brw_vec4_visitor.cpp revision 78fac1892a3a7a90eb7baf78903d70649028d27a
1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25extern "C" {
26#include "main/macros.h"
27#include "program/prog_parameter.h"
28}
29
30namespace brw {
31
32src_reg::src_reg(dst_reg reg)
33{
34   init();
35
36   this->file = reg.file;
37   this->reg = reg.reg;
38   this->reg_offset = reg.reg_offset;
39   this->type = reg.type;
40
41   int swizzles[4];
42   int next_chan = 0;
43   int last = 0;
44
45   for (int i = 0; i < 4; i++) {
46      if (!(reg.writemask & (1 << i)))
47	 continue;
48
49      swizzles[next_chan++] = last = i;
50   }
51
52   for (; next_chan < 4; next_chan++) {
53      swizzles[next_chan] = last;
54   }
55
56   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
57				swizzles[2], swizzles[3]);
58}
59
60dst_reg::dst_reg(src_reg reg)
61{
62   init();
63
64   this->file = reg.file;
65   this->reg = reg.reg;
66   this->reg_offset = reg.reg_offset;
67   this->type = reg.type;
68   this->writemask = WRITEMASK_XYZW;
69}
70
71vec4_instruction *
72vec4_visitor::emit(enum opcode opcode, dst_reg dst,
73		   src_reg src0, src_reg src1, src_reg src2)
74{
75   vec4_instruction *inst = new(mem_ctx) vec4_instruction();
76
77   inst->opcode = opcode;
78   inst->dst = dst;
79   inst->src[0] = src0;
80   inst->src[1] = src1;
81   inst->src[2] = src2;
82   inst->ir = this->base_ir;
83   inst->annotation = this->current_annotation;
84
85   this->instructions.push_tail(inst);
86
87   return inst;
88}
89
90
91vec4_instruction *
92vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
93{
94   return emit(opcode, dst, src0, src1, src_reg());
95}
96
97vec4_instruction *
98vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
99{
100   assert(dst.writemask != 0);
101   return emit(opcode, dst, src0, src_reg(), src_reg());
102}
103
104vec4_instruction *
105vec4_visitor::emit(enum opcode opcode)
106{
107   return emit(opcode, dst_reg(), src_reg(), src_reg(), src_reg());
108}
109
110void
111vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
112{
113   static enum opcode dot_opcodes[] = {
114      BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
115   };
116
117   emit(dot_opcodes[elements - 2], dst, src0, src1);
118}
119
120void
121vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
122{
123   /* The gen6 math instruction ignores the source modifiers --
124    * swizzle, abs, negate, and at least some parts of the register
125    * region description.  Move the source to the corresponding slots
126    * of the destination generally work.
127    */
128   src_reg expanded = src_reg(this, glsl_type::float_type);
129   emit(BRW_OPCODE_MOV, dst, src);
130   src = expanded;
131
132   emit(opcode, dst, src);
133}
134
135void
136vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
137{
138   vec4_instruction *inst = emit(opcode, dst, src);
139   inst->base_mrf = 1;
140   inst->mlen = 1;
141}
142
143void
144vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
145{
146   switch (opcode) {
147   case SHADER_OPCODE_RCP:
148   case SHADER_OPCODE_RSQ:
149   case SHADER_OPCODE_SQRT:
150   case SHADER_OPCODE_EXP2:
151   case SHADER_OPCODE_LOG2:
152   case SHADER_OPCODE_SIN:
153   case SHADER_OPCODE_COS:
154      break;
155   default:
156      assert(!"not reached: bad math opcode");
157      return;
158   }
159
160   if (intel->gen >= 6) {
161      return emit_math1_gen6(opcode, dst, src);
162   } else {
163      return emit_math1_gen4(opcode, dst, src);
164   }
165}
166
167void
168vec4_visitor::emit_math2_gen6(enum opcode opcode,
169			      dst_reg dst, src_reg src0, src_reg src1)
170{
171   src_reg expanded;
172
173   /* The gen6 math instruction ignores the source modifiers --
174    * swizzle, abs, negate, and at least some parts of the register
175    * region description.  Move the sources to temporaries to make it
176    * generally work.
177    */
178
179   expanded = src_reg(this, glsl_type::vec4_type);
180   emit(BRW_OPCODE_MOV, dst, src0);
181   src0 = expanded;
182
183   expanded = src_reg(this, glsl_type::vec4_type);
184   emit(BRW_OPCODE_MOV, dst, src1);
185   src1 = expanded;
186
187   emit(opcode, dst, src0, src1);
188}
189
190void
191vec4_visitor::emit_math2_gen4(enum opcode opcode,
192			      dst_reg dst, src_reg src0, src_reg src1)
193{
194   vec4_instruction *inst = emit(opcode, dst, src0, src1);
195   inst->base_mrf = 1;
196   inst->mlen = 2;
197}
198
199void
200vec4_visitor::emit_math(enum opcode opcode,
201			dst_reg dst, src_reg src0, src_reg src1)
202{
203   assert(opcode == SHADER_OPCODE_POW);
204
205   if (intel->gen >= 6) {
206      return emit_math2_gen6(opcode, dst, src0, src1);
207   } else {
208      return emit_math2_gen4(opcode, dst, src0, src1);
209   }
210}
211
212void
213vec4_visitor::visit_instructions(const exec_list *list)
214{
215   foreach_iter(exec_list_iterator, iter, *list) {
216      ir_instruction *ir = (ir_instruction *)iter.get();
217
218      base_ir = ir;
219      ir->accept(this);
220   }
221}
222
223
224static int
225type_size(const struct glsl_type *type)
226{
227   unsigned int i;
228   int size;
229
230   switch (type->base_type) {
231   case GLSL_TYPE_UINT:
232   case GLSL_TYPE_INT:
233   case GLSL_TYPE_FLOAT:
234   case GLSL_TYPE_BOOL:
235      if (type->is_matrix()) {
236	 return type->matrix_columns;
237      } else {
238	 /* Regardless of size of vector, it gets a vec4. This is bad
239	  * packing for things like floats, but otherwise arrays become a
240	  * mess.  Hopefully a later pass over the code can pack scalars
241	  * down if appropriate.
242	  */
243	 return 1;
244      }
245   case GLSL_TYPE_ARRAY:
246      assert(type->length > 0);
247      return type_size(type->fields.array) * type->length;
248   case GLSL_TYPE_STRUCT:
249      size = 0;
250      for (i = 0; i < type->length; i++) {
251	 size += type_size(type->fields.structure[i].type);
252      }
253      return size;
254   case GLSL_TYPE_SAMPLER:
255      /* Samplers take up one slot in UNIFORMS[], but they're baked in
256       * at link time.
257       */
258      return 1;
259   default:
260      assert(0);
261      return 0;
262   }
263}
264
265int
266vec4_visitor::virtual_grf_alloc(int size)
267{
268   if (virtual_grf_array_size <= virtual_grf_count) {
269      if (virtual_grf_array_size == 0)
270	 virtual_grf_array_size = 16;
271      else
272	 virtual_grf_array_size *= 2;
273      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
274				   virtual_grf_array_size);
275   }
276   virtual_grf_sizes[virtual_grf_count] = size;
277   return virtual_grf_count++;
278}
279
280src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
281{
282   init();
283
284   this->file = GRF;
285   this->reg = v->virtual_grf_alloc(type_size(type));
286
287   if (type->is_array() || type->is_record()) {
288      this->swizzle = BRW_SWIZZLE_NOOP;
289   } else {
290      this->swizzle = swizzle_for_size(type->vector_elements);
291   }
292
293   this->type = brw_type_for_base_type(type);
294}
295
296dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
297{
298   init();
299
300   this->file = GRF;
301   this->reg = v->virtual_grf_alloc(type_size(type));
302
303   if (type->is_array() || type->is_record()) {
304      this->writemask = WRITEMASK_XYZW;
305   } else {
306      this->writemask = (1 << type->vector_elements) - 1;
307   }
308
309   this->type = brw_type_for_base_type(type);
310}
311
312/* Our support for uniforms is piggy-backed on the struct
313 * gl_fragment_program, because that's where the values actually
314 * get stored, rather than in some global gl_shader_program uniform
315 * store.
316 */
317int
318vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
319{
320   unsigned int offset = 0;
321   float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
322
323   if (type->is_matrix()) {
324      const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
325							type->vector_elements,
326							1);
327
328      for (unsigned int i = 0; i < type->matrix_columns; i++) {
329	 offset += setup_uniform_values(loc + offset, column);
330      }
331
332      return offset;
333   }
334
335   switch (type->base_type) {
336   case GLSL_TYPE_FLOAT:
337   case GLSL_TYPE_UINT:
338   case GLSL_TYPE_INT:
339   case GLSL_TYPE_BOOL:
340      for (unsigned int i = 0; i < type->vector_elements; i++) {
341	 int slot = this->uniforms * 4 + i;
342	 switch (type->base_type) {
343	 case GLSL_TYPE_FLOAT:
344	    c->prog_data.param_convert[slot] = PARAM_NO_CONVERT;
345	    break;
346	 case GLSL_TYPE_UINT:
347	    c->prog_data.param_convert[slot] = PARAM_CONVERT_F2U;
348	    break;
349	 case GLSL_TYPE_INT:
350	    c->prog_data.param_convert[slot] = PARAM_CONVERT_F2I;
351	    break;
352	 case GLSL_TYPE_BOOL:
353	    c->prog_data.param_convert[slot] = PARAM_CONVERT_F2B;
354	    break;
355	 default:
356	    assert(!"not reached");
357	    c->prog_data.param_convert[slot] = PARAM_NO_CONVERT;
358	    break;
359	 }
360	 c->prog_data.param[slot] = &values[i];
361      }
362
363      for (unsigned int i = type->vector_elements; i < 4; i++) {
364	 c->prog_data.param_convert[this->uniforms * 4 + i] =
365	    PARAM_CONVERT_ZERO;
366	 c->prog_data.param[this->uniforms * 4 + i] = NULL;
367      }
368
369      this->uniform_size[this->uniforms] = type->vector_elements;
370      this->uniforms++;
371
372      return 1;
373
374   case GLSL_TYPE_STRUCT:
375      for (unsigned int i = 0; i < type->length; i++) {
376	 offset += setup_uniform_values(loc + offset,
377					type->fields.structure[i].type);
378      }
379      return offset;
380
381   case GLSL_TYPE_ARRAY:
382      for (unsigned int i = 0; i < type->length; i++) {
383	 offset += setup_uniform_values(loc + offset, type->fields.array);
384      }
385      return offset;
386
387   case GLSL_TYPE_SAMPLER:
388      /* The sampler takes up a slot, but we don't use any values from it. */
389      return 1;
390
391   default:
392      assert(!"not reached");
393      return 0;
394   }
395}
396
397/* Our support for builtin uniforms is even scarier than non-builtin.
398 * It sits on top of the PROG_STATE_VAR parameters that are
399 * automatically updated from GL context state.
400 */
401void
402vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
403{
404   const ir_state_slot *const slots = ir->state_slots;
405   assert(ir->state_slots != NULL);
406
407   for (unsigned int i = 0; i < ir->num_state_slots; i++) {
408      /* This state reference has already been setup by ir_to_mesa,
409       * but we'll get the same index back here.  We can reference
410       * ParameterValues directly, since unlike brw_fs.cpp, we never
411       * add new state references during compile.
412       */
413      int index = _mesa_add_state_reference(this->vp->Base.Parameters,
414					    (gl_state_index *)slots[i].tokens);
415      float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
416
417      this->uniform_size[this->uniforms] = 0;
418      /* Add each of the unique swizzled channels of the element.
419       * This will end up matching the size of the glsl_type of this field.
420       */
421      int last_swiz = -1;
422      for (unsigned int j = 0; j < 4; j++) {
423	 int swiz = GET_SWZ(slots[i].swizzle, j);
424	 if (swiz == last_swiz)
425	    break;
426	 last_swiz = swiz;
427
428	 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
429	 c->prog_data.param_convert[this->uniforms * 4 + j] = PARAM_NO_CONVERT;
430	 this->uniform_size[this->uniforms]++;
431      }
432      this->uniforms++;
433   }
434}
435
436dst_reg *
437vec4_visitor::variable_storage(ir_variable *var)
438{
439   return (dst_reg *)hash_table_find(this->variable_ht, var);
440}
441
442void
443vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
444{
445   ir_expression *expr = ir->as_expression();
446
447   if (expr) {
448      src_reg op[2];
449      vec4_instruction *inst;
450
451      assert(expr->get_num_operands() <= 2);
452      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
453	 assert(expr->operands[i]->type->is_scalar());
454
455	 expr->operands[i]->accept(this);
456	 op[i] = this->result;
457      }
458
459      switch (expr->operation) {
460      case ir_unop_logic_not:
461	 inst = emit(BRW_OPCODE_AND, dst_null_d(), op[0], src_reg(1));
462	 inst->conditional_mod = BRW_CONDITIONAL_Z;
463	 break;
464
465      case ir_binop_logic_xor:
466	 inst = emit(BRW_OPCODE_XOR, dst_null_d(), op[0], op[1]);
467	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
468	 break;
469
470      case ir_binop_logic_or:
471	 inst = emit(BRW_OPCODE_OR, dst_null_d(), op[0], op[1]);
472	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
473	 break;
474
475      case ir_binop_logic_and:
476	 inst = emit(BRW_OPCODE_AND, dst_null_d(), op[0], op[1]);
477	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
478	 break;
479
480      case ir_unop_f2b:
481	 if (intel->gen >= 6) {
482	    inst = emit(BRW_OPCODE_CMP, dst_null_d(), op[0], src_reg(0.0f));
483	 } else {
484	    inst = emit(BRW_OPCODE_MOV, dst_null_f(), op[0]);
485	 }
486	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
487	 break;
488
489      case ir_unop_i2b:
490	 if (intel->gen >= 6) {
491	    inst = emit(BRW_OPCODE_CMP, dst_null_d(), op[0], src_reg(0));
492	 } else {
493	    inst = emit(BRW_OPCODE_MOV, dst_null_d(), op[0]);
494	 }
495	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
496	 break;
497
498      case ir_binop_greater:
499      case ir_binop_gequal:
500      case ir_binop_less:
501      case ir_binop_lequal:
502      case ir_binop_equal:
503      case ir_binop_all_equal:
504      case ir_binop_nequal:
505      case ir_binop_any_nequal:
506	 inst = emit(BRW_OPCODE_CMP, dst_null_cmp(), op[0], op[1]);
507	 inst->conditional_mod =
508	    brw_conditional_for_comparison(expr->operation);
509	 break;
510
511      default:
512	 assert(!"not reached");
513	 break;
514      }
515      return;
516   }
517
518   ir->accept(this);
519
520   if (intel->gen >= 6) {
521      vec4_instruction *inst = emit(BRW_OPCODE_AND, dst_null_d(),
522			       this->result, src_reg(1));
523      inst->conditional_mod = BRW_CONDITIONAL_NZ;
524   } else {
525      vec4_instruction *inst = emit(BRW_OPCODE_MOV, dst_null_d(), this->result);
526      inst->conditional_mod = BRW_CONDITIONAL_NZ;
527   }
528}
529
530/**
531 * Emit a gen6 IF statement with the comparison folded into the IF
532 * instruction.
533 */
534void
535vec4_visitor::emit_if_gen6(ir_if *ir)
536{
537   ir_expression *expr = ir->condition->as_expression();
538
539   if (expr) {
540      src_reg op[2];
541      vec4_instruction *inst;
542      dst_reg temp;
543
544      assert(expr->get_num_operands() <= 2);
545      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
546	 assert(expr->operands[i]->type->is_scalar());
547
548	 expr->operands[i]->accept(this);
549	 op[i] = this->result;
550      }
551
552      switch (expr->operation) {
553      case ir_unop_logic_not:
554	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], src_reg(0));
555	 inst->conditional_mod = BRW_CONDITIONAL_Z;
556	 return;
557
558      case ir_binop_logic_xor:
559	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], op[1]);
560	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
561	 return;
562
563      case ir_binop_logic_or:
564	 temp = dst_reg(this, glsl_type::bool_type);
565	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
566	 inst = emit(BRW_OPCODE_IF, dst_null_d(), src_reg(temp), src_reg(0));
567	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
568	 return;
569
570      case ir_binop_logic_and:
571	 temp = dst_reg(this, glsl_type::bool_type);
572	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
573	 inst = emit(BRW_OPCODE_IF, dst_null_d(), src_reg(temp), src_reg(0));
574	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
575	 return;
576
577      case ir_unop_f2b:
578	 inst = emit(BRW_OPCODE_IF, dst_null_f(), op[0], src_reg(0));
579	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
580	 return;
581
582      case ir_unop_i2b:
583	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], src_reg(0));
584	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
585	 return;
586
587      case ir_binop_greater:
588      case ir_binop_gequal:
589      case ir_binop_less:
590      case ir_binop_lequal:
591      case ir_binop_equal:
592      case ir_binop_all_equal:
593      case ir_binop_nequal:
594      case ir_binop_any_nequal:
595	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], op[1]);
596	 inst->conditional_mod =
597	    brw_conditional_for_comparison(expr->operation);
598	 return;
599      default:
600	 assert(!"not reached");
601	 inst = emit(BRW_OPCODE_IF, dst_null_d(), op[0], src_reg(0));
602	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
603	 return;
604      }
605      return;
606   }
607
608   ir->condition->accept(this);
609
610   vec4_instruction *inst = emit(BRW_OPCODE_IF, dst_null_d(),
611			    this->result, src_reg(0));
612   inst->conditional_mod = BRW_CONDITIONAL_NZ;
613}
614
615void
616vec4_visitor::visit(ir_variable *ir)
617{
618   dst_reg *reg = NULL;
619
620   if (variable_storage(ir))
621      return;
622
623   switch (ir->mode) {
624   case ir_var_in:
625      reg = new(mem_ctx) dst_reg(ATTR, ir->location);
626      break;
627
628   case ir_var_out:
629      reg = new(mem_ctx) dst_reg(this, ir->type);
630
631      for (int i = 0; i < type_size(ir->type); i++) {
632	 output_reg[ir->location + i] = *reg;
633	 output_reg[ir->location + i].reg_offset = i;
634      }
635      break;
636
637   case ir_var_auto:
638   case ir_var_temporary:
639      reg = new(mem_ctx) dst_reg(this, ir->type);
640      break;
641
642   case ir_var_uniform:
643      reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
644
645      if (!strncmp(ir->name, "gl_", 3)) {
646	 setup_builtin_uniform_values(ir);
647      } else {
648	 setup_uniform_values(ir->location, ir->type);
649      }
650      break;
651
652   default:
653      assert(!"not reached");
654   }
655
656   reg->type = brw_type_for_base_type(ir->type);
657   hash_table_insert(this->variable_ht, reg, ir);
658}
659
660void
661vec4_visitor::visit(ir_loop *ir)
662{
663   ir_dereference_variable *counter = NULL;
664
665   /* We don't want debugging output to print the whole body of the
666    * loop as the annotation.
667    */
668   this->base_ir = NULL;
669
670   if (ir->counter != NULL)
671      counter = new(ir) ir_dereference_variable(ir->counter);
672
673   if (ir->from != NULL) {
674      assert(ir->counter != NULL);
675
676      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
677
678      a->accept(this);
679      delete a;
680   }
681
682   emit(BRW_OPCODE_DO);
683
684   if (ir->to) {
685      ir_expression *e =
686	 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
687			       counter, ir->to);
688      ir_if *if_stmt =  new(ir) ir_if(e);
689
690      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
691
692      if_stmt->then_instructions.push_tail(brk);
693
694      if_stmt->accept(this);
695
696      delete if_stmt;
697      delete e;
698      delete brk;
699   }
700
701   visit_instructions(&ir->body_instructions);
702
703   if (ir->increment) {
704      ir_expression *e =
705	 new(ir) ir_expression(ir_binop_add, counter->type,
706			       counter, ir->increment);
707
708      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
709
710      a->accept(this);
711      delete a;
712      delete e;
713   }
714
715   emit(BRW_OPCODE_WHILE);
716}
717
718void
719vec4_visitor::visit(ir_loop_jump *ir)
720{
721   switch (ir->mode) {
722   case ir_loop_jump::jump_break:
723      emit(BRW_OPCODE_BREAK);
724      break;
725   case ir_loop_jump::jump_continue:
726      emit(BRW_OPCODE_CONTINUE);
727      break;
728   }
729}
730
731
732void
733vec4_visitor::visit(ir_function_signature *ir)
734{
735   assert(0);
736   (void)ir;
737}
738
739void
740vec4_visitor::visit(ir_function *ir)
741{
742   /* Ignore function bodies other than main() -- we shouldn't see calls to
743    * them since they should all be inlined.
744    */
745   if (strcmp(ir->name, "main") == 0) {
746      const ir_function_signature *sig;
747      exec_list empty;
748
749      sig = ir->matching_signature(&empty);
750
751      assert(sig);
752
753      visit_instructions(&sig->body);
754   }
755}
756
757GLboolean
758vec4_visitor::try_emit_sat(ir_expression *ir)
759{
760   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
761   if (!sat_src)
762      return false;
763
764   sat_src->accept(this);
765   src_reg src = this->result;
766
767   this->result = src_reg(this, ir->type);
768   vec4_instruction *inst;
769   inst = emit(BRW_OPCODE_MOV, dst_reg(this->result), src);
770   inst->saturate = true;
771
772   return true;
773}
774
775void
776vec4_visitor::emit_bool_comparison(unsigned int op,
777				 dst_reg dst, src_reg src0, src_reg src1)
778{
779   /* original gen4 does destination conversion before comparison. */
780   if (intel->gen < 5)
781      dst.type = src0.type;
782
783   vec4_instruction *inst = emit(BRW_OPCODE_CMP, dst, src0, src1);
784   inst->conditional_mod = brw_conditional_for_comparison(op);
785
786   dst.type = BRW_REGISTER_TYPE_D;
787   emit(BRW_OPCODE_AND, dst, src_reg(dst), src_reg(0x1));
788}
789
790void
791vec4_visitor::visit(ir_expression *ir)
792{
793   unsigned int operand;
794   src_reg op[Elements(ir->operands)];
795   src_reg result_src;
796   dst_reg result_dst;
797   vec4_instruction *inst;
798
799   if (try_emit_sat(ir))
800      return;
801
802   for (operand = 0; operand < ir->get_num_operands(); operand++) {
803      this->result.file = BAD_FILE;
804      ir->operands[operand]->accept(this);
805      if (this->result.file == BAD_FILE) {
806	 printf("Failed to get tree for expression operand:\n");
807	 ir->operands[operand]->print();
808	 exit(1);
809      }
810      op[operand] = this->result;
811
812      /* Matrix expression operands should have been broken down to vector
813       * operations already.
814       */
815      assert(!ir->operands[operand]->type->is_matrix());
816   }
817
818   int vector_elements = ir->operands[0]->type->vector_elements;
819   if (ir->operands[1]) {
820      vector_elements = MAX2(vector_elements,
821			     ir->operands[1]->type->vector_elements);
822   }
823
824   this->result.file = BAD_FILE;
825
826   /* Storage for our result.  Ideally for an assignment we'd be using
827    * the actual storage for the result here, instead.
828    */
829   result_src = src_reg(this, ir->type);
830   /* convenience for the emit functions below. */
831   result_dst = dst_reg(result_src);
832   /* If nothing special happens, this is the result. */
833   this->result = result_src;
834   /* Limit writes to the channels that will be used by result_src later.
835    * This does limit this temp's use as a temporary for multi-instruction
836    * sequences.
837    */
838   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
839
840   switch (ir->operation) {
841   case ir_unop_logic_not:
842      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
843       * ones complement of the whole register, not just bit 0.
844       */
845      emit(BRW_OPCODE_XOR, result_dst, op[0], src_reg(1));
846      break;
847   case ir_unop_neg:
848      op[0].negate = !op[0].negate;
849      this->result = op[0];
850      break;
851   case ir_unop_abs:
852      op[0].abs = true;
853      op[0].negate = false;
854      this->result = op[0];
855      break;
856
857   case ir_unop_sign:
858      emit(BRW_OPCODE_MOV, result_dst, src_reg(0.0f));
859
860      inst = emit(BRW_OPCODE_CMP, dst_null_f(), op[0], src_reg(0.0f));
861      inst->conditional_mod = BRW_CONDITIONAL_G;
862      inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1.0f));
863      inst->predicate = BRW_PREDICATE_NORMAL;
864
865      inst = emit(BRW_OPCODE_CMP, dst_null_f(), op[0], src_reg(0.0f));
866      inst->conditional_mod = BRW_CONDITIONAL_L;
867      inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(-1.0f));
868      inst->predicate = BRW_PREDICATE_NORMAL;
869
870      break;
871
872   case ir_unop_rcp:
873      emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
874      break;
875
876   case ir_unop_exp2:
877      emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
878      break;
879   case ir_unop_log2:
880      emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
881      break;
882   case ir_unop_exp:
883   case ir_unop_log:
884      assert(!"not reached: should be handled by ir_explog_to_explog2");
885      break;
886   case ir_unop_sin:
887   case ir_unop_sin_reduced:
888      emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
889      break;
890   case ir_unop_cos:
891   case ir_unop_cos_reduced:
892      emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
893      break;
894
895   case ir_unop_dFdx:
896   case ir_unop_dFdy:
897      assert(!"derivatives not valid in vertex shader");
898      break;
899
900   case ir_unop_noise:
901      assert(!"not reached: should be handled by lower_noise");
902      break;
903
904   case ir_binop_add:
905      emit(BRW_OPCODE_ADD, result_dst, op[0], op[1]);
906      break;
907   case ir_binop_sub:
908      assert(!"not reached: should be handled by ir_sub_to_add_neg");
909      break;
910
911   case ir_binop_mul:
912      emit(BRW_OPCODE_MUL, result_dst, op[0], op[1]);
913      break;
914   case ir_binop_div:
915      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
916   case ir_binop_mod:
917      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
918      break;
919
920   case ir_binop_less:
921   case ir_binop_greater:
922   case ir_binop_lequal:
923   case ir_binop_gequal:
924   case ir_binop_equal:
925   case ir_binop_nequal: {
926      dst_reg temp = result_dst;
927      /* original gen4 does implicit conversion before comparison. */
928      if (intel->gen < 5)
929	 temp.type = op[0].type;
930
931      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
932      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
933      emit(BRW_OPCODE_AND, result_dst, this->result, src_reg(0x1));
934      break;
935   }
936
937   case ir_binop_all_equal:
938      /* "==" operator producing a scalar boolean. */
939      if (ir->operands[0]->type->is_vector() ||
940	  ir->operands[1]->type->is_vector()) {
941	 inst = emit(BRW_OPCODE_CMP, dst_null_cmp(), op[0], op[1]);
942	 inst->conditional_mod = BRW_CONDITIONAL_Z;
943
944	 emit(BRW_OPCODE_MOV, result_dst, src_reg(0));
945	 inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1));
946	 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
947      } else {
948	 dst_reg temp = result_dst;
949	 /* original gen4 does implicit conversion before comparison. */
950	 if (intel->gen < 5)
951	    temp.type = op[0].type;
952
953	 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
954	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
955	 emit(BRW_OPCODE_AND, result_dst, result_src, src_reg(0x1));
956      }
957      break;
958   case ir_binop_any_nequal:
959      /* "!=" operator producing a scalar boolean. */
960      if (ir->operands[0]->type->is_vector() ||
961	  ir->operands[1]->type->is_vector()) {
962	 inst = emit(BRW_OPCODE_CMP, dst_null_cmp(), op[0], op[1]);
963	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
964
965	 emit(BRW_OPCODE_MOV, result_dst, src_reg(0));
966	 inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1));
967	 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
968      } else {
969	 dst_reg temp = result_dst;
970	 /* original gen4 does implicit conversion before comparison. */
971	 if (intel->gen < 5)
972	    temp.type = op[0].type;
973
974	 inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
975	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
976	 emit(BRW_OPCODE_AND, result_dst, result_src, src_reg(0x1));
977      }
978      break;
979
980   case ir_unop_any:
981      emit(BRW_OPCODE_CMP, dst_null_d(), op[0], src_reg(0));
982      emit(BRW_OPCODE_MOV, result_dst, src_reg(0));
983
984      inst = emit(BRW_OPCODE_MOV, result_dst, src_reg(1));
985      inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
986      break;
987
988   case ir_binop_logic_xor:
989      emit(BRW_OPCODE_XOR, result_dst, op[0], op[1]);
990      break;
991
992   case ir_binop_logic_or:
993      emit(BRW_OPCODE_OR, result_dst, op[0], op[1]);
994      break;
995
996   case ir_binop_logic_and:
997      emit(BRW_OPCODE_AND, result_dst, op[0], op[1]);
998      break;
999
1000   case ir_binop_dot:
1001      assert(ir->operands[0]->type->is_vector());
1002      assert(ir->operands[0]->type == ir->operands[1]->type);
1003      emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1004      break;
1005
1006   case ir_unop_sqrt:
1007      emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1008      break;
1009   case ir_unop_rsq:
1010      emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1011      break;
1012   case ir_unop_i2f:
1013   case ir_unop_i2u:
1014   case ir_unop_u2i:
1015   case ir_unop_u2f:
1016   case ir_unop_b2f:
1017   case ir_unop_b2i:
1018   case ir_unop_f2i:
1019      emit(BRW_OPCODE_MOV, result_dst, op[0]);
1020      break;
1021   case ir_unop_f2b:
1022   case ir_unop_i2b: {
1023      dst_reg temp = result_dst;
1024      /* original gen4 does implicit conversion before comparison. */
1025      if (intel->gen < 5)
1026	 temp.type = op[0].type;
1027
1028      inst = emit(BRW_OPCODE_CMP, temp, op[0], src_reg(0.0f));
1029      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1030      inst = emit(BRW_OPCODE_AND, result_dst, result_src, src_reg(1));
1031      break;
1032   }
1033
1034   case ir_unop_trunc:
1035      emit(BRW_OPCODE_RNDZ, result_dst, op[0]);
1036      break;
1037   case ir_unop_ceil:
1038      op[0].negate = !op[0].negate;
1039      inst = emit(BRW_OPCODE_RNDD, result_dst, op[0]);
1040      this->result.negate = true;
1041      break;
1042   case ir_unop_floor:
1043      inst = emit(BRW_OPCODE_RNDD, result_dst, op[0]);
1044      break;
1045   case ir_unop_fract:
1046      inst = emit(BRW_OPCODE_FRC, result_dst, op[0]);
1047      break;
1048   case ir_unop_round_even:
1049      emit(BRW_OPCODE_RNDE, result_dst, op[0]);
1050      break;
1051
1052   case ir_binop_min:
1053      inst = emit(BRW_OPCODE_CMP, result_dst, op[0], op[1]);
1054      inst->conditional_mod = BRW_CONDITIONAL_L;
1055
1056      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1057      inst->predicate = BRW_PREDICATE_NORMAL;
1058      break;
1059   case ir_binop_max:
1060      inst = emit(BRW_OPCODE_CMP, result_dst, op[0], op[1]);
1061      inst->conditional_mod = BRW_CONDITIONAL_G;
1062
1063      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1064      inst->predicate = BRW_PREDICATE_NORMAL;
1065      break;
1066
1067   case ir_binop_pow:
1068      emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1069      break;
1070
1071   case ir_unop_bit_not:
1072      inst = emit(BRW_OPCODE_NOT, result_dst, op[0]);
1073      break;
1074   case ir_binop_bit_and:
1075      inst = emit(BRW_OPCODE_AND, result_dst, op[0], op[1]);
1076      break;
1077   case ir_binop_bit_xor:
1078      inst = emit(BRW_OPCODE_XOR, result_dst, op[0], op[1]);
1079      break;
1080   case ir_binop_bit_or:
1081      inst = emit(BRW_OPCODE_OR, result_dst, op[0], op[1]);
1082      break;
1083
1084   case ir_binop_lshift:
1085   case ir_binop_rshift:
1086      assert(!"GLSL 1.30 features unsupported");
1087      break;
1088
1089   case ir_quadop_vector:
1090      assert(!"not reached: should be handled by lower_quadop_vector");
1091      break;
1092   }
1093}
1094
1095
1096void
1097vec4_visitor::visit(ir_swizzle *ir)
1098{
1099   src_reg src;
1100   int i = 0;
1101   int swizzle[4];
1102
1103   /* Note that this is only swizzles in expressions, not those on the left
1104    * hand side of an assignment, which do write masking.  See ir_assignment
1105    * for that.
1106    */
1107
1108   ir->val->accept(this);
1109   src = this->result;
1110   assert(src.file != BAD_FILE);
1111
1112   if (i < ir->type->vector_elements) {
1113      switch (i) {
1114      case 0:
1115	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1116	 break;
1117      case 1:
1118	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1119	 break;
1120      case 2:
1121	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1122	 break;
1123      case 3:
1124	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1125	    break;
1126      }
1127   }
1128   for (; i < 4; i++) {
1129      /* Replicate the last channel out. */
1130      swizzle[i] = swizzle[ir->type->vector_elements - 1];
1131   }
1132
1133   src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1134
1135   this->result = src;
1136}
1137
1138void
1139vec4_visitor::visit(ir_dereference_variable *ir)
1140{
1141   dst_reg *reg = variable_storage(ir->var);
1142
1143   if (!reg) {
1144      fail("Failed to find variable storage for %s\n", ir->var->name);
1145      this->result = src_reg(brw_null_reg());
1146      return;
1147   }
1148
1149   this->result = src_reg(*reg);
1150}
1151
1152void
1153vec4_visitor::visit(ir_dereference_array *ir)
1154{
1155   ir_constant *constant_index;
1156   src_reg src;
1157   int element_size = type_size(ir->type);
1158
1159   constant_index = ir->array_index->constant_expression_value();
1160
1161   ir->array->accept(this);
1162   src = this->result;
1163
1164   if (constant_index) {
1165      src.reg_offset += constant_index->value.i[0] * element_size;
1166   } else {
1167#if 0 /* Variable array index */
1168      /* Variable index array dereference.  It eats the "vec4" of the
1169       * base of the array and an index that offsets the Mesa register
1170       * index.
1171       */
1172      ir->array_index->accept(this);
1173
1174      src_reg index_reg;
1175
1176      if (element_size == 1) {
1177	 index_reg = this->result;
1178      } else {
1179	 index_reg = src_reg(this, glsl_type::float_type);
1180
1181	 emit(BRW_OPCODE_MUL, dst_reg(index_reg),
1182	      this->result, src_reg_for_float(element_size));
1183      }
1184
1185      src.reladdr = ralloc(mem_ctx, src_reg);
1186      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1187#endif
1188   }
1189
1190   /* If the type is smaller than a vec4, replicate the last channel out. */
1191   if (ir->type->is_scalar() || ir->type->is_vector())
1192      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1193   else
1194      src.swizzle = BRW_SWIZZLE_NOOP;
1195
1196   this->result = src;
1197}
1198
1199void
1200vec4_visitor::visit(ir_dereference_record *ir)
1201{
1202   unsigned int i;
1203   const glsl_type *struct_type = ir->record->type;
1204   int offset = 0;
1205
1206   ir->record->accept(this);
1207
1208   for (i = 0; i < struct_type->length; i++) {
1209      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1210	 break;
1211      offset += type_size(struct_type->fields.structure[i].type);
1212   }
1213
1214   /* If the type is smaller than a vec4, replicate the last channel out. */
1215   if (ir->type->is_scalar() || ir->type->is_vector())
1216      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1217   else
1218      this->result.swizzle = BRW_SWIZZLE_NOOP;
1219
1220   this->result.reg_offset += offset;
1221}
1222
1223/**
1224 * We want to be careful in assignment setup to hit the actual storage
1225 * instead of potentially using a temporary like we might with the
1226 * ir_dereference handler.
1227 */
1228static dst_reg
1229get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1230{
1231   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1232    * access of a vector, it must be separated into a series conditional moves
1233    * before reaching this point (see ir_vec_index_to_cond_assign).
1234    */
1235   assert(ir->as_dereference());
1236   ir_dereference_array *deref_array = ir->as_dereference_array();
1237   if (deref_array) {
1238      assert(!deref_array->array->type->is_vector());
1239   }
1240
1241   /* Use the rvalue deref handler for the most part.  We'll ignore
1242    * swizzles in it and write swizzles using writemask, though.
1243    */
1244   ir->accept(v);
1245   return dst_reg(v->result);
1246}
1247
1248void
1249vec4_visitor::emit_block_move(ir_assignment *ir)
1250{
1251   ir->rhs->accept(this);
1252   src_reg src = this->result;
1253
1254   dst_reg dst = get_assignment_lhs(ir->lhs, this);
1255
1256   /* FINISHME: This should really set to the correct maximal writemask for each
1257    * FINISHME: component written (in the loops below).
1258    */
1259   dst.writemask = WRITEMASK_XYZW;
1260
1261   for (int i = 0; i < type_size(ir->lhs->type); i++) {
1262      vec4_instruction *inst = emit(BRW_OPCODE_MOV, dst, src);
1263      if (ir->condition)
1264	 inst->predicate = BRW_PREDICATE_NORMAL;
1265
1266      dst.reg_offset++;
1267      src.reg_offset++;
1268   }
1269}
1270
1271void
1272vec4_visitor::visit(ir_assignment *ir)
1273{
1274   if (!ir->lhs->type->is_scalar() &&
1275       !ir->lhs->type->is_vector()) {
1276      emit_block_move(ir);
1277      return;
1278   }
1279
1280   /* Now we're down to just a scalar/vector with writemasks. */
1281   int i;
1282
1283   ir->rhs->accept(this);
1284   src_reg src = this->result;
1285
1286   dst_reg dst = get_assignment_lhs(ir->lhs, this);
1287
1288   int swizzles[4];
1289   int first_enabled_chan = 0;
1290   int src_chan = 0;
1291
1292   assert(ir->lhs->type->is_vector() ||
1293	  ir->lhs->type->is_scalar());
1294   dst.writemask = ir->write_mask;
1295
1296   for (int i = 0; i < 4; i++) {
1297      if (dst.writemask & (1 << i)) {
1298	 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1299	 break;
1300      }
1301   }
1302
1303   /* Swizzle a small RHS vector into the channels being written.
1304    *
1305    * glsl ir treats write_mask as dictating how many channels are
1306    * present on the RHS while in our instructions we need to make
1307    * those channels appear in the slots of the vec4 they're written to.
1308    */
1309   for (int i = 0; i < 4; i++) {
1310      if (dst.writemask & (1 << i))
1311	 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1312      else
1313	 swizzles[i] = first_enabled_chan;
1314   }
1315   src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1316			      swizzles[2], swizzles[3]);
1317
1318   if (ir->condition) {
1319      emit_bool_to_cond_code(ir->condition);
1320   }
1321
1322   for (i = 0; i < type_size(ir->lhs->type); i++) {
1323      vec4_instruction *inst = emit(BRW_OPCODE_MOV, dst, src);
1324
1325      if (ir->condition)
1326	 inst->predicate = BRW_PREDICATE_NORMAL;
1327
1328      dst.reg_offset++;
1329      src.reg_offset++;
1330   }
1331}
1332
1333
1334void
1335vec4_visitor::visit(ir_constant *ir)
1336{
1337   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1338      src_reg temp_base = src_reg(this, ir->type);
1339      dst_reg temp = dst_reg(temp_base);
1340
1341      foreach_iter(exec_list_iterator, iter, ir->components) {
1342	 ir_constant *field_value = (ir_constant *)iter.get();
1343	 int size = type_size(field_value->type);
1344
1345	 assert(size > 0);
1346
1347	 field_value->accept(this);
1348	 src_reg src = this->result;
1349
1350	 for (int i = 0; i < (unsigned int)size; i++) {
1351	    emit(BRW_OPCODE_MOV, temp, src);
1352
1353	    src.reg_offset++;
1354	    temp.reg_offset++;
1355	 }
1356      }
1357      this->result = temp_base;
1358      return;
1359   }
1360
1361   if (ir->type->is_array()) {
1362      src_reg temp_base = src_reg(this, ir->type);
1363      dst_reg temp = dst_reg(temp_base);
1364      int size = type_size(ir->type->fields.array);
1365
1366      assert(size > 0);
1367
1368      for (unsigned int i = 0; i < ir->type->length; i++) {
1369	 ir->array_elements[i]->accept(this);
1370	 src_reg src = this->result;
1371	 for (int j = 0; j < size; j++) {
1372	    emit(BRW_OPCODE_MOV, temp, src);
1373
1374	    src.reg_offset++;
1375	    temp.reg_offset++;
1376	 }
1377      }
1378      this->result = temp_base;
1379      return;
1380   }
1381
1382   if (ir->type->is_matrix()) {
1383      this->result = src_reg(this, ir->type);
1384      dst_reg dst = dst_reg(this->result);
1385
1386      assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1387
1388      for (int i = 0; i < ir->type->matrix_columns; i++) {
1389	 for (int j = 0; j < ir->type->vector_elements; j++) {
1390	    dst.writemask = 1 << j;
1391	    emit(BRW_OPCODE_MOV, dst,
1392		 src_reg(ir->value.f[i * ir->type->vector_elements + j]));
1393	 }
1394	 dst.reg_offset++;
1395      }
1396      return;
1397   }
1398
1399   this->result = src_reg(this, ir->type);
1400   dst_reg dst = dst_reg(this->result);
1401
1402   for (int i = 0; i < ir->type->vector_elements; i++) {
1403      dst.writemask = 1 << i;
1404
1405      switch (ir->type->base_type) {
1406      case GLSL_TYPE_FLOAT:
1407	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.f[i]));
1408	 break;
1409      case GLSL_TYPE_INT:
1410	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.i[i]));
1411	 break;
1412      case GLSL_TYPE_UINT:
1413	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.u[i]));
1414	 break;
1415      case GLSL_TYPE_BOOL:
1416	 emit(BRW_OPCODE_MOV, dst, src_reg(ir->value.b[i]));
1417	 break;
1418      default:
1419	 assert(!"Non-float/uint/int/bool constant");
1420	 break;
1421      }
1422   }
1423}
1424
1425void
1426vec4_visitor::visit(ir_call *ir)
1427{
1428   assert(!"not reached");
1429}
1430
1431void
1432vec4_visitor::visit(ir_texture *ir)
1433{
1434   assert(!"not reached");
1435}
1436
1437void
1438vec4_visitor::visit(ir_return *ir)
1439{
1440   assert(!"not reached");
1441}
1442
1443void
1444vec4_visitor::visit(ir_discard *ir)
1445{
1446   assert(!"not reached");
1447}
1448
1449void
1450vec4_visitor::visit(ir_if *ir)
1451{
1452   this->base_ir = ir->condition;
1453   ir->condition->accept(this);
1454   assert(this->result.file != BAD_FILE);
1455
1456   /* FINISHME: condcode */
1457   emit(BRW_OPCODE_IF);
1458
1459   visit_instructions(&ir->then_instructions);
1460
1461   if (!ir->else_instructions.is_empty()) {
1462      this->base_ir = ir->condition;
1463      emit(BRW_OPCODE_ELSE);
1464
1465      visit_instructions(&ir->else_instructions);
1466   }
1467
1468   this->base_ir = ir->condition;
1469   emit(BRW_OPCODE_ENDIF);
1470}
1471
1472int
1473vec4_visitor::emit_vue_header_gen4(int header_mrf)
1474{
1475   /* Get the position */
1476   src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
1477
1478   /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1479   dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1480
1481   current_annotation = "NDC";
1482   dst_reg ndc_w = ndc;
1483   ndc_w.writemask = WRITEMASK_W;
1484   src_reg pos_w = pos;
1485   pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1486   emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1487
1488   dst_reg ndc_xyz = ndc;
1489   ndc_xyz.writemask = WRITEMASK_XYZ;
1490
1491   emit(BRW_OPCODE_MUL, ndc_xyz, pos, src_reg(ndc_w));
1492
1493   if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
1494       c->key.nr_userclip || brw->has_negative_rhw_bug) {
1495      dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
1496      GLuint i;
1497
1498      emit(BRW_OPCODE_MOV, header1, 0u);
1499
1500      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1501	 assert(!"finishme: psiz");
1502	 src_reg psiz;
1503
1504	 header1.writemask = WRITEMASK_W;
1505	 emit(BRW_OPCODE_MUL, header1, psiz, 1u << 11);
1506	 emit(BRW_OPCODE_AND, header1, src_reg(header1), 0x7ff << 8);
1507      }
1508
1509      for (i = 0; i < c->key.nr_userclip; i++) {
1510	 vec4_instruction *inst;
1511
1512	 inst = emit(BRW_OPCODE_DP4, dst_reg(brw_null_reg()),
1513		     pos, src_reg(c->userplane[i]));
1514	 inst->conditional_mod = BRW_CONDITIONAL_L;
1515
1516	 emit(BRW_OPCODE_OR, header1, src_reg(header1), 1u << i);
1517	 inst->predicate = BRW_PREDICATE_NORMAL;
1518      }
1519
1520      /* i965 clipping workaround:
1521       * 1) Test for -ve rhw
1522       * 2) If set,
1523       *      set ndc = (0,0,0,0)
1524       *      set ucp[6] = 1
1525       *
1526       * Later, clipping will detect ucp[6] and ensure the primitive is
1527       * clipped against all fixed planes.
1528       */
1529      if (brw->has_negative_rhw_bug) {
1530#if 0
1531	 /* FINISHME */
1532	 brw_CMP(p,
1533		 vec8(brw_null_reg()),
1534		 BRW_CONDITIONAL_L,
1535		 brw_swizzle1(ndc, 3),
1536		 brw_imm_f(0));
1537
1538	 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
1539	 brw_MOV(p, ndc, brw_imm_f(0));
1540	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1541#endif
1542      }
1543
1544      header1.writemask = WRITEMASK_XYZW;
1545      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), src_reg(header1));
1546   } else {
1547      emit(BRW_OPCODE_MOV, retype(brw_message_reg(header_mrf++),
1548				  BRW_REGISTER_TYPE_UD), 0u);
1549   }
1550
1551   if (intel->gen == 5) {
1552      /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
1553       * dword 0-3 (m1) of the header is indices, point width, clip flags.
1554       * dword 4-7 (m2) is the ndc position (set above)
1555       * dword 8-11 (m3) of the vertex header is the 4D space position
1556       * dword 12-19 (m4,m5) of the vertex header is the user clip distance.
1557       * m6 is a pad so that the vertex element data is aligned
1558       * m7 is the first vertex data we fill.
1559       */
1560      current_annotation = "NDC";
1561      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), src_reg(ndc));
1562
1563      current_annotation = "gl_Position";
1564      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), pos);
1565
1566      /* user clip distance. */
1567      header_mrf += 2;
1568
1569      /* Pad so that vertex element data is aligned. */
1570      header_mrf++;
1571   } else {
1572      /* There are 8 dwords in VUE header pre-Ironlake:
1573       * dword 0-3 (m1) is indices, point width, clip flags.
1574       * dword 4-7 (m2) is ndc position (set above)
1575       *
1576       * dword 8-11 (m3) is the first vertex data.
1577       */
1578      current_annotation = "NDC";
1579      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), src_reg(ndc));
1580
1581      current_annotation = "gl_Position";
1582      emit(BRW_OPCODE_MOV, brw_message_reg(header_mrf++), pos);
1583   }
1584
1585   return header_mrf;
1586}
1587
1588int
1589vec4_visitor::emit_vue_header_gen6(int header_mrf)
1590{
1591   struct brw_reg reg;
1592
1593   /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
1594    * dword 0-3 (m2) of the header is indices, point width, clip flags.
1595    * dword 4-7 (m3) is the 4D space position
1596    * dword 8-15 (m4,m5) of the vertex header is the user clip distance if
1597    * enabled.
1598    *
1599    * m4 or 6 is the first vertex element data we fill.
1600    */
1601
1602   current_annotation = "indices, point width, clip flags";
1603   reg = brw_message_reg(header_mrf++);
1604   emit(BRW_OPCODE_MOV, retype(reg, BRW_REGISTER_TYPE_D), src_reg(0));
1605   if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1606      emit(BRW_OPCODE_MOV, brw_writemask(reg, WRITEMASK_W),
1607	   src_reg(output_reg[VERT_RESULT_PSIZ]));
1608   }
1609
1610   current_annotation = "gl_Position";
1611   emit(BRW_OPCODE_MOV,
1612	brw_message_reg(header_mrf++), src_reg(output_reg[VERT_RESULT_HPOS]));
1613
1614   current_annotation = "user clip distances";
1615   if (c->key.nr_userclip) {
1616      for (int i = 0; i < c->key.nr_userclip; i++) {
1617	 struct brw_reg m;
1618	 if (i < 4)
1619	    m = brw_message_reg(header_mrf);
1620	 else
1621	    m = brw_message_reg(header_mrf + 1);
1622
1623	 emit(BRW_OPCODE_DP4,
1624	      dst_reg(brw_writemask(m, 1 << (i & 3))),
1625	      src_reg(c->userplane[i]));
1626      }
1627      header_mrf += 2;
1628   }
1629
1630   current_annotation = NULL;
1631
1632   return header_mrf;
1633}
1634
1635static int
1636align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
1637{
1638   struct intel_context *intel = &brw->intel;
1639
1640   if (intel->gen >= 6) {
1641      /* URB data written (does not include the message header reg) must
1642       * be a multiple of 256 bits, or 2 VS registers.  See vol5c.5,
1643       * section 5.4.3.2.2: URB_INTERLEAVED.
1644       *
1645       * URB entries are allocated on a multiple of 1024 bits, so an
1646       * extra 128 bits written here to make the end align to 256 is
1647       * no problem.
1648       */
1649      if ((mlen % 2) != 1)
1650	 mlen++;
1651   }
1652
1653   return mlen;
1654}
1655
1656/**
1657 * Generates the VUE payload plus the 1 or 2 URB write instructions to
1658 * complete the VS thread.
1659 *
1660 * The VUE layout is documented in Volume 2a.
1661 */
1662void
1663vec4_visitor::emit_urb_writes()
1664{
1665   int base_mrf = 1;
1666   int mrf = base_mrf;
1667   int urb_entry_size;
1668
1669   /* FINISHME: edgeflag */
1670
1671   /* First mrf is the g0-based message header containing URB handles and such,
1672    * which is implied in VS_OPCODE_URB_WRITE.
1673    */
1674   mrf++;
1675
1676   if (intel->gen >= 6) {
1677      mrf = emit_vue_header_gen6(mrf);
1678   } else {
1679      mrf = emit_vue_header_gen4(mrf);
1680   }
1681
1682   int attr;
1683   for (attr = 0; attr < VERT_RESULT_MAX; attr++) {
1684      if (!(c->prog_data.outputs_written & BITFIELD64_BIT(attr)))
1685	 continue;
1686
1687      /* This is set up in the VUE header. */
1688      if (attr == VERT_RESULT_HPOS)
1689	 continue;
1690
1691      /* This is loaded into the VUE header, and thus doesn't occupy
1692       * an attribute slot.
1693       */
1694      if (attr == VERT_RESULT_PSIZ)
1695	 continue;
1696
1697      emit(BRW_OPCODE_MOV, brw_message_reg(mrf++), src_reg(output_reg[attr]));
1698
1699      /* If this is MRF 15, we can't fit anything more into this URB
1700       * WRITE.  Note that base_mrf of 1 means that MRF 15 is an
1701       * even-numbered amount of URB write data, which will meet
1702       * gen6's requirements for length alignment.
1703       */
1704      if (mrf == 15)
1705	 break;
1706   }
1707
1708   vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
1709   inst->base_mrf = base_mrf;
1710   inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
1711   inst->eot = true;
1712
1713   urb_entry_size = mrf - base_mrf;
1714
1715   for (; attr < VERT_RESULT_MAX; attr++) {
1716      if (!(c->prog_data.outputs_written & BITFIELD64_BIT(attr)))
1717	 continue;
1718      fail("Second URB write not supported.\n");
1719      break;
1720   }
1721
1722   if (intel->gen == 6)
1723      c->prog_data.urb_entry_size = ALIGN(urb_entry_size, 8) / 8;
1724   else
1725      c->prog_data.urb_entry_size = ALIGN(urb_entry_size, 4) / 4;
1726}
1727
1728vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
1729			   struct gl_shader_program *prog,
1730			   struct brw_shader *shader)
1731{
1732   this->c = c;
1733   this->p = &c->func;
1734   this->brw = p->brw;
1735   this->intel = &brw->intel;
1736   this->ctx = &intel->ctx;
1737   this->prog = prog;
1738   this->shader = shader;
1739
1740   this->mem_ctx = ralloc_context(NULL);
1741   this->failed = false;
1742
1743   this->base_ir = NULL;
1744   this->current_annotation = NULL;
1745
1746   this->c = c;
1747   this->vp = brw->vertex_program; /* FINISHME: change for precompile */
1748   this->prog_data = &c->prog_data;
1749
1750   this->variable_ht = hash_table_ctor(0,
1751				       hash_table_pointer_hash,
1752				       hash_table_pointer_compare);
1753
1754   this->virtual_grf_sizes = NULL;
1755   this->virtual_grf_count = 0;
1756   this->virtual_grf_array_size = 0;
1757
1758   this->uniforms = 0;
1759
1760   this->variable_ht = hash_table_ctor(0,
1761				       hash_table_pointer_hash,
1762				       hash_table_pointer_compare);
1763}
1764
1765vec4_visitor::~vec4_visitor()
1766{
1767   hash_table_dtor(this->variable_ht);
1768}
1769
1770
1771void
1772vec4_visitor::fail(const char *format, ...)
1773{
1774   va_list va;
1775   char *msg;
1776
1777   if (failed)
1778      return;
1779
1780   failed = true;
1781
1782   va_start(va, format);
1783   msg = ralloc_vasprintf(mem_ctx, format, va);
1784   va_end(va);
1785   msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
1786
1787   this->fail_msg = msg;
1788
1789   if (INTEL_DEBUG & DEBUG_VS) {
1790      fprintf(stderr, "%s",  msg);
1791   }
1792}
1793
1794} /* namespace brw */
1795