brw_vec4_visitor.cpp revision 4a4857246c79c42d918a84d7e28e9afff3a9ef6d
1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25extern "C" {
26#include "main/macros.h"
27#include "program/prog_parameter.h"
28}
29
30namespace brw {
31
32src_reg::src_reg(dst_reg reg)
33{
34   init();
35
36   this->file = reg.file;
37   this->reg = reg.reg;
38   this->reg_offset = reg.reg_offset;
39   this->type = reg.type;
40
41   int swizzles[4];
42   int next_chan = 0;
43   int last = 0;
44
45   for (int i = 0; i < 4; i++) {
46      if (!(reg.writemask & (1 << i)))
47	 continue;
48
49      swizzles[next_chan++] = last = i;
50   }
51
52   for (; next_chan < 4; next_chan++) {
53      swizzles[next_chan] = last;
54   }
55
56   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
57				swizzles[2], swizzles[3]);
58}
59
60dst_reg::dst_reg(src_reg reg)
61{
62   init();
63
64   this->file = reg.file;
65   this->reg = reg.reg;
66   this->reg_offset = reg.reg_offset;
67   this->type = reg.type;
68   this->writemask = WRITEMASK_XYZW;
69}
70
71vec4_instruction *
72vec4_visitor::emit(enum opcode opcode, dst_reg dst,
73		   src_reg src0, src_reg src1, src_reg src2)
74{
75   vec4_instruction *inst = new(mem_ctx) vec4_instruction();
76
77   inst->opcode = opcode;
78   inst->dst = dst;
79   inst->src[0] = src0;
80   inst->src[1] = src1;
81   inst->src[2] = src2;
82   inst->ir = this->base_ir;
83   inst->annotation = this->current_annotation;
84
85   this->instructions.push_tail(inst);
86
87   return inst;
88}
89
90
91vec4_instruction *
92vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
93{
94   return emit(opcode, dst, src0, src1, src_reg());
95}
96
97vec4_instruction *
98vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
99{
100   assert(dst.writemask != 0);
101   return emit(opcode, dst, src0, src_reg(), src_reg());
102}
103
104vec4_instruction *
105vec4_visitor::emit(enum opcode opcode)
106{
107   return emit(opcode, dst_reg(), src_reg(), src_reg(), src_reg());
108}
109
110void
111vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
112{
113   static enum opcode dot_opcodes[] = {
114      BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
115   };
116
117   emit(dot_opcodes[elements - 2], dst, src0, src1);
118}
119
120void
121vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
122{
123   /* The gen6 math instruction ignores the source modifiers --
124    * swizzle, abs, negate, and at least some parts of the register
125    * region description.  Move the source to the corresponding slots
126    * of the destination generally work.
127    */
128   src_reg expanded = src_reg(this, glsl_type::float_type);
129   emit(BRW_OPCODE_MOV, dst, src);
130   src = expanded;
131
132   emit(opcode, dst, src);
133}
134
135void
136vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
137{
138   vec4_instruction *inst = emit(opcode, dst, src);
139   inst->base_mrf = 1;
140   inst->mlen = 1;
141}
142
143void
144vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
145{
146   switch (opcode) {
147   case SHADER_OPCODE_RCP:
148   case SHADER_OPCODE_RSQ:
149   case SHADER_OPCODE_SQRT:
150   case SHADER_OPCODE_EXP2:
151   case SHADER_OPCODE_LOG2:
152   case SHADER_OPCODE_SIN:
153   case SHADER_OPCODE_COS:
154      break;
155   default:
156      assert(!"not reached: bad math opcode");
157      return;
158   }
159
160   if (intel->gen >= 6) {
161      return emit_math1_gen6(opcode, dst, src);
162   } else {
163      return emit_math1_gen4(opcode, dst, src);
164   }
165}
166
167void
168vec4_visitor::emit_math2_gen6(enum opcode opcode,
169			      dst_reg dst, src_reg src0, src_reg src1)
170{
171   src_reg expanded;
172
173   /* The gen6 math instruction ignores the source modifiers --
174    * swizzle, abs, negate, and at least some parts of the register
175    * region description.  Move the sources to temporaries to make it
176    * generally work.
177    */
178
179   expanded = src_reg(this, glsl_type::vec4_type);
180   emit(BRW_OPCODE_MOV, dst, src0);
181   src0 = expanded;
182
183   expanded = src_reg(this, glsl_type::vec4_type);
184   emit(BRW_OPCODE_MOV, dst, src1);
185   src1 = expanded;
186
187   emit(opcode, dst, src0, src1);
188}
189
190void
191vec4_visitor::emit_math2_gen4(enum opcode opcode,
192			      dst_reg dst, src_reg src0, src_reg src1)
193{
194   vec4_instruction *inst = emit(opcode, dst, src0, src1);
195   inst->base_mrf = 1;
196   inst->mlen = 2;
197}
198
199void
200vec4_visitor::emit_math(enum opcode opcode,
201			dst_reg dst, src_reg src0, src_reg src1)
202{
203   assert(opcode == SHADER_OPCODE_POW);
204
205   if (intel->gen >= 6) {
206      return emit_math2_gen6(opcode, dst, src0, src1);
207   } else {
208      return emit_math2_gen4(opcode, dst, src0, src1);
209   }
210}
211
212void
213vec4_visitor::visit_instructions(const exec_list *list)
214{
215   foreach_iter(exec_list_iterator, iter, *list) {
216      ir_instruction *ir = (ir_instruction *)iter.get();
217
218      base_ir = ir;
219      ir->accept(this);
220   }
221}
222
223
224static int
225type_size(const struct glsl_type *type)
226{
227   unsigned int i;
228   int size;
229
230   switch (type->base_type) {
231   case GLSL_TYPE_UINT:
232   case GLSL_TYPE_INT:
233   case GLSL_TYPE_FLOAT:
234   case GLSL_TYPE_BOOL:
235      if (type->is_matrix()) {
236	 return type->matrix_columns;
237      } else {
238	 /* Regardless of size of vector, it gets a vec4. This is bad
239	  * packing for things like floats, but otherwise arrays become a
240	  * mess.  Hopefully a later pass over the code can pack scalars
241	  * down if appropriate.
242	  */
243	 return 1;
244      }
245   case GLSL_TYPE_ARRAY:
246      assert(type->length > 0);
247      return type_size(type->fields.array) * type->length;
248   case GLSL_TYPE_STRUCT:
249      size = 0;
250      for (i = 0; i < type->length; i++) {
251	 size += type_size(type->fields.structure[i].type);
252      }
253      return size;
254   case GLSL_TYPE_SAMPLER:
255      /* Samplers take up one slot in UNIFORMS[], but they're baked in
256       * at link time.
257       */
258      return 1;
259   default:
260      assert(0);
261      return 0;
262   }
263}
264
265int
266vec4_visitor::virtual_grf_alloc(int size)
267{
268   if (virtual_grf_array_size <= virtual_grf_count) {
269      if (virtual_grf_array_size == 0)
270	 virtual_grf_array_size = 16;
271      else
272	 virtual_grf_array_size *= 2;
273      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
274				   virtual_grf_array_size);
275   }
276   virtual_grf_sizes[virtual_grf_count] = size;
277   return virtual_grf_count++;
278}
279
280src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
281{
282   init();
283
284   this->file = GRF;
285   this->reg = v->virtual_grf_alloc(type_size(type));
286
287   if (type->is_array() || type->is_record()) {
288      this->swizzle = BRW_SWIZZLE_NOOP;
289   } else {
290      this->swizzle = swizzle_for_size(type->vector_elements);
291   }
292
293   this->type = brw_type_for_base_type(type);
294}
295
296dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
297{
298   init();
299
300   this->file = GRF;
301   this->reg = v->virtual_grf_alloc(type_size(type));
302
303   if (type->is_array() || type->is_record()) {
304      this->writemask = WRITEMASK_XYZW;
305   } else {
306      this->writemask = (1 << type->vector_elements) - 1;
307   }
308
309   this->type = brw_type_for_base_type(type);
310}
311
312/* Our support for uniforms is piggy-backed on the struct
313 * gl_fragment_program, because that's where the values actually
314 * get stored, rather than in some global gl_shader_program uniform
315 * store.
316 */
317int
318vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
319{
320   unsigned int offset = 0;
321   float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
322
323   if (type->is_matrix()) {
324      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
325							type->vector_elements,
326							1);
327
328      for (unsigned int i = 0; i < type->matrix_columns; i++) {
329	 offset += setup_uniform_values(loc + offset, column);
330      }
331
332      return offset;
333   }
334
335   switch (type->base_type) {
336   case GLSL_TYPE_FLOAT:
337   case GLSL_TYPE_UINT:
338   case GLSL_TYPE_INT:
339   case GLSL_TYPE_BOOL:
340      for (unsigned int i = 0; i < type->vector_elements; i++) {
341	 int slot = this->uniforms * 4 + i;
342	 switch (type->base_type) {
343	 case GLSL_TYPE_FLOAT:
344	    c->prog_data.param_convert[slot] = PARAM_NO_CONVERT;
345	    break;
346	 case GLSL_TYPE_UINT:
347	    c->prog_data.param_convert[slot] = PARAM_CONVERT_F2U;
348	    break;
349	 case GLSL_TYPE_INT:
350	    c->prog_data.param_convert[slot] = PARAM_CONVERT_F2I;
351	    break;
352	 case GLSL_TYPE_BOOL:
353	    c->prog_data.param_convert[slot] = PARAM_CONVERT_F2B;
354	    break;
355	 default:
356	    assert(!"not reached");
357	    c->prog_data.param_convert[slot] = PARAM_NO_CONVERT;
358	    break;
359	 }
360	 c->prog_data.param[slot] = &values[i];
361      }
362
363      for (unsigned int i = type->vector_elements; i < 4; i++) {
364	 c->prog_data.param_convert[this->uniforms * 4 + i] =
365	    PARAM_CONVERT_ZERO;
366	 c->prog_data.param[this->uniforms * 4 + i] = NULL;
367      }
368
369      this->uniform_size[this->uniforms] = type->vector_elements;
370      this->uniforms++;
371
372      return 1;
373
374   case GLSL_TYPE_STRUCT:
375      for (unsigned int i = 0; i < type->length; i++) {
376	 offset += setup_uniform_values(loc + offset,
377					type->fields.structure[i].type);
378      }
379      return offset;
380
381   case GLSL_TYPE_ARRAY:
382      for (unsigned int i = 0; i < type->length; i++) {
383	 offset += setup_uniform_values(loc + offset, type->fields.array);
384      }
385      return offset;
386
387   case GLSL_TYPE_SAMPLER:
388      /* The sampler takes up a slot, but we don't use any values from it. */
389      return 1;
390
391   default:
392      assert(!"not reached");
393      return 0;
394   }
395}
396
397/* Our support for builtin uniforms is even scarier than non-builtin.
398 * It sits on top of the PROG_STATE_VAR parameters that are
399 * automatically updated from GL context state.
400 */
401void
402vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
403{
404   const ir_state_slot *const slots = ir->state_slots;
405   assert(ir->state_slots != NULL);
406
407   for (unsigned int i = 0; i < ir->num_state_slots; i++) {
408      /* This state reference has already been setup by ir_to_mesa,
409       * but we'll get the same index back here.  We can reference
410       * ParameterValues directly, since unlike brw_fs.cpp, we never
411       * add new state references during compile.
412       */
413      int index = _mesa_add_state_reference(this->vp->Base.Parameters,
414					    (gl_state_index *)slots[i].tokens);
415      float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
416
417      this->uniform_size[this->uniforms] = 0;
418      /* Add each of the unique swizzled channels of the element.
419       * This will end up matching the size of the glsl_type of this field.
420       */
421      int last_swiz = -1;
422      for (unsigned int j = 0; j < 4; j++) {
423	 int swiz = GET_SWZ(slots[i].swizzle, j);
424	 if (swiz == last_swiz)
425	    break;
426	 last_swiz = swiz;
427
428	 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
429	 c->prog_data.param_convert[this->uniforms * 4 + j] = PARAM_NO_CONVERT;
430	 this->uniform_size[this->uniforms]++;
431      }
432      this->uniforms++;
433   }
434}
435
436dst_reg *
437vec4_visitor::variable_storage(ir_variable *var)
438{
439   return (dst_reg *)hash_table_find(this->variable_ht, var);
440}
441
442void
443vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
444{
445   ir_expression *expr = ir->as_expression();
446
447   if (expr) {
448      src_reg op[2];
449      vec4_instruction *inst;
450
451      assert(expr->get_num_operands() <= 2);
452      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
453	 assert(expr->operands[i]->type->is_scalar());
454
455	 expr->operands[i]->accept(this);
456	 op[i] = this->result;
457      }
458
459      switch (expr->operation) {
460      case ir_unop_logic_not:
461	 inst = emit(BRW_OPCODE_AND, dst_null_d(), op[0], src_reg(1));
462	 inst->conditional_mod = BRW_CONDITIONAL_Z;
463	 break;
464
465      case ir_binop_logic_xor:
466	 inst = emit(BRW_OPCODE_XOR, dst_null_d(), op[0], op[1]);
467	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
468	 break;
469
470      case ir_binop_logic_or:
471	 inst = emit(BRW_OPCODE_OR, dst_null_d(), op[0], op[1]);
472	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
473	 break;
474
475      case ir_binop_logic_and:
476	 inst = emit(BRW_OPCODE_AND, dst_null_d(), op[0], op[1]);
477	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
478	 break;
479
480      case ir_unop_f2b:
481	 if (intel->gen >= 6) {
482	    inst = emit(BRW_OPCODE_CMP, dst_null_d(), op[0], src_reg(0.0f));
483	 } else {
484	    inst = emit(BRW_OPCODE_MOV, dst_null_f(), op[0]);
485	 }
486	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
487	 break;
488
489      case ir_unop_i2b:
490	 if (intel->gen >= 6) {
491	    inst = emit(BRW_OPCODE_CMP, dst_null_d(), op[0], src_reg(0));
492	 } else {
493	    inst = emit(BRW_OPCODE_MOV, dst_null_d(), op[0]);
494	 }
495	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
496	 break;
497
498      case ir_binop_greater:
499      case ir_binop_gequal:
500      case ir_binop_less:
501      case ir_binop_lequal:
502      case ir_binop_equal:
503      case ir_binop_all_equal:
504      case ir_binop_nequal:
505      case ir_binop_any_nequal:
506	 inst = emit(BRW_OPCODE_CMP, dst_null_cmp(), op[0], op[1]);
507	 inst->conditional_mod =
508	    brw_conditional_for_comparison(expr->operation);
509	 break;
510
511      default:
512	 assert(!"not reached");
513	 break;
514      }
515      return;
516   }
517
518   ir->accept(this);
519
520   if (intel->gen >= 6) {
521      vec4_instruction *inst = emit(BRW_OPCODE_AND, dst_null_d(),
522			       this->result, src_reg(1));
523      inst->conditional_mod = BRW_CONDITIONAL_NZ;
524   } else {
525      vec4_instruction *inst = emit(BRW_OPCODE_MOV, dst_null_d(), this->result);
526      inst->conditional_mod = BRW_CONDITIONAL_NZ;
527   }
528}
529
530/**
531 * Emit a gen6 IF statement with the comparison folded into the IF
532 * instruction.
533 */
534void
535vec4_visitor::emit_if_gen6(ir_if *ir)
536{
537   ir_expression *expr = ir->condition->as_expression();
538
539   if (expr) {
540      src_reg op[2];
541      vec4_instruction *inst;
542      dst_reg temp;
543
544      assert(expr->get_num_operands() <= 2);
545      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
546	 assert(expr->operands[i]->type->is_scalar());
547
548	 expr->operands[i]->accept(this);
549	 op[i] = this->result;
550      }
551
552      switch (expr->operation) {
553      case ir_unop_logic_not:
554	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], src_reg(0));
555	 inst->conditional_mod = BRW_CONDITIONAL_Z;
556	 return;
557
558      case ir_binop_logic_xor:
559	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], op[1]);
560	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
561	 return;
562
563      case ir_binop_logic_or:
564	 temp = dst_reg(this, glsl_type::bool_type);
565	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
566	 inst = emit(BRW_OPCODE_IF, dst_null_d(), src_reg(temp), src_reg(0));
567	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
568	 return;
569
570      case ir_binop_logic_and:
571	 temp = dst_reg(this, glsl_type::bool_type);
572	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
573	 inst = emit(BRW_OPCODE_IF, dst_null_d(), src_reg(temp), src_reg(0));
574	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
575	 return;
576
577      case ir_unop_f2b:
578	 inst = emit(BRW_OPCODE_IF, dst_null_f(), op[0], src_reg(0));
579	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
580	 return;
581
582      case ir_unop_i2b:
583	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], src_reg(0));
584	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
585	 return;
586
587      case ir_binop_greater:
588      case ir_binop_gequal:
589      case ir_binop_less:
590      case ir_binop_lequal:
591      case ir_binop_equal:
592      case ir_binop_all_equal:
593      case ir_binop_nequal:
594      case ir_binop_any_nequal:
595	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], op[1]);
596	 inst->conditional_mod =
597	    brw_conditional_for_comparison(expr->operation);
598	 return;
599      default:
600	 assert(!"not reached");
601	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], src_reg(0));
602	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
603	 return;
604      }
605      return;
606   }
607
608   ir->condition->accept(this);
609
610   vec4_instruction *inst = emit(BRW_OPCODE_IF, dst_null_d(),
611			    this->result, src_reg(0));
612   inst->conditional_mod = BRW_CONDITIONAL_NZ;
613}
614
615void
616vec4_visitor::visit(ir_variable *ir)
617{
618   dst_reg *reg = NULL;
619
620   if (variable_storage(ir))
621      return;
622
623   switch (ir->mode) {
624   case ir_var_in:
625      reg = new(mem_ctx) dst_reg(ATTR, ir->location);
626      break;
627
628   case ir_var_out:
629      reg = new(mem_ctx) dst_reg(this, ir->type);
630
631      for (int i = 0; i < type_size(ir->type); i++) {
632	 output_reg[ir->location + i] = *reg;
633	 output_reg[ir->location + i].reg_offset = i;
634      }
635      break;
636
637   case ir_var_temporary:
638      reg = new(mem_ctx) dst_reg(this, ir->type);
639      break;
640
641   case ir_var_uniform:
642      reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
643
644      if (!strncmp(ir->name, "gl_", 3)) {
645	 setup_builtin_uniform_values(ir);
646      } else {
647	 setup_uniform_values(ir->location, ir->type);
648      }
649      break;
650   }
651
652   reg->type = brw_type_for_base_type(ir->type);
653   hash_table_insert(this->variable_ht, reg, ir);
654}
655
656void
657vec4_visitor::visit(ir_loop *ir)
658{
659   ir_dereference_variable *counter = NULL;
660
661   /* We don't want debugging output to print the whole body of the
662    * loop as the annotation.
663    */
664   this->base_ir = NULL;
665
666   if (ir->counter != NULL)
667      counter = new(ir) ir_dereference_variable(ir->counter);
668
669   if (ir->from != NULL) {
670      assert(ir->counter != NULL);
671
672      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
673
674      a->accept(this);
675      delete a;
676   }
677
678   emit(BRW_OPCODE_DO);
679
680   if (ir->to) {
681      ir_expression *e =
682	 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
683			       counter, ir->to);
684      ir_if *if_stmt =  new(ir) ir_if(e);
685
686      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
687
688      if_stmt->then_instructions.push_tail(brk);
689
690      if_stmt->accept(this);
691
692      delete if_stmt;
693      delete e;
694      delete brk;
695   }
696
697   visit_instructions(&ir->body_instructions);
698
699   if (ir->increment) {
700      ir_expression *e =
701	 new(ir) ir_expression(ir_binop_add, counter->type,
702			       counter, ir->increment);
703
704      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
705
706      a->accept(this);
707      delete a;
708      delete e;
709   }
710
711   emit(BRW_OPCODE_WHILE);
712}
713
714void
715vec4_visitor::visit(ir_loop_jump *ir)
716{
717   switch (ir->mode) {
718   case ir_loop_jump::jump_break:
719      emit(BRW_OPCODE_BREAK);
720      break;
721   case ir_loop_jump::jump_continue:
722      emit(BRW_OPCODE_CONTINUE);
723      break;
724   }
725}
726
727
728void
729vec4_visitor::visit(ir_function_signature *ir)
730{
731   assert(0);
732   (void)ir;
733}
734
735void
736vec4_visitor::visit(ir_function *ir)
737{
738   /* Ignore function bodies other than main() -- we shouldn't see calls to
739    * them since they should all be inlined.
740    */
741   if (strcmp(ir->name, "main") == 0) {
742      const ir_function_signature *sig;
743      exec_list empty;
744
745      sig = ir->matching_signature(&empty);
746
747      assert(sig);
748
749      visit_instructions(&sig->body);
750   }
751}
752
753GLboolean
754vec4_visitor::try_emit_sat(ir_expression *ir)
755{
756   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
757   if (!sat_src)
758      return false;
759
760   sat_src->accept(this);
761   src_reg src = this->result;
762
763   this->result = src_reg(this, ir->type);
764   vec4_instruction *inst;
765   inst = emit(BRW_OPCODE_MOV, dst_reg(this->result), src);
766   inst->saturate = true;
767
768   return true;
769}
770
771void
772vec4_visitor::emit_bool_comparison(unsigned int op,
773				 dst_reg dst, src_reg src0, src_reg src1)
774{
775   /* original gen4 does destination conversion before comparison. */
776   if (intel->gen < 5)
777      dst.type = src0.type;
778
779   vec4_instruction *inst = emit(BRW_OPCODE_CMP, dst, src0, src1);
780   inst->conditional_mod = brw_conditional_for_comparison(op);
781
782   dst.type = BRW_REGISTER_TYPE_D;
783   emit(BRW_OPCODE_AND, dst, src_reg(dst), src_reg(0x1));
784}
785
786void
787vec4_visitor::visit(ir_expression *ir)
788{
789   unsigned int operand;
790   src_reg op[Elements(ir->operands)];
791   src_reg result_src;
792   dst_reg result_dst;
793   vec4_instruction *inst;
794
795   if (try_emit_sat(ir))
796      return;
797
798   for (operand = 0; operand < ir->get_num_operands(); operand++) {
799      this->result.file = BAD_FILE;
800      ir->operands[operand]->accept(this);
801      if (this->result.file == BAD_FILE) {
802	 printf("Failed to get tree for expression operand:\n");
803	 ir->operands[operand]->print();
804	 exit(1);
805      }
806      op[operand] = this->result;
807
808      /* Matrix expression operands should have been broken down to vector
809       * operations already.
810       */
811      assert(!ir->operands[operand]->type->is_matrix());
812   }
813
814   int vector_elements = ir->operands[0]->type->vector_elements;
815   if (ir->operands[1]) {
816      vector_elements = MAX2(vector_elements,
817			     ir->operands[1]->type->vector_elements);
818   }
819
820   this->result.file = BAD_FILE;
821
822   /* Storage for our result.  Ideally for an assignment we'd be using
823    * the actual storage for the result here, instead.
824    */
825   result_src = src_reg(this, ir->type);
826   /* convenience for the emit functions below. */
827   result_dst = dst_reg(result_src);
828   /* If nothing special happens, this is the result. */
829   this->result = result_src;
830   /* Limit writes to the channels that will be used by result_src later.
831    * This does limit this temp's use as a temporary for multi-instruction
832    * sequences.
833    */
834   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
835
836   switch (ir->operation) {
837   case ir_unop_logic_not:
838      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
839       * ones complement of the whole register, not just bit 0.
840       */
841      emit(BRW_OPCODE_XOR, result_dst, op[0], src_reg(1));
842      break;
843   case ir_unop_neg:
844      op[0].negate = !op[0].negate;
845      this->result = op[0];
846      break;
847   case ir_unop_abs:
848      op[0].abs = true;
849      op[0].negate = false;
850      this->result = op[0];
851      break;
852
853   case ir_unop_sign:
854      emit(BRW_OPCODE_MOV, result_dst, src_reg(0.0f));
855
856      inst = emit(BRW_OPCODE_CMP, dst_null_f(), op[0], src_reg(0.0f));
857      inst->conditional_mod = BRW_CONDITIONAL_G;
858      inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1.0f));
859      inst->predicate = BRW_PREDICATE_NORMAL;
860
861      inst = emit(BRW_OPCODE_CMP, dst_null_f(), op[0], src_reg(0.0f));
862      inst->conditional_mod = BRW_CONDITIONAL_L;
863      inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(-1.0f));
864      inst->predicate = BRW_PREDICATE_NORMAL;
865
866      break;
867
868   case ir_unop_rcp:
869      emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
870      break;
871
872   case ir_unop_exp2:
873      emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
874      break;
875   case ir_unop_log2:
876      emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
877      break;
878   case ir_unop_exp:
879   case ir_unop_log:
880      assert(!"not reached: should be handled by ir_explog_to_explog2");
881      break;
882   case ir_unop_sin:
883   case ir_unop_sin_reduced:
884      emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
885      break;
886   case ir_unop_cos:
887   case ir_unop_cos_reduced:
888      emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
889      break;
890
891   case ir_unop_dFdx:
892   case ir_unop_dFdy:
893      assert(!"derivatives not valid in vertex shader");
894      break;
895
896   case ir_unop_noise:
897      assert(!"not reached: should be handled by lower_noise");
898      break;
899
900   case ir_binop_add:
901      emit(BRW_OPCODE_ADD, result_dst, op[0], op[1]);
902      break;
903   case ir_binop_sub:
904      assert(!"not reached: should be handled by ir_sub_to_add_neg");
905      break;
906
907   case ir_binop_mul:
908      emit(BRW_OPCODE_MUL, result_dst, op[0], op[1]);
909      break;
910   case ir_binop_div:
911      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
912   case ir_binop_mod:
913      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
914      break;
915
916   case ir_binop_less:
917   case ir_binop_greater:
918   case ir_binop_lequal:
919   case ir_binop_gequal:
920   case ir_binop_equal:
921   case ir_binop_nequal: {
922      dst_reg temp = result_dst;
923      /* original gen4 does implicit conversion before comparison. */
924      if (intel->gen < 5)
925	 temp.type = op[0].type;
926
927      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
928      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
929      emit(BRW_OPCODE_AND, result_dst, this->result, src_reg(0x1));
930      break;
931   }
932
933   case ir_binop_all_equal:
934      /* "==" operator producing a scalar boolean. */
935      if (ir->operands[0]->type->is_vector() ||
936	  ir->operands[1]->type->is_vector()) {
937	 inst = emit(BRW_OPCODE_CMP, dst_null_cmp(), op[0], op[1]);
938	 inst->conditional_mod = BRW_CONDITIONAL_Z;
939
940	 emit(BRW_OPCODE_MOV, result_dst, src_reg(0));
941	 inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1));
942	 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
943      } else {
944	 dst_reg temp = result_dst;
945	 /* original gen4 does implicit conversion before comparison. */
946	 if (intel->gen < 5)
947	    temp.type = op[0].type;
948
949	 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
950	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
951	 emit(BRW_OPCODE_AND, result_dst, result_src, src_reg(0x1));
952      }
953      break;
954   case ir_binop_any_nequal:
955      /* "!=" operator producing a scalar boolean. */
956      if (ir->operands[0]->type->is_vector() ||
957	  ir->operands[1]->type->is_vector()) {
958	 inst = emit(BRW_OPCODE_CMP, dst_null_cmp(), op[0], op[1]);
959	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
960
961	 emit(BRW_OPCODE_MOV, result_dst, src_reg(0));
962	 inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1));
963	 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
964      } else {
965	 dst_reg temp = result_dst;
966	 /* original gen4 does implicit conversion before comparison. */
967	 if (intel->gen < 5)
968	    temp.type = op[0].type;
969
970	 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
971	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
972	 emit(BRW_OPCODE_AND, result_dst, result_src, src_reg(0x1));
973      }
974      break;
975
976   case ir_unop_any:
977      emit(BRW_OPCODE_CMP, dst_null_d(), op[0], src_reg(0));
978      emit(BRW_OPCODE_MOV, result_dst, src_reg(0));
979
980      inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1));
981      inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
982      break;
983
984   case ir_binop_logic_xor:
985      emit(BRW_OPCODE_XOR, result_dst, op[0], op[1]);
986      break;
987
988   case ir_binop_logic_or:
989      emit(BRW_OPCODE_OR, result_dst, op[0], op[1]);
990      break;
991
992   case ir_binop_logic_and:
993      emit(BRW_OPCODE_AND, result_dst, op[0], op[1]);
994      break;
995
996   case ir_binop_dot:
997      assert(ir->operands[0]->type->is_vector());
998      assert(ir->operands[0]->type == ir->operands[1]->type);
999      emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1000      break;
1001
1002   case ir_unop_sqrt:
1003      emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1004      break;
1005   case ir_unop_rsq:
1006      emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1007      break;
1008   case ir_unop_i2f:
1009   case ir_unop_i2u:
1010   case ir_unop_u2i:
1011   case ir_unop_u2f:
1012   case ir_unop_b2f:
1013   case ir_unop_b2i:
1014   case ir_unop_f2i:
1015      emit(BRW_OPCODE_MOV, result_dst, op[0]);
1016      break;
1017   case ir_unop_f2b:
1018   case ir_unop_i2b: {
1019      dst_reg temp = result_dst;
1020      /* original gen4 does implicit conversion before comparison. */
1021      if (intel->gen < 5)
1022	 temp.type = op[0].type;
1023
1024      inst = emit(BRW_OPCODE_CMP, temp, op[0], src_reg(0.0f));
1025      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1026      inst = emit(BRW_OPCODE_AND, result_dst, result_src, src_reg(1));
1027      break;
1028   }
1029
1030   case ir_unop_trunc:
1031      emit(BRW_OPCODE_RNDZ, result_dst, op[0]);
1032      break;
1033   case ir_unop_ceil:
1034      op[0].negate = !op[0].negate;
1035      inst = emit(BRW_OPCODE_RNDD, result_dst, op[0]);
1036      this->result.negate = true;
1037      break;
1038   case ir_unop_floor:
1039      inst = emit(BRW_OPCODE_RNDD, result_dst, op[0]);
1040      break;
1041   case ir_unop_fract:
1042      inst = emit(BRW_OPCODE_FRC, result_dst, op[0]);
1043      break;
1044   case ir_unop_round_even:
1045      emit(BRW_OPCODE_RNDE, result_dst, op[0]);
1046      break;
1047
1048   case ir_binop_min:
1049      inst = emit(BRW_OPCODE_CMP, result_dst, op[0], op[1]);
1050      inst->conditional_mod = BRW_CONDITIONAL_L;
1051
1052      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1053      inst->predicate = BRW_PREDICATE_NORMAL;
1054      break;
1055   case ir_binop_max:
1056      inst = emit(BRW_OPCODE_CMP, result_dst, op[0], op[1]);
1057      inst->conditional_mod = BRW_CONDITIONAL_G;
1058
1059      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1060      inst->predicate = BRW_PREDICATE_NORMAL;
1061      break;
1062
1063   case ir_binop_pow:
1064      emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1065      break;
1066
1067   case ir_unop_bit_not:
1068      inst = emit(BRW_OPCODE_NOT, result_dst, op[0]);
1069      break;
1070   case ir_binop_bit_and:
1071      inst = emit(BRW_OPCODE_AND, result_dst, op[0], op[1]);
1072      break;
1073   case ir_binop_bit_xor:
1074      inst = emit(BRW_OPCODE_XOR, result_dst, op[0], op[1]);
1075      break;
1076   case ir_binop_bit_or:
1077      inst = emit(BRW_OPCODE_OR, result_dst, op[0], op[1]);
1078      break;
1079
1080   case ir_binop_lshift:
1081   case ir_binop_rshift:
1082      assert(!"GLSL 1.30 features unsupported");
1083      break;
1084
1085   case ir_quadop_vector:
1086      assert(!"not reached: should be handled by lower_quadop_vector");
1087      break;
1088   }
1089}
1090
1091
1092void
1093vec4_visitor::visit(ir_swizzle *ir)
1094{
1095   src_reg src;
1096   int i = 0;
1097   int swizzle[4];
1098
1099   /* Note that this is only swizzles in expressions, not those on the left
1100    * hand side of an assignment, which do write masking.  See ir_assignment
1101    * for that.
1102    */
1103
1104   ir->val->accept(this);
1105   src = this->result;
1106   assert(src.file != BAD_FILE);
1107
1108   if (i < ir->type->vector_elements) {
1109      switch (i) {
1110      case 0:
1111	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1112	 break;
1113      case 1:
1114	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1115	 break;
1116      case 2:
1117	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1118	 break;
1119      case 3:
1120	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1121	    break;
1122      }
1123   }
1124   for (; i < 4; i++) {
1125      /* Replicate the last channel out. */
1126      swizzle[i] = swizzle[ir->type->vector_elements - 1];
1127   }
1128
1129   src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1130
1131   this->result = src;
1132}
1133
1134void
1135vec4_visitor::visit(ir_dereference_variable *ir)
1136{
1137   dst_reg *reg = variable_storage(ir->var);
1138
1139   if (!reg) {
1140      fail("Failed to find variable storage for %s\n", ir->var->name);
1141      this->result = src_reg(brw_null_reg());
1142      return;
1143   }
1144
1145   this->result = src_reg(*reg);
1146}
1147
1148void
1149vec4_visitor::visit(ir_dereference_array *ir)
1150{
1151   ir_constant *constant_index;
1152   src_reg src;
1153   int element_size = type_size(ir->type);
1154
1155   constant_index = ir->array_index->constant_expression_value();
1156
1157   ir->array->accept(this);
1158   src = this->result;
1159
1160   if (constant_index) {
1161      src.reg_offset += constant_index->value.i[0] * element_size;
1162   } else {
1163#if 0 /* Variable array index */
1164      /* Variable index array dereference.  It eats the "vec4" of the
1165       * base of the array and an index that offsets the Mesa register
1166       * index.
1167       */
1168      ir->array_index->accept(this);
1169
1170      src_reg index_reg;
1171
1172      if (element_size == 1) {
1173	 index_reg = this->result;
1174      } else {
1175	 index_reg = src_reg(this, glsl_type::float_type);
1176
1177	 emit(BRW_OPCODE_MUL, dst_reg(index_reg),
1178	      this->result, src_reg_for_float(element_size));
1179      }
1180
1181      src.reladdr = ralloc(mem_ctx, src_reg);
1182      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1183#endif
1184   }
1185
1186   /* If the type is smaller than a vec4, replicate the last channel out. */
1187   if (ir->type->is_scalar() || ir->type->is_vector())
1188      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1189   else
1190      src.swizzle = BRW_SWIZZLE_NOOP;
1191
1192   this->result = src;
1193}
1194
1195void
1196vec4_visitor::visit(ir_dereference_record *ir)
1197{
1198   unsigned int i;
1199   const glsl_type *struct_type = ir->record->type;
1200   int offset = 0;
1201
1202   ir->record->accept(this);
1203
1204   for (i = 0; i < struct_type->length; i++) {
1205      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1206	 break;
1207      offset += type_size(struct_type->fields.structure[i].type);
1208   }
1209
1210   /* If the type is smaller than a vec4, replicate the last channel out. */
1211   if (ir->type->is_scalar() || ir->type->is_vector())
1212      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1213   else
1214      this->result.swizzle = BRW_SWIZZLE_NOOP;
1215
1216   this->result.reg_offset += offset;
1217}
1218
1219/**
1220 * We want to be careful in assignment setup to hit the actual storage
1221 * instead of potentially using a temporary like we might with the
1222 * ir_dereference handler.
1223 */
1224static dst_reg
1225get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1226{
1227   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1228    * access of a vector, it must be separated into a series conditional moves
1229    * before reaching this point (see ir_vec_index_to_cond_assign).
1230    */
1231   assert(ir->as_dereference());
1232   ir_dereference_array *deref_array = ir->as_dereference_array();
1233   if (deref_array) {
1234      assert(!deref_array->array->type->is_vector());
1235   }
1236
1237   /* Use the rvalue deref handler for the most part.  We'll ignore
1238    * swizzles in it and write swizzles using writemask, though.
1239    */
1240   ir->accept(v);
1241   return dst_reg(v->result);
1242}
1243
1244void
1245vec4_visitor::emit_block_move(ir_assignment *ir)
1246{
1247   ir->rhs->accept(this);
1248   src_reg src = this->result;
1249
1250   dst_reg dst = get_assignment_lhs(ir->lhs, this);
1251
1252   /* FINISHME: This should really set to the correct maximal writemask for each
1253    * FINISHME: component written (in the loops below).
1254    */
1255   dst.writemask = WRITEMASK_XYZW;
1256
1257   for (int i = 0; i < type_size(ir->lhs->type); i++) {
1258      vec4_instruction *inst = emit(BRW_OPCODE_MOV, dst, src);
1259      if (ir->condition)
1260	 inst->predicate = BRW_PREDICATE_NORMAL;
1261
1262      dst.reg_offset++;
1263      src.reg_offset++;
1264   }
1265}
1266
1267void
1268vec4_visitor::visit(ir_assignment *ir)
1269{
1270   if (!ir->lhs->type->is_scalar() &&
1271       !ir->lhs->type->is_vector()) {
1272      emit_block_move(ir);
1273      return;
1274   }
1275
1276   /* Now we're down to just a scalar/vector with writemasks. */
1277   int i;
1278
1279   ir->rhs->accept(this);
1280   src_reg src = this->result;
1281
1282   dst_reg dst = get_assignment_lhs(ir->lhs, this);
1283
1284   int swizzles[4];
1285   int first_enabled_chan = 0;
1286   int src_chan = 0;
1287
1288   assert(ir->lhs->type->is_vector());
1289   dst.writemask = ir->write_mask;
1290
1291   for (int i = 0; i < 4; i++) {
1292      if (dst.writemask & (1 << i)) {
1293	 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1294	 break;
1295      }
1296   }
1297
1298   /* Swizzle a small RHS vector into the channels being written.
1299    *
1300    * glsl ir treats write_mask as dictating how many channels are
1301    * present on the RHS while in our instructions we need to make
1302    * those channels appear in the slots of the vec4 they're written to.
1303    */
1304   for (int i = 0; i < 4; i++) {
1305      if (dst.writemask & (1 << i))
1306	 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1307      else
1308	 swizzles[i] = first_enabled_chan;
1309   }
1310   src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1311			      swizzles[2], swizzles[3]);
1312
1313   if (ir->condition) {
1314      emit_bool_to_cond_code(ir->condition);
1315   }
1316
1317   for (i = 0; i < type_size(ir->lhs->type); i++) {
1318      vec4_instruction *inst = emit(BRW_OPCODE_MOV, dst, src);
1319
1320      if (ir->condition)
1321	 inst->predicate = BRW_PREDICATE_NORMAL;
1322
1323      dst.reg_offset++;
1324      src.reg_offset++;
1325   }
1326}
1327
1328
1329void
1330vec4_visitor::visit(ir_constant *ir)
1331{
1332   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1333      src_reg temp_base = src_reg(this, ir->type);
1334      dst_reg temp = dst_reg(temp_base);
1335
1336      foreach_iter(exec_list_iterator, iter, ir->components) {
1337	 ir_constant *field_value = (ir_constant *)iter.get();
1338	 int size = type_size(field_value->type);
1339
1340	 assert(size > 0);
1341
1342	 field_value->accept(this);
1343	 src_reg src = this->result;
1344
1345	 for (int i = 0; i < (unsigned int)size; i++) {
1346	    emit(BRW_OPCODE_MOV, temp, src);
1347
1348	    src.reg_offset++;
1349	    temp.reg_offset++;
1350	 }
1351      }
1352      this->result = temp_base;
1353      return;
1354   }
1355
1356   if (ir->type->is_array()) {
1357      src_reg temp_base = src_reg(this, ir->type);
1358      dst_reg temp = dst_reg(temp_base);
1359      int size = type_size(ir->type->fields.array);
1360
1361      assert(size > 0);
1362
1363      for (unsigned int i = 0; i < ir->type->length; i++) {
1364	 ir->array_elements[i]->accept(this);
1365	 src_reg src = this->result;
1366	 for (int j = 0; j < size; j++) {
1367	    emit(BRW_OPCODE_MOV, temp, src);
1368
1369	    src.reg_offset++;
1370	    temp.reg_offset++;
1371	 }
1372      }
1373      this->result = temp_base;
1374      return;
1375   }
1376
1377   if (ir->type->is_matrix()) {
1378      this->result = src_reg(this, ir->type);
1379      dst_reg dst = dst_reg(this->result);
1380
1381      assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1382
1383      for (int i = 0; i < ir->type->matrix_columns; i++) {
1384	 for (int j = 0; j < ir->type->vector_elements; j++) {
1385	    dst.writemask = 1 << j;
1386	    emit(BRW_OPCODE_MOV, dst,
1387		 src_reg(ir->value.f[i * ir->type->vector_elements + j]));
1388	 }
1389	 dst.reg_offset++;
1390      }
1391      return;
1392   }
1393
1394   this->result = src_reg(this, ir->type);
1395   dst_reg dst = dst_reg(this->result);
1396
1397   for (int i = 0; i < ir->type->vector_elements; i++) {
1398      dst.writemask = 1 << i;
1399
1400      switch (ir->type->base_type) {
1401      case GLSL_TYPE_FLOAT:
1402	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.f[i]));
1403	 break;
1404      case GLSL_TYPE_INT:
1405	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.i[i]));
1406	 break;
1407      case GLSL_TYPE_UINT:
1408	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.u[i]));
1409	 break;
1410      case GLSL_TYPE_BOOL:
1411	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.b[i]));
1412	 break;
1413      default:
1414	 assert(!"Non-float/uint/int/bool constant");
1415	 break;
1416      }
1417   }
1418}
1419
1420void
1421vec4_visitor::visit(ir_call *ir)
1422{
1423   assert(!"not reached");
1424}
1425
1426void
1427vec4_visitor::visit(ir_texture *ir)
1428{
1429   assert(!"not reached");
1430}
1431
1432void
1433vec4_visitor::visit(ir_return *ir)
1434{
1435   assert(!"not reached");
1436}
1437
1438void
1439vec4_visitor::visit(ir_discard *ir)
1440{
1441   assert(!"not reached");
1442}
1443
1444void
1445vec4_visitor::visit(ir_if *ir)
1446{
1447   this->base_ir = ir->condition;
1448   ir->condition->accept(this);
1449   assert(this->result.file != BAD_FILE);
1450
1451   /* FINISHME: condcode */
1452   emit(BRW_OPCODE_IF);
1453
1454   visit_instructions(&ir->then_instructions);
1455
1456   if (!ir->else_instructions.is_empty()) {
1457      this->base_ir = ir->condition;
1458      emit(BRW_OPCODE_ELSE);
1459
1460      visit_instructions(&ir->else_instructions);
1461   }
1462
1463   this->base_ir = ir->condition;
1464   emit(BRW_OPCODE_ENDIF);
1465}
1466
1467int
1468vec4_visitor::emit_vue_header_gen4(int header_mrf)
1469{
1470   /* Get the position */
1471   src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
1472
1473   /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1474   dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1475
1476   current_annotation = "NDC";
1477   dst_reg ndc_w = ndc;
1478   ndc_w.writemask = WRITEMASK_W;
1479   src_reg pos_w = pos;
1480   pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1481   emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1482
1483   dst_reg ndc_xyz = ndc;
1484   ndc_xyz.writemask = WRITEMASK_XYZ;
1485
1486   emit(BRW_OPCODE_MUL, ndc_xyz, pos, src_reg(ndc_w));
1487
1488   if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
1489       c->key.nr_userclip || brw->has_negative_rhw_bug) {
1490      dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
1491      GLuint i;
1492
1493      emit(BRW_OPCODE_MOV, header1, 0u);
1494
1495      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1496	 assert(!"finishme: psiz");
1497	 src_reg psiz;
1498
1499	 header1.writemask = WRITEMASK_W;
1500	 emit(BRW_OPCODE_MUL, header1, psiz, 1u << 11);
1501	 emit(BRW_OPCODE_AND, header1, src_reg(header1), 0x7ff << 8);
1502      }
1503
1504      for (i = 0; i < c->key.nr_userclip; i++) {
1505	 vec4_instruction *inst;
1506
1507	 inst = emit(BRW_OPCODE_DP4, dst_reg(brw_null_reg()),
1508		     pos, src_reg(c->userplane[i]));
1509	 inst->conditional_mod = BRW_CONDITIONAL_L;
1510
1511	 emit(BRW_OPCODE_OR, header1, src_reg(header1), 1u << i);
1512	 inst->predicate = BRW_PREDICATE_NORMAL;
1513      }
1514
1515      /* i965 clipping workaround:
1516       * 1) Test for -ve rhw
1517       * 2) If set,
1518       *      set ndc = (0,0,0,0)
1519       *      set ucp[6] = 1
1520       *
1521       * Later, clipping will detect ucp[6] and ensure the primitive is
1522       * clipped against all fixed planes.
1523       */
1524      if (brw->has_negative_rhw_bug) {
1525#if 0
1526	 /* FINISHME */
1527	 brw_CMP(p,
1528		 vec8(brw_null_reg()),
1529		 BRW_CONDITIONAL_L,
1530		 brw_swizzle1(ndc, 3),
1531		 brw_imm_f(0));
1532
1533	 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
1534	 brw_MOV(p, ndc, brw_imm_f(0));
1535	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1536#endif
1537      }
1538
1539      header1.writemask = WRITEMASK_XYZW;
1540      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), src_reg(header1));
1541   } else {
1542      emit(BRW_OPCODE_MOV, retype(brw_message_reg(header_mrf++),
1543				  BRW_REGISTER_TYPE_UD), 0u);
1544   }
1545
1546   if (intel->gen == 5) {
1547      /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
1548       * dword 0-3 (m1) of the header is indices, point width, clip flags.
1549       * dword 4-7 (m2) is the ndc position (set above)
1550       * dword 8-11 (m3) of the vertex header is the 4D space position
1551       * dword 12-19 (m4,m5) of the vertex header is the user clip distance.
1552       * m6 is a pad so that the vertex element data is aligned
1553       * m7 is the first vertex data we fill, which is the vertex position.
1554       */
1555      current_annotation = "NDC";
1556      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), src_reg(ndc));
1557
1558      current_annotation = "gl_Position";
1559      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), pos);
1560
1561      /* user clip distance. */
1562      header_mrf += 2;
1563
1564      /* Pad so that vertex element data (starts with position) is aligned. */
1565      header_mrf++;
1566   } else {
1567      /* There are 8 dwords in VUE header pre-Ironlake:
1568       * dword 0-3 (m1) is indices, point width, clip flags.
1569       * dword 4-7 (m2) is ndc position (set above)
1570       *
1571       * dword 8-11 (m3) is the first vertex data, which we always have be the
1572       * vertex position.
1573       */
1574      current_annotation = "NDC";
1575      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), src_reg(ndc));
1576
1577      current_annotation = "gl_Position";
1578      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), pos);
1579   }
1580
1581   return header_mrf;
1582}
1583
1584int
1585vec4_visitor::emit_vue_header_gen6(int header_mrf)
1586{
1587   struct brw_reg reg;
1588
1589   /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
1590    * dword 0-3 (m2) of the header is indices, point width, clip flags.
1591    * dword 4-7 (m3) is the 4D space position
1592    * dword 8-15 (m4,m5) of the vertex header is the user clip distance if
1593    * enabled.
1594    *
1595    * m4 or 6 is the first vertex element data we fill, which is
1596    * the vertex position.
1597    */
1598
1599   current_annotation = "indices, point width, clip flags";
1600   reg = brw_message_reg(header_mrf++);
1601   emit(BRW_OPCODE_MOV, retype(reg, BRW_REGISTER_TYPE_D), src_reg(0));
1602   if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1603      emit(BRW_OPCODE_MOV, brw_writemask(reg, WRITEMASK_W),
1604	   src_reg(output_reg[VERT_RESULT_PSIZ]));
1605   }
1606
1607   current_annotation = "gl_Position";
1608   emit(BRW_OPCODE_MOV,
1609	brw_message_reg(header_mrf++), src_reg(output_reg[VERT_RESULT_HPOS]));
1610
1611   current_annotation = "user clip distances";
1612   if (c->key.nr_userclip) {
1613      for (int i = 0; i < c->key.nr_userclip; i++) {
1614	 struct brw_reg m;
1615	 if (i < 4)
1616	    m = brw_message_reg(header_mrf);
1617	 else
1618	    m = brw_message_reg(header_mrf + 1);
1619
1620	 emit(BRW_OPCODE_DP4,
1621	      dst_reg(brw_writemask(m, 1 << (i & 3))),
1622	      src_reg(c->userplane[i]));
1623      }
1624      header_mrf += 2;
1625   }
1626
1627   current_annotation = NULL;
1628
1629   return header_mrf;
1630}
1631
1632static int
1633align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
1634{
1635   struct intel_context *intel = &brw->intel;
1636
1637   if (intel->gen >= 6) {
1638      /* URB data written (does not include the message header reg) must
1639       * be a multiple of 256 bits, or 2 VS registers.  See vol5c.5,
1640       * section 5.4.3.2.2: URB_INTERLEAVED.
1641       *
1642       * URB entries are allocated on a multiple of 1024 bits, so an
1643       * extra 128 bits written here to make the end align to 256 is
1644       * no problem.
1645       */
1646      if ((mlen % 2) != 1)
1647	 mlen++;
1648   }
1649
1650   return mlen;
1651}
1652
1653/**
1654 * Generates the VUE payload plus the 1 or 2 URB write instructions to
1655 * complete the VS thread.
1656 *
1657 * The VUE layout is documented in Volume 2a.
1658 */
1659void
1660vec4_visitor::emit_urb_writes()
1661{
1662   int base_mrf = 1;
1663   int mrf = base_mrf;
1664   int urb_entry_size;
1665
1666   /* FINISHME: edgeflag */
1667
1668   /* First mrf is the g0-based message header containing URB handles and such,
1669    * which is implied in VS_OPCODE_URB_WRITE.
1670    */
1671   mrf++;
1672
1673   if (intel->gen >= 6) {
1674      mrf = emit_vue_header_gen6(mrf);
1675   } else {
1676      mrf = emit_vue_header_gen4(mrf);
1677   }
1678
1679   int attr;
1680   for (attr = 0; attr < VERT_RESULT_MAX; attr++) {
1681      if (!(c->prog_data.outputs_written & BITFIELD64_BIT(attr)))
1682	 continue;
1683
1684      /* This is loaded into the VUE header, and thus doesn't occupy
1685       * an attribute slot.
1686       */
1687      if (attr == VERT_RESULT_PSIZ)
1688	 continue;
1689
1690      emit(BRW_OPCODE_MOV, brw_message_reg(mrf++), src_reg(output_reg[attr]));
1691
1692      /* If this is MRF 15, we can't fit anything more into this URB
1693       * WRITE.  Note that base_mrf of 1 means that MRF 15 is an
1694       * even-numbered amount of URB write data, which will meet
1695       * gen6's requirements for length alignment.
1696       */
1697      if (mrf == 15)
1698	 break;
1699   }
1700
1701   vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
1702   inst->base_mrf = base_mrf;
1703   inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
1704   inst->eot = true;
1705
1706   urb_entry_size = mrf - base_mrf;
1707
1708   for (; attr < VERT_RESULT_MAX; attr++) {
1709      if (!(c->prog_data.outputs_written & BITFIELD64_BIT(attr)))
1710	 continue;
1711      fail("Second URB write not supported.\n");
1712      break;
1713   }
1714
1715   if (intel->gen == 6)
1716      c->prog_data.urb_entry_size = ALIGN(urb_entry_size, 8) / 8;
1717   else
1718      c->prog_data.urb_entry_size = ALIGN(urb_entry_size, 4) / 4;
1719}
1720
1721vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
1722			   struct gl_shader_program *prog,
1723			   struct brw_shader *shader)
1724{
1725   this->c = c;
1726   this->p = &c->func;
1727   this->brw = p->brw;
1728   this->intel = &brw->intel;
1729   this->ctx = &intel->ctx;
1730   this->prog = prog;
1731   this->shader = shader;
1732
1733   this->mem_ctx = ralloc_context(NULL);
1734   this->failed = false;
1735
1736   this->base_ir = NULL;
1737   this->current_annotation = NULL;
1738
1739   this->c = c;
1740   this->vp = brw->vertex_program; /* FINISHME: change for precompile */
1741   this->prog_data = &c->prog_data;
1742
1743   this->variable_ht = hash_table_ctor(0,
1744				       hash_table_pointer_hash,
1745				       hash_table_pointer_compare);
1746
1747   this->virtual_grf_sizes = NULL;
1748   this->virtual_grf_count = 0;
1749   this->virtual_grf_array_size = 0;
1750
1751   this->uniforms = 0;
1752
1753   this->variable_ht = hash_table_ctor(0,
1754				       hash_table_pointer_hash,
1755				       hash_table_pointer_compare);
1756}
1757
1758vec4_visitor::~vec4_visitor()
1759{
1760   hash_table_dtor(this->variable_ht);
1761}
1762
1763
1764void
1765vec4_visitor::fail(const char *format, ...)
1766{
1767   va_list va;
1768   char *msg;
1769
1770   if (failed)
1771      return;
1772
1773   failed = true;
1774
1775   va_start(va, format);
1776   msg = ralloc_vasprintf(mem_ctx, format, va);
1777   va_end(va);
1778   msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
1779
1780   this->fail_msg = msg;
1781
1782   if (INTEL_DEBUG & DEBUG_VS) {
1783      fprintf(stderr, "%s",  msg);
1784   }
1785}
1786
1787} /* namespace brw */
1788