit(ir_dereference_variable *ir)
1357{
1358   const struct glsl_type *type = ir->type;
1359   dst_reg *reg = variable_storage(ir->var);
1360
1361   if (!reg) {
1362      fail("Failed to find variable storage for %s\n", ir->var->name);
1363      this->result = src_reg(brw_null_reg());
1364      return;
1365   }
1366
1367   this->result = src_reg(*reg);
1368
1369   if (type->is_scalar() || type->is_vector() || type->is_matrix())
1370      this->result.swizzle = swizzle_for_size(type->vector_elements);
1371}
1372
1373void
1374vec4_visitor::visit(ir_dereference_array *ir)
1375{
1376   ir_constant *constant_index;
1377   src_reg src;
1378   int element_size = type_size(ir->type);
1379
1380   constant_index = ir->array_index->constant_expression_value();
1381
1382   ir->array->accept(this);
1383   src = this->result;
1384
1385   if (constant_index) {
1386      src.reg_offset += constant_index->value.i[0] * element_size;
1387   } else {
1388      /* Variable index array dereference.  It eats the "vec4" of the
1389       * base of the array and an index that offsets the Mesa register
1390       * index.
1391       */
1392      ir->array_index->accept(this);
1393
1394      src_reg index_reg;
1395
1396      if (element_size == 1) {
1397	 index_reg = this->result;
1398      } else {
1399	 index_reg = src_reg(this, glsl_type::int_type);
1400
1401	 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1402      }
1403
1404      if (src.reladdr) {
1405	 src_reg temp = src_reg(this, glsl_type::int_type);
1406
1407	 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1408
1409	 index_reg = temp;
1410      }
1411
1412      src.reladdr = ralloc(mem_ctx, src_reg);
1413      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1414   }
1415
1416   /* If the type is smaller than a vec4, replicate the last channel out. */
1417   if (ir->type->is_scalar() || ir->type->is_vector())
1418      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1419   else
1420      src.swizzle = BRW_SWIZZLE_NOOP;
1421   src.type = brw_type_for_base_type(ir->type);
1422
1423   this->result = src;
1424}
1425
1426void
1427vec4_visitor::visit(ir_dereference_record *ir)
1428{
1429   unsigned int i;
1430   const glsl_type *struct_type = ir->record->type;
1431   int offset = 0;
1432
1433   ir->record->accept(this);
1434
1435   for (i = 0; i < struct_type->length; i++) {
1436      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1437	 break;
1438      offset += type_size(struct_type->fields.structure[i].type);
1439   }
1440
1441   /* If the type is smaller than a vec4, replicate the last channel out. */
1442   if (ir->type->is_scalar() || ir->type->is_vector())
1443      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1444   else
1445      this->result.swizzle = BRW_SWIZZLE_NOOP;
1446   this->result.type = brw_type_for_base_type(ir->type);
1447
1448   this->result.reg_offset += offset;
1449}
1450
1451/**
1452 * We want to be careful in assignment setup to hit the actual storage
1453 * instead of potentially using a temporary like we might with the
1454 * ir_dereference handler.
1455 */
1456static dst_reg
1457get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1458{
1459   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1460    * access of a vector, it must be separated into a series conditional moves
1461    * before reaching this point (see ir_vec_index_to_cond_assign).
1462    */
1463   assert(ir->as_dereference());
1464   ir_dereference_array *deref_array = ir->as_dereference_array();
1465   if (deref_array) {
1466      assert(!deref_array->array->type->is_vector());
1467   }
1468
1469   /* Use the rvalue deref handler for the most part.  We'll ignore
1470    * swizzles in it and write swizzles using writemask, though.
1471    */
1472   ir->accept(v);
1473   return dst_reg(v->result);
1474}
1475
1476void
1477vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1478			      const struct glsl_type *type, uint32_t predicate)
1479{
1480   if (type->base_type == GLSL_TYPE_STRUCT) {
1481      for (unsigned int i = 0; i < type->length; i++) {
1482	 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1483      }
1484      return;
1485   }
1486
1487   if (type->is_array()) {
1488      for (unsigned int i = 0; i < type->length; i++) {
1489	 emit_block_move(dst, src, type->fields.array, predicate);
1490      }
1491      return;
1492   }
1493
1494   if (type->is_matrix()) {
1495      const struct glsl_type *vec_type;
1496
1497      vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1498					 type->vector_elements, 1);
1499
1500      for (int i = 0; i < type->matrix_columns; i++) {
1501	 emit_block_move(dst, src, vec_type, predicate);
1502      }
1503      return;
1504   }
1505
1506   assert(type->is_scalar() || type->is_vector());
1507
1508   dst->type = brw_type_for_base_type(type);
1509   src->type = dst->type;
1510
1511   dst->writemask = (1 << type->vector_elements) - 1;
1512
1513   /* Do we need to worry about swizzling a swizzle? */
1514   assert(src->swizzle == BRW_SWIZZLE_NOOP
1515	  || src->swizzle == swizzle_for_size(type->vector_elements));
1516   src->swizzle = swizzle_for_size(type->vector_elements);
1517
1518   vec4_instruction *inst = emit(MOV(*dst, *src));
1519   inst->predicate = predicate;
1520
1521   dst->reg_offset++;
1522   src->reg_offset++;
1523}
1524
1525
1526/* If the RHS processing resulted in an instruction generating a
1527 * temporary value, and it would be easy to rewrite the instruction to
1528 * generate its result right into the LHS instead, do so.  This ends
1529 * up reliably removing instructions where it can be tricky to do so
1530 * later without real UD chain information.
1531 */
1532bool
1533vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1534				     dst_reg dst,
1535				     src_reg src,
1536				     vec4_instruction *pre_rhs_inst,
1537				     vec4_instruction *last_rhs_inst)
1538{
1539   /* This could be supported, but it would take more smarts. */
1540   if (ir->condition)
1541      return false;
1542
1543   if (pre_rhs_inst == last_rhs_inst)
1544      return false; /* No instructions generated to work with. */
1545
1546   /* Make sure the last instruction generated our source reg. */
1547   if (src.file != GRF ||
1548       src.file != last_rhs_inst->dst.file ||
1549       src.reg != last_rhs_inst->dst.reg ||
1550       src.reg_offset != last_rhs_inst->dst.reg_offset ||
1551       src.reladdr ||
1552       src.abs ||
1553       src.negate ||
1554       last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1555      return false;
1556
1557   /* Check that that last instruction fully initialized the channels
1558    * we want to use, in the order we want to use them.  We could
1559    * potentially reswizzle the operands of many instructions so that
1560    * we could handle out of order channels, but don't yet.
1561    */
1562
1563   for (unsigned i = 0; i < 4; i++) {
1564      if (dst.writemask & (1 << i)) {
1565	 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1566	    return false;
1567
1568	 if (BRW_GET_SWZ(src.swizzle, i) != i)
1569	    return false;
1570      }
1571   }
1572
1573   /* Success!  Rewrite the instruction. */
1574   last_rhs_inst->dst.file = dst.file;
1575   last_rhs_inst->dst.reg = dst.reg;
1576   last_rhs_inst->dst.reg_offset = dst.reg_offset;
1577   last_rhs_inst->dst.reladdr = dst.reladdr;
1578   last_rhs_inst->dst.writemask &= dst.writemask;
1579
1580   return true;
1581}
1582
1583void
1584vec4_visitor::visit(ir_assignment *ir)
1585{
1586   dst_reg dst = get_assignment_lhs(ir->lhs, this);
1587   uint32_t predicate = BRW_PREDICATE_NONE;
1588
1589   if (!ir->lhs->type->is_scalar() &&
1590       !ir->lhs->type->is_vector()) {
1591      ir->rhs->accept(this);
1592      src_reg src = this->result;
1593
1594      if (ir->condition) {
1595	 emit_bool_to_cond_code(ir->condition, &predicate);
1596      }
1597
1598      emit_block_move(&dst, &src, ir->rhs->type, predicate);
1599      return;
1600   }
1601
1602   /* Now we're down to just a scalar/vector with writemasks. */
1603   int i;
1604
1605   vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1606   pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1607
1608   ir->rhs->accept(this);
1609
1610   last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1611
1612   src_reg src = this->result;
1613
1614   int swizzles[4];
1615   int first_enabled_chan = 0;
1616   int src_chan = 0;
1617
1618   assert(ir->lhs->type->is_vector() ||
1619	  ir->lhs->type->is_scalar());
1620   dst.writemask = ir->write_mask;
1621
1622   for (int i = 0; i < 4; i++) {
1623      if (dst.writemask & (1 << i)) {
1624	 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1625	 break;
1626      }
1627   }
1628
1629   /* Swizzle a small RHS vector into the channels being written.
1630    *
1631    * glsl ir treats write_mask as dictating how many channels are
1632    * present on the RHS while in our instructions we need to make
1633    * those channels appear in the slots of the vec4 they're written to.
1634    */
1635   for (int i = 0; i < 4; i++) {
1636      if (dst.writemask & (1 << i))
1637	 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1638      else
1639	 swizzles[i] = first_enabled_chan;
1640   }
1641   src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1642			      swizzles[2], swizzles[3]);
1643
1644   if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1645      return;
1646   }
1647
1648   if (ir->condition) {
1649      emit_bool_to_cond_code(ir->condition, &predicate);
1650   }
1651
1652   for (i = 0; i < type_size(ir->lhs->type); i++) {
1653      vec4_instruction *inst = emit(MOV(dst, src));
1654      inst->predicate = predicate;
1655
1656      dst.reg_offset++;
1657      src.reg_offset++;
1658   }
1659}
1660
1661void
1662vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1663{
1664   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1665      foreach_list(node, &ir->components) {
1666	 ir_constant *field_value = (ir_constant *)node;
1667
1668	 emit_constant_values(dst, field_value);
1669      }
1670      return;
1671   }
1672
1673   if (ir->type->is_array()) {
1674      for (unsigned int i = 0; i < ir->type->length; i++) {
1675	 emit_constant_values(dst, ir->array_elements[i]);
1676      }
1677      return;
1678   }
1679
1680   if (ir->type->is_matrix()) {
1681      for (int i = 0; i < ir->type->matrix_columns; i++) {
1682	 for (int j = 0; j < ir->type->vector_elements; j++) {
1683	    dst->writemask = 1 << j;
1684	    dst->type = BRW_REGISTER_TYPE_F;
1685
1686	    emit(MOV(*dst,
1687		     src_reg(ir->value.f[i * ir->type->vector_elements + j])));
1688	 }
1689	 dst->reg_offset++;
1690      }
1691      return;
1692   }
1693
1694   for (int i = 0; i < ir->type->vector_elements; i++) {
1695      dst->writemask = 1 << i;
1696      dst->type = brw_type_for_base_type(ir->type);
1697
1698      switch (ir->type->base_type) {
1699      case GLSL_TYPE_FLOAT:
1700	 emit(MOV(*dst, src_reg(ir->value.f[i])));
1701	 break;
1702      case GLSL_TYPE_INT:
1703	 emit(MOV(*dst, src_reg(ir->value.i[i])));
1704	 break;
1705      case GLSL_TYPE_UINT:
1706	 emit(MOV(*dst, src_reg(ir->value.u[i])));
1707	 break;
1708      case GLSL_TYPE_BOOL:
1709	 emit(MOV(*dst, src_reg(ir->value.b[i])));
1710	 break;
1711      default:
1712	 assert(!"Non-float/uint/int/bool constant");
1713	 break;
1714      }
1715   }
1716   dst->reg_offset++;
1717}
1718
1719void
1720vec4_visitor::visit(ir_constant *ir)
1721{
1722   dst_reg dst = dst_reg(this, ir->type);
1723   this->result = src_reg(dst);
1724
1725   emit_constant_values(&dst, ir);
1726}
1727
1728void
1729vec4_visitor::visit(ir_call *ir)
1730{
1731   assert(!"not reached");
1732}
1733
1734void
1735vec4_visitor::visit(ir_texture *ir)
1736{
1737   /* FINISHME: Implement vertex texturing.
1738    *
1739    * With 0 vertex samplers available, the linker will reject
1740    * programs that do vertex texturing, but after our visitor has
1741    * run.
1742    */
1743   this->result = src_reg(this, glsl_type::vec4_type);
1744}
1745
1746void
1747vec4_visitor::visit(ir_return *ir)
1748{
1749   assert(!"not reached");
1750}
1751
1752void
1753vec4_visitor::visit(ir_discard *ir)
1754{
1755   assert(!"not reached");
1756}
1757
1758void
1759vec4_visitor::visit(ir_if *ir)
1760{
1761   /* Don't point the annotation at the if statement, because then it plus
1762    * the then and else blocks get printed.
1763    */
1764   this->base_ir = ir->condition;
1765
1766   if (intel->gen == 6) {
1767      emit_if_gen6(ir);
1768   } else {
1769      uint32_t predicate;
1770      emit_bool_to_cond_code(ir->condition, &predicate);
1771      emit(IF(predicate));
1772   }
1773
1774   visit_instructions(&ir->then_instructions);
1775
1776   if (!ir->else_instructions.is_empty()) {
1777      this->base_ir = ir->condition;
1778      emit(BRW_OPCODE_ELSE);
1779
1780      visit_instructions(&ir->else_instructions);
1781   }
1782
1783   this->base_ir = ir->condition;
1784   emit(BRW_OPCODE_ENDIF);
1785}
1786
1787void
1788vec4_visitor::emit_ndc_computation()
1789{
1790   /* Get the position */
1791   src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
1792
1793   /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1794   dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1795   output_reg[BRW_VERT_RESULT_NDC] = ndc;
1796
1797   current_annotation = "NDC";
1798   dst_reg ndc_w = ndc;
1799   ndc_w.writemask = WRITEMASK_W;
1800   src_reg pos_w = pos;
1801   pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1802   emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1803
1804   dst_reg ndc_xyz = ndc;
1805   ndc_xyz.writemask = WRITEMASK_XYZ;
1806
1807   emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
1808}
1809
1810void
1811vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
1812{
1813   if (intel->gen < 6 &&
1814       ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
1815        c->key.userclip_active || brw->has_negative_rhw_bug)) {
1816      dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
1817      dst_reg header1_w = header1;
1818      header1_w.writemask = WRITEMASK_W;
1819      GLuint i;
1820
1821      emit(MOV(header1, 0u));
1822
1823      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1824	 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
1825
1826	 current_annotation = "Point size";
1827	 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
1828	 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
1829      }
1830
1831      current_annotation = "Clipping flags";
1832      for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
1833	 vec4_instruction *inst;
1834
1835	 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
1836                         src_reg(this->userplane[i])));
1837	 inst->conditional_mod = BRW_CONDITIONAL_L;
1838
1839	 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
1840	 inst->predicate = BRW_PREDICATE_NORMAL;
1841      }
1842
1843      /* i965 clipping workaround:
1844       * 1) Test for -ve rhw
1845       * 2) If set,
1846       *      set ndc = (0,0,0,0)
1847       *      set ucp[6] = 1
1848       *
1849       * Later, clipping will detect ucp[6] and ensure the primitive is
1850       * clipped against all fixed planes.
1851       */
1852      if (brw->has_negative_rhw_bug) {
1853#if 0
1854	 /* FINISHME */
1855	 brw_CMP(p,
1856		 vec8(brw_null_reg()),
1857		 BRW_CONDITIONAL_L,
1858		 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
1859		 brw_imm_f(0));
1860
1861	 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
1862	 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
1863	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1864#endif
1865      }
1866
1867      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
1868   } else if (intel->gen < 6) {
1869      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
1870   } else {
1871      emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
1872      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1873         emit(MOV(brw_writemask(reg, WRITEMASK_W),
1874                  src_reg(output_reg[VERT_RESULT_PSIZ])));
1875      }
1876   }
1877}
1878
1879void
1880vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
1881{
1882   if (intel->gen < 6) {
1883      /* Clip distance slots are set aside in gen5, but they are not used.  It
1884       * is not clear whether we actually need to set aside space for them,
1885       * but the performance cost is negligible.
1886       */
1887      return;
1888   }
1889
1890   /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
1891    *
1892    *     "If a linked set of shaders forming the vertex stage contains no
1893    *     static write to gl_ClipVertex or gl_ClipDistance, but the
1894    *     application has requested clipping against user clip planes through
1895    *     the API, then the coordinate written to gl_Position is used for
1896    *     comparison against the user clip planes."
1897    *
1898    * This function is only called if the shader didn't write to
1899    * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
1900    * if the user wrote to it; otherwise we use gl_Position.
1901    */
1902   gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
1903   if (!(c->prog_data.outputs_written
1904         & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
1905      clip_vertex = VERT_RESULT_HPOS;
1906   }
1907
1908   for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
1909        ++i) {
1910      emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
1911               src_reg(output_reg[clip_vertex]),
1912               src_reg(this->userplane[i + offset])));
1913   }
1914}
1915
1916void
1917vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
1918{
1919   assert (vert_result < VERT_RESULT_MAX);
1920   reg.type = output_reg[vert_result].type;
1921   current_annotation = output_reg_annotation[vert_result];
1922   /* Copy the register, saturating if necessary */
1923   vec4_instruction *inst = emit(MOV(reg,
1924                                     src_reg(output_reg[vert_result])));
1925   if ((vert_result == VERT_RESULT_COL0 ||
1926        vert_result == VERT_RESULT_COL1 ||
1927        vert_result == VERT_RESULT_BFC0 ||
1928        vert_result == VERT_RESULT_BFC1) &&
1929       c->key.clamp_vertex_color) {
1930      inst->saturate = true;
1931   }
1932}
1933
1934void
1935vec4_visitor::emit_urb_slot(int mrf, int vert_result)
1936{
1937   struct brw_reg hw_reg = brw_message_reg(mrf);
1938   dst_reg reg = dst_reg(MRF, mrf);
1939   reg.type = BRW_REGISTER_TYPE_F;
1940
1941   switch (vert_result) {
1942   case VERT_RESULT_PSIZ:
1943      /* PSIZ is always in slot 0, and is coupled with other flags. */
1944      current_annotation = "indices, point width, clip flags";
1945      emit_psiz_and_flags(hw_reg);
1946      break;
1947   case BRW_VERT_RESULT_NDC:
1948      current_annotation = "NDC";
1949      emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
1950      break;
1951   case BRW_VERT_RESULT_HPOS_DUPLICATE:
1952   case VERT_RESULT_HPOS:
1953      current_annotation = "gl_Position";
1954      emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
1955      break;
1956   case VERT_RESULT_CLIP_DIST0:
1957   case VERT_RESULT_CLIP_DIST1:
1958      if (this->c->key.uses_clip_distance) {
1959         emit_generic_urb_slot(reg, vert_result);
1960      } else {
1961         current_annotation = "user clip distances";
1962         emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
1963      }
1964      break;
1965   case BRW_VERT_RESULT_PAD:
1966      /* No need to write to this slot */
1967      break;
1968   default:
1969      emit_generic_urb_slot(reg, vert_result);
1970      break;
1971   }
1972}
1973
1974static int
1975align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
1976{
1977   struct intel_context *intel = &brw->intel;
1978
1979   if (intel->gen >= 6) {
1980      /* URB data written (does not include the message header reg) must
1981       * be a multiple of 256 bits, or 2 VS registers.  See vol5c.5,
1982       * section 5.4.3.2.2: URB_INTERLEAVED.
1983       *
1984       * URB entries are allocated on a multiple of 1024 bits, so an
1985       * extra 128 bits written here to make the end align to 256 is
1986       * no problem.
1987       */
1988      if ((mlen % 2) != 1)
1989	 mlen++;
1990   }
1991
1992   return mlen;
1993}
1994
1995/**
1996 * Generates the VUE payload plus the 1 or 2 URB write instructions to
1997 * complete the VS thread.
1998 *
1999 * The VUE layout is documented in Volume 2a.
2000 */
2001void
2002vec4_visitor::emit_urb_writes()
2003{
2004   /* MRF 0 is reserved for the debugger, so start with message header
2005    * in MRF 1.
2006    */
2007   int base_mrf = 1;
2008   int mrf = base_mrf;
2009   /* In the process of generating our URB write message contents, we
2010    * may need to unspill a register or load from an array.  Those
2011    * reads would use MRFs 14-15.
2012    */
2013   int max_usable_mrf = 13;
2014
2015   /* The following assertion verifies that max_usable_mrf causes an
2016    * even-numbered amount of URB write data, which will meet gen6's
2017    * requirements for length alignment.
2018    */
2019   assert ((max_usable_mrf - base_mrf) % 2 == 0);
2020
2021   /* FINISHME: edgeflag */
2022
2023   brw_compute_vue_map(&c->vue_map, intel, c->key.userclip_active,
2024                       c->prog_data.outputs_written);
2025
2026   /* First mrf is the g0-based message header containing URB handles and such,
2027    * which is implied in VS_OPCODE_URB_WRITE.
2028    */
2029   mrf++;
2030
2031   if (intel->gen < 6) {
2032      emit_ndc_computation();
2033   }
2034
2035   /* Set up the VUE data for the first URB write */
2036   int slot;
2037   for (slot = 0; slot < c->vue_map.num_slots; ++slot) {
2038      emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
2039
2040      /* If this was max_usable_mrf, we can't fit anything more into this URB
2041       * WRITE.
2042       */
2043      if (mrf > max_usable_mrf) {
2044	 slot++;
2045	 break;
2046      }
2047   }
2048
2049   current_annotation = "URB write";
2050   vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2051   inst->base_mrf = base_mrf;
2052   inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2053   inst->eot = (slot >= c->vue_map.num_slots);
2054
2055   /* Optional second URB write */
2056   if (!inst->eot) {
2057      mrf = base_mrf + 1;
2058
2059      for (; slot < c->vue_map.num_slots; ++slot) {
2060	 assert(mrf < max_usable_mrf);
2061
2062         emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
2063      }
2064
2065      current_annotation = "URB write";
2066      inst = emit(VS_OPCODE_URB_WRITE);
2067      inst->base_mrf = base_mrf;
2068      inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2069      inst->eot = true;
2070      /* URB destination offset.  In the previous write, we got MRFs
2071       * 2-13 minus the one header MRF, so 12 regs.  URB offset is in
2072       * URB row increments, and each of our MRFs is half of one of
2073       * those, since we're doing interleaved writes.
2074       */
2075      inst->offset = (max_usable_mrf - base_mrf) / 2;
2076   }
2077
2078   if (intel->gen == 6)
2079      c->prog_data.urb_entry_size = ALIGN(c->vue_map.num_slots, 8) / 8;
2080   else
2081      c->prog_data.urb_entry_size = ALIGN(c->vue_map.num_slots, 4) / 4;
2082}
2083
2084src_reg
2085vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2086				 src_reg *reladdr, int reg_offset)
2087{
2088   /* Because we store the values to scratch interleaved like our
2089    * vertex data, we need to scale the vec4 index by 2.
2090    */
2091   int message_header_scale = 2;
2092
2093   /* Pre-gen6, the message header uses byte offsets instead of vec4
2094    * (16-byte) offset units.
2095    */
2096   if (intel->gen < 6)
2097      message_header_scale *= 16;
2098
2099   if (reladdr) {
2100      src_reg index = src_reg(this, glsl_type::int_type);
2101
2102      emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2103      emit_before(inst, MUL(dst_reg(index),
2104			    index, src_reg(message_header_scale)));
2105
2106      return index;
2107   } else {
2108      return src_reg(reg_offset * message_header_scale);
2109   }
2110}
2111
2112src_reg
2113vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2114				       src_reg *reladdr, int reg_offset)
2115{
2116   if (reladdr) {
2117      src_reg index = src_reg(this, glsl_type::int_type);
2118
2119      emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2120
2121      /* Pre-gen6, the message header uses byte offsets instead of vec4
2122       * (16-byte) offset units.
2123       */
2124      if (intel->gen < 6) {
2125	 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2126      }
2127
2128      return index;
2129   } else {
2130      int message_header_scale = intel->gen < 6 ? 16 : 1;
2131      return src_reg(reg_offset * message_header_scale);
2132   }
2133}
2134
2135/**
2136 * Emits an instruction before @inst to load the value named by @orig_src
2137 * from scratch space at @base_offset to @temp.
2138 */
2139void
2140vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2141				dst_reg temp, src_reg orig_src,
2142				int base_offset)
2143{
2144   int reg_offset = base_offset + orig_src.reg_offset;
2145   src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2146
2147   emit_before(inst, SCRATCH_READ(temp, index));
2148}
2149
2150/**
2151 * Emits an instruction after @inst to store the value to be written
2152 * to @orig_dst to scratch space at @base_offset, from @temp.
2153 */
2154void
2155vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2156				 src_reg temp, dst_reg orig_dst,
2157				 int base_offset)
2158{
2159   int reg_offset = base_offset + orig_dst.reg_offset;
2160   src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2161
2162   dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2163				       orig_dst.writemask));
2164   vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2165   write->predicate = inst->predicate;
2166   write->ir = inst->ir;
2167   write->annotation = inst->annotation;
2168   inst->insert_after(write);
2169}
2170
2171/**
2172 * We can't generally support array access in GRF space, because a
2173 * single instruction's destination can only span 2 contiguous
2174 * registers.  So, we send all GRF arrays that get variable index
2175 * access to scratch space.
2176 */
2177void
2178vec4_visitor::move_grf_array_access_to_scratch()
2179{
2180   int scratch_loc[this->virtual_grf_count];
2181
2182   for (int i = 0; i < this->virtual_grf_count; i++) {
2183      scratch_loc[i] = -1;
2184   }
2185
2186   /* First, calculate the set of virtual GRFs that need to be punted
2187    * to scratch due to having any array access on them, and where in
2188    * scratch.
2189    */
2190   foreach_list(node, &this->instructions) {
2191      vec4_instruction *inst = (vec4_instruction *)node;
2192
2193      if (inst->dst.file == GRF && inst->dst.reladdr &&
2194	  scratch_loc[inst->dst.reg] == -1) {
2195	 scratch_loc[inst->dst.reg] = c->last_scratch;
2196	 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
2197      }
2198
2199      for (int i = 0 ; i < 3; i++) {
2200	 src_reg *src = &inst->src[i];
2201
2202	 if (src->file == GRF && src->reladdr &&
2203	     scratch_loc[src->reg] == -1) {
2204	    scratch_loc[src->reg] = c->last_scratch;
2205	    c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
2206	 }
2207      }
2208   }
2209
2210   /* Now, for anything that will be accessed through scratch, rewrite
2211    * it to load/store.  Note that this is a _safe list walk, because
2212    * we may generate a new scratch_write instruction after the one
2213    * we're processing.
2214    */
2215   foreach_list_safe(node, &this->instructions) {
2216      vec4_instruction *inst = (vec4_instruction *)node;
2217
2218      /* Set up the annotation tracking for new generated instructions. */
2219      base_ir = inst->ir;
2220      current_annotation = inst->annotation;
2221
2222      if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2223	 src_reg temp = src_reg(this, glsl_type::vec4_type);
2224
2225	 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2226
2227	 inst->dst.file = temp.file;
2228	 inst->dst.reg = temp.reg;
2229	 inst->dst.reg_offset = temp.reg_offset;
2230	 inst->dst.reladdr = NULL;
2231      }
2232
2233      for (int i = 0 ; i < 3; i++) {
2234	 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2235	    continue;
2236
2237	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2238
2239	 emit_scratch_read(inst, temp, inst->src[i],
2240			   scratch_loc[inst->src[i].reg]);
2241
2242	 inst->src[i].file = temp.file;
2243	 inst->src[i].reg = temp.reg;
2244	 inst->src[i].reg_offset = temp.reg_offset;
2245	 inst->src[i].reladdr = NULL;
2246      }
2247   }
2248}
2249
2250/**
2251 * Emits an instruction before @inst to load the value named by @orig_src
2252 * from the pull constant buffer (surface) at @base_offset to @temp.
2253 */
2254void
2255vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2256				      dst_reg temp, src_reg orig_src,
2257				      int base_offset)
2258{
2259   int reg_offset = base_offset + orig_src.reg_offset;
2260   src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2261   vec4_instruction *load;
2262
2263   load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2264					temp, index);
2265   load->base_mrf = 14;
2266   load->mlen = 1;
2267   emit_before(inst, load);
2268}
2269
2270/**
2271 * Implements array access of uniforms by inserting a
2272 * PULL_CONSTANT_LOAD instruction.
2273 *
2274 * Unlike temporary GRF array access (where we don't support it due to
2275 * the difficulty of doing relative addressing on instruction
2276 * destinations), we could potentially do array access of uniforms
2277 * that were loaded in GRF space as push constants.  In real-world
2278 * usage we've seen, though, the arrays being used are always larger
2279 * than we could load as push constants, so just always move all
2280 * uniform array access out to a pull constant buffer.
2281 */
2282void
2283vec4_visitor::move_uniform_array_access_to_pull_constants()
2284{
2285   int pull_constant_loc[this->uniforms];
2286
2287   for (int i = 0; i < this->uniforms; i++) {
2288      pull_constant_loc[i] = -1;
2289   }
2290
2291   /* Walk through and find array access of uniforms.  Put a copy of that
2292    * uniform in the pull constant buffer.
2293    *
2294    * Note that we don't move constant-indexed accesses to arrays.  No
2295    * testing has been done of the performance impact of this choice.
2296    */
2297   foreach_list_safe(node, &this->instructions) {
2298      vec4_instruction *inst = (vec4_instruction *)node;
2299
2300      for (int i = 0 ; i < 3; i++) {
2301	 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2302	    continue;
2303
2304	 int uniform = inst->src[i].reg;
2305
2306	 /* If this array isn't already present in the pull constant buffer,
2307	  * add it.
2308	  */
2309	 if (pull_constant_loc[uniform] == -1) {
2310	    const float **values = &prog_data->param[uniform * 4];
2311
2312	    pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2313
2314	    for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2315	       prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2316	    }
2317	 }
2318
2319	 /* Set up the annotation tracking for new generated instructions. */
2320	 base_ir = inst->ir;
2321	 current_annotation = inst->annotation;
2322
2323	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2324
2325	 emit_pull_constant_load(inst, temp, inst->src[i],
2326				 pull_constant_loc[uniform]);
2327
2328	 inst->src[i].file = temp.file;
2329	 inst->src[i].reg = temp.reg;
2330	 inst->src[i].reg_offset = temp.reg_offset;
2331	 inst->src[i].reladdr = NULL;
2332      }
2333   }
2334
2335   /* Now there are no accesses of the UNIFORM file with a reladdr, so
2336    * no need to track them as larger-than-vec4 objects.  This will be
2337    * relied on in cutting out unused uniform vectors from push
2338    * constants.
2339    */
2340   split_uniform_registers();
2341}
2342
2343void
2344vec4_visitor::resolve_ud_negate(src_reg *reg)
2345{
2346   if (reg->type != BRW_REGISTER_TYPE_UD ||
2347       !reg->negate)
2348      return;
2349
2350   src_reg temp = src_reg(this, glsl_type::uvec4_type);
2351   emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2352   *reg = temp;
2353}
2354
2355vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2356			   struct gl_shader_program *prog,
2357			   struct brw_shader *shader)
2358{
2359   this->c = c;
2360   this->p = &c->func;
2361   this->brw = p->brw;
2362   this->intel = &brw->intel;
2363   this->ctx = &intel->ctx;
2364   this->prog = prog;
2365   this->shader = shader;
2366
2367   this->mem_ctx = ralloc_context(NULL);
2368   this->failed = false;
2369
2370   this->base_ir = NULL;
2371   this->current_annotation = NULL;
2372
2373   this->c = c;
2374   this->vp = (struct gl_vertex_program *)
2375     prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2376   this->prog_data = &c->prog_data;
2377
2378   this->variable_ht = hash_table_ctor(0,
2379				       hash_table_pointer_hash,
2380				       hash_table_pointer_compare);
2381
2382   this->virtual_grf_def = NULL;
2383   this->virtual_grf_use = NULL;
2384   this->virtual_grf_sizes = NULL;
2385   this->virtual_grf_count = 0;
2386   this->virtual_grf_reg_map = NULL;
2387   this->virtual_grf_reg_count = 0;
2388   this->virtual_grf_array_size = 0;
2389   this->live_intervals_valid = false;
2390
2391   this->uniforms = 0;
2392
2393   this->variable_ht = hash_table_ctor(0,
2394				       hash_table_pointer_hash,
2395				       hash_table_pointer_compare);
2396}
2397
2398vec4_visitor::~vec4_visitor()
2399{
2400   ralloc_free(this->mem_ctx);
2401   hash_table_dtor(this->variable_ht);
2402}
2403
2404
2405void
2406vec4_visitor::fail(const char *format, ...)
2407{
2408   va_list va;
2409   char *msg;
2410
2411   if (failed)
2412      return;
2413
2414   failed = true;
2415
2416   va_start(va, format);
2417   msg = ralloc_vasprintf(mem_ctx, format, va);
2418   va_end(va);
2419   msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2420
2421   this->fail_msg = msg;
2422
2423   if (INTEL_DEBUG & DEBUG_VS) {
2424      fprintf(stderr, "%s",  msg);
2425   }
2426}
2427
2428} /* namespace brw */
2429