brw_vec4_visitor.cpp revision 8e34021099527868097b2c877fc32f29aa4d7bb6
1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25extern "C" {
26#include "main/macros.h"
27#include "program/prog_parameter.h"
28#include "program/sampler.h"
29}
30
31namespace brw {
32
33src_reg::src_reg(dst_reg reg)
34{
35   init();
36
37   this->file = reg.file;
38   this->reg = reg.reg;
39   this->reg_offset = reg.reg_offset;
40   this->type = reg.type;
41   this->reladdr = reg.reladdr;
42   this->fixed_hw_reg = reg.fixed_hw_reg;
43
44   int swizzles[4];
45   int next_chan = 0;
46   int last = 0;
47
48   for (int i = 0; i < 4; i++) {
49      if (!(reg.writemask & (1 << i)))
50	 continue;
51
52      swizzles[next_chan++] = last = i;
53   }
54
55   for (; next_chan < 4; next_chan++) {
56      swizzles[next_chan] = last;
57   }
58
59   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
60				swizzles[2], swizzles[3]);
61}
62
63dst_reg::dst_reg(src_reg reg)
64{
65   init();
66
67   this->file = reg.file;
68   this->reg = reg.reg;
69   this->reg_offset = reg.reg_offset;
70   this->type = reg.type;
71   this->writemask = WRITEMASK_XYZW;
72   this->reladdr = reg.reladdr;
73   this->fixed_hw_reg = reg.fixed_hw_reg;
74}
75
76vec4_instruction::vec4_instruction(vec4_visitor *v,
77				   enum opcode opcode, dst_reg dst,
78				   src_reg src0, src_reg src1, src_reg src2)
79{
80   this->opcode = opcode;
81   this->dst = dst;
82   this->src[0] = src0;
83   this->src[1] = src1;
84   this->src[2] = src2;
85   this->ir = v->base_ir;
86   this->annotation = v->current_annotation;
87}
88
89vec4_instruction *
90vec4_visitor::emit(vec4_instruction *inst)
91{
92   this->instructions.push_tail(inst);
93
94   return inst;
95}
96
97vec4_instruction *
98vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
99{
100   new_inst->ir = inst->ir;
101   new_inst->annotation = inst->annotation;
102
103   inst->insert_before(new_inst);
104
105   return inst;
106}
107
108vec4_instruction *
109vec4_visitor::emit(enum opcode opcode, dst_reg dst,
110		   src_reg src0, src_reg src1, src_reg src2)
111{
112   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
113					     src0, src1, src2));
114}
115
116
117vec4_instruction *
118vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
119{
120   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
121}
122
123vec4_instruction *
124vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
125{
126   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
127}
128
129vec4_instruction *
130vec4_visitor::emit(enum opcode opcode)
131{
132   return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
133}
134
135#define ALU1(op)							\
136   vec4_instruction *							\
137   vec4_visitor::op(dst_reg dst, src_reg src0)				\
138   {									\
139      return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst,	\
140					   src0);			\
141   }
142
143#define ALU2(op)							\
144   vec4_instruction *							\
145   vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1)		\
146   {									\
147      return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst,	\
148					   src0, src1);			\
149   }
150
151ALU1(NOT)
152ALU1(MOV)
153ALU1(FRC)
154ALU1(RNDD)
155ALU1(RNDE)
156ALU1(RNDZ)
157ALU2(ADD)
158ALU2(MUL)
159ALU2(MACH)
160ALU2(AND)
161ALU2(OR)
162ALU2(XOR)
163ALU2(DP3)
164ALU2(DP4)
165
166/** Gen4 predicated IF. */
167vec4_instruction *
168vec4_visitor::IF(uint32_t predicate)
169{
170   vec4_instruction *inst;
171
172   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
173   inst->predicate = predicate;
174
175   return inst;
176}
177
178/** Gen6+ IF with embedded comparison. */
179vec4_instruction *
180vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
181{
182   assert(intel->gen >= 6);
183
184   vec4_instruction *inst;
185
186   resolve_ud_negate(&src0);
187   resolve_ud_negate(&src1);
188
189   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
190					src0, src1);
191   inst->conditional_mod = condition;
192
193   return inst;
194}
195
196/**
197 * CMP: Sets the low bit of the destination channels with the result
198 * of the comparison, while the upper bits are undefined, and updates
199 * the flag register with the packed 16 bits of the result.
200 */
201vec4_instruction *
202vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
203{
204   vec4_instruction *inst;
205
206   /* original gen4 does type conversion to the destination type
207    * before before comparison, producing garbage results for floating
208    * point comparisons.
209    */
210   if (intel->gen == 4) {
211      dst.type = src0.type;
212      if (dst.file == HW_REG)
213	 dst.fixed_hw_reg.type = dst.type;
214   }
215
216   resolve_ud_negate(&src0);
217   resolve_ud_negate(&src1);
218
219   inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
220   inst->conditional_mod = condition;
221
222   return inst;
223}
224
225vec4_instruction *
226vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
227{
228   vec4_instruction *inst;
229
230   inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
231					dst, index);
232   inst->base_mrf = 14;
233   inst->mlen = 1;
234
235   return inst;
236}
237
238vec4_instruction *
239vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
240{
241   vec4_instruction *inst;
242
243   inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
244					dst, src, index);
245   inst->base_mrf = 13;
246   inst->mlen = 2;
247
248   return inst;
249}
250
251void
252vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
253{
254   static enum opcode dot_opcodes[] = {
255      BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
256   };
257
258   emit(dot_opcodes[elements - 2], dst, src0, src1);
259}
260
261void
262vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
263{
264   /* The gen6 math instruction ignores the source modifiers --
265    * swizzle, abs, negate, and at least some parts of the register
266    * region description.
267    *
268    * While it would seem that this MOV could be avoided at this point
269    * in the case that the swizzle is matched up with the destination
270    * writemask, note that uniform packing and register allocation
271    * could rearrange our swizzle, so let's leave this matter up to
272    * copy propagation later.
273    */
274   src_reg temp_src = src_reg(this, glsl_type::vec4_type);
275   emit(MOV(dst_reg(temp_src), src));
276
277   if (dst.writemask != WRITEMASK_XYZW) {
278      /* The gen6 math instruction must be align1, so we can't do
279       * writemasks.
280       */
281      dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
282
283      emit(opcode, temp_dst, temp_src);
284
285      emit(MOV(dst, src_reg(temp_dst)));
286   } else {
287      emit(opcode, dst, temp_src);
288   }
289}
290
291void
292vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
293{
294   vec4_instruction *inst = emit(opcode, dst, src);
295   inst->base_mrf = 1;
296   inst->mlen = 1;
297}
298
299void
300vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
301{
302   switch (opcode) {
303   case SHADER_OPCODE_RCP:
304   case SHADER_OPCODE_RSQ:
305   case SHADER_OPCODE_SQRT:
306   case SHADER_OPCODE_EXP2:
307   case SHADER_OPCODE_LOG2:
308   case SHADER_OPCODE_SIN:
309   case SHADER_OPCODE_COS:
310      break;
311   default:
312      assert(!"not reached: bad math opcode");
313      return;
314   }
315
316   if (intel->gen >= 6) {
317      return emit_math1_gen6(opcode, dst, src);
318   } else {
319      return emit_math1_gen4(opcode, dst, src);
320   }
321}
322
323void
324vec4_visitor::emit_math2_gen6(enum opcode opcode,
325			      dst_reg dst, src_reg src0, src_reg src1)
326{
327   src_reg expanded;
328
329   /* The gen6 math instruction ignores the source modifiers --
330    * swizzle, abs, negate, and at least some parts of the register
331    * region description.  Move the sources to temporaries to make it
332    * generally work.
333    */
334
335   expanded = src_reg(this, glsl_type::vec4_type);
336   expanded.type = src0.type;
337   emit(MOV(dst_reg(expanded), src0));
338   src0 = expanded;
339
340   expanded = src_reg(this, glsl_type::vec4_type);
341   expanded.type = src1.type;
342   emit(MOV(dst_reg(expanded), src1));
343   src1 = expanded;
344
345   if (dst.writemask != WRITEMASK_XYZW) {
346      /* The gen6 math instruction must be align1, so we can't do
347       * writemasks.
348       */
349      dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
350      temp_dst.type = dst.type;
351
352      emit(opcode, temp_dst, src0, src1);
353
354      emit(MOV(dst, src_reg(temp_dst)));
355   } else {
356      emit(opcode, dst, src0, src1);
357   }
358}
359
360void
361vec4_visitor::emit_math2_gen4(enum opcode opcode,
362			      dst_reg dst, src_reg src0, src_reg src1)
363{
364   vec4_instruction *inst = emit(opcode, dst, src0, src1);
365   inst->base_mrf = 1;
366   inst->mlen = 2;
367}
368
369void
370vec4_visitor::emit_math(enum opcode opcode,
371			dst_reg dst, src_reg src0, src_reg src1)
372{
373   switch (opcode) {
374   case SHADER_OPCODE_POW:
375   case SHADER_OPCODE_INT_QUOTIENT:
376   case SHADER_OPCODE_INT_REMAINDER:
377      break;
378   default:
379      assert(!"not reached: unsupported binary math opcode");
380      return;
381   }
382
383   if (intel->gen >= 6) {
384      return emit_math2_gen6(opcode, dst, src0, src1);
385   } else {
386      return emit_math2_gen4(opcode, dst, src0, src1);
387   }
388}
389
390void
391vec4_visitor::visit_instructions(const exec_list *list)
392{
393   foreach_list(node, list) {
394      ir_instruction *ir = (ir_instruction *)node;
395
396      base_ir = ir;
397      ir->accept(this);
398   }
399}
400
401
402static int
403type_size(const struct glsl_type *type)
404{
405   unsigned int i;
406   int size;
407
408   switch (type->base_type) {
409   case GLSL_TYPE_UINT:
410   case GLSL_TYPE_INT:
411   case GLSL_TYPE_FLOAT:
412   case GLSL_TYPE_BOOL:
413      if (type->is_matrix()) {
414	 return type->matrix_columns;
415      } else {
416	 /* Regardless of size of vector, it gets a vec4. This is bad
417	  * packing for things like floats, but otherwise arrays become a
418	  * mess.  Hopefully a later pass over the code can pack scalars
419	  * down if appropriate.
420	  */
421	 return 1;
422      }
423   case GLSL_TYPE_ARRAY:
424      assert(type->length > 0);
425      return type_size(type->fields.array) * type->length;
426   case GLSL_TYPE_STRUCT:
427      size = 0;
428      for (i = 0; i < type->length; i++) {
429	 size += type_size(type->fields.structure[i].type);
430      }
431      return size;
432   case GLSL_TYPE_SAMPLER:
433      /* Samplers take up one slot in UNIFORMS[], but they're baked in
434       * at link time.
435       */
436      return 1;
437   default:
438      assert(0);
439      return 0;
440   }
441}
442
443int
444vec4_visitor::virtual_grf_alloc(int size)
445{
446   if (virtual_grf_array_size <= virtual_grf_count) {
447      if (virtual_grf_array_size == 0)
448	 virtual_grf_array_size = 16;
449      else
450	 virtual_grf_array_size *= 2;
451      virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
452				   virtual_grf_array_size);
453      virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
454				     virtual_grf_array_size);
455   }
456   virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
457   virtual_grf_reg_count += size;
458   virtual_grf_sizes[virtual_grf_count] = size;
459   return virtual_grf_count++;
460}
461
462src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
463{
464   init();
465
466   this->file = GRF;
467   this->reg = v->virtual_grf_alloc(type_size(type));
468
469   if (type->is_array() || type->is_record()) {
470      this->swizzle = BRW_SWIZZLE_NOOP;
471   } else {
472      this->swizzle = swizzle_for_size(type->vector_elements);
473   }
474
475   this->type = brw_type_for_base_type(type);
476}
477
478dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
479{
480   init();
481
482   this->file = GRF;
483   this->reg = v->virtual_grf_alloc(type_size(type));
484
485   if (type->is_array() || type->is_record()) {
486      this->writemask = WRITEMASK_XYZW;
487   } else {
488      this->writemask = (1 << type->vector_elements) - 1;
489   }
490
491   this->type = brw_type_for_base_type(type);
492}
493
494/* Our support for uniforms is piggy-backed on the struct
495 * gl_fragment_program, because that's where the values actually
496 * get stored, rather than in some global gl_shader_program uniform
497 * store.
498 */
499int
500vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
501{
502   unsigned int offset = 0;
503   float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
504
505   if (type->is_matrix()) {
506      const glsl_type *column = type->column_type();
507
508      for (unsigned int i = 0; i < type->matrix_columns; i++) {
509	 offset += setup_uniform_values(loc + offset, column);
510      }
511
512      return offset;
513   }
514
515   switch (type->base_type) {
516   case GLSL_TYPE_FLOAT:
517   case GLSL_TYPE_UINT:
518   case GLSL_TYPE_INT:
519   case GLSL_TYPE_BOOL:
520      for (unsigned int i = 0; i < type->vector_elements; i++) {
521	 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
522      }
523
524      /* Set up pad elements to get things aligned to a vec4 boundary. */
525      for (unsigned int i = type->vector_elements; i < 4; i++) {
526	 static float zero = 0;
527
528	 c->prog_data.param[this->uniforms * 4 + i] = &zero;
529      }
530
531      /* Track the size of this uniform vector, for future packing of
532       * uniforms.
533       */
534      this->uniform_vector_size[this->uniforms] = type->vector_elements;
535      this->uniforms++;
536
537      return 1;
538
539   case GLSL_TYPE_STRUCT:
540      for (unsigned int i = 0; i < type->length; i++) {
541	 offset += setup_uniform_values(loc + offset,
542					type->fields.structure[i].type);
543      }
544      return offset;
545
546   case GLSL_TYPE_ARRAY:
547      for (unsigned int i = 0; i < type->length; i++) {
548	 offset += setup_uniform_values(loc + offset, type->fields.array);
549      }
550      return offset;
551
552   case GLSL_TYPE_SAMPLER:
553      /* The sampler takes up a slot, but we don't use any values from it. */
554      return 1;
555
556   default:
557      assert(!"not reached");
558      return 0;
559   }
560}
561
562void
563vec4_visitor::setup_uniform_clipplane_values()
564{
565   gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
566
567   /* Pre-Gen6, we compact clip planes.  For example, if the user
568    * enables just clip planes 0, 1, and 3, we will enable clip planes
569    * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
570    * plane 2.  This simplifies the implementation of the Gen6 clip
571    * thread.
572    *
573    * In Gen6 and later, we don't compact clip planes, because this
574    * simplifies the implementation of gl_ClipDistance.
575    */
576   int compacted_clipplane_index = 0;
577   for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
578      if (intel->gen < 6 &&
579          !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
580         continue;
581      }
582      this->uniform_vector_size[this->uniforms] = 4;
583      this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
584      this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
585      for (int j = 0; j < 4; ++j) {
586         c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
587      }
588      ++compacted_clipplane_index;
589      ++this->uniforms;
590   }
591}
592
593/* Our support for builtin uniforms is even scarier than non-builtin.
594 * It sits on top of the PROG_STATE_VAR parameters that are
595 * automatically updated from GL context state.
596 */
597void
598vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
599{
600   const ir_state_slot *const slots = ir->state_slots;
601   assert(ir->state_slots != NULL);
602
603   for (unsigned int i = 0; i < ir->num_state_slots; i++) {
604      /* This state reference has already been setup by ir_to_mesa,
605       * but we'll get the same index back here.  We can reference
606       * ParameterValues directly, since unlike brw_fs.cpp, we never
607       * add new state references during compile.
608       */
609      int index = _mesa_add_state_reference(this->vp->Base.Parameters,
610					    (gl_state_index *)slots[i].tokens);
611      float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
612
613      this->uniform_vector_size[this->uniforms] = 0;
614      /* Add each of the unique swizzled channels of the element.
615       * This will end up matching the size of the glsl_type of this field.
616       */
617      int last_swiz = -1;
618      for (unsigned int j = 0; j < 4; j++) {
619	 int swiz = GET_SWZ(slots[i].swizzle, j);
620	 last_swiz = swiz;
621
622	 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
623	 if (swiz <= last_swiz)
624	    this->uniform_vector_size[this->uniforms]++;
625      }
626      this->uniforms++;
627   }
628}
629
630dst_reg *
631vec4_visitor::variable_storage(ir_variable *var)
632{
633   return (dst_reg *)hash_table_find(this->variable_ht, var);
634}
635
636void
637vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
638{
639   ir_expression *expr = ir->as_expression();
640
641   *predicate = BRW_PREDICATE_NORMAL;
642
643   if (expr) {
644      src_reg op[2];
645      vec4_instruction *inst;
646
647      assert(expr->get_num_operands() <= 2);
648      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
649	 expr->operands[i]->accept(this);
650	 op[i] = this->result;
651
652	 resolve_ud_negate(&op[i]);
653      }
654
655      switch (expr->operation) {
656      case ir_unop_logic_not:
657	 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
658	 inst->conditional_mod = BRW_CONDITIONAL_Z;
659	 break;
660
661      case ir_binop_logic_xor:
662	 inst = emit(XOR(dst_null_d(), op[0], op[1]));
663	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
664	 break;
665
666      case ir_binop_logic_or:
667	 inst = emit(OR(dst_null_d(), op[0], op[1]));
668	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
669	 break;
670
671      case ir_binop_logic_and:
672	 inst = emit(AND(dst_null_d(), op[0], op[1]));
673	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
674	 break;
675
676      case ir_unop_f2b:
677	 if (intel->gen >= 6) {
678	    emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
679	 } else {
680	    inst = emit(MOV(dst_null_f(), op[0]));
681	    inst->conditional_mod = BRW_CONDITIONAL_NZ;
682	 }
683	 break;
684
685      case ir_unop_i2b:
686	 if (intel->gen >= 6) {
687	    emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
688	 } else {
689	    inst = emit(MOV(dst_null_d(), op[0]));
690	    inst->conditional_mod = BRW_CONDITIONAL_NZ;
691	 }
692	 break;
693
694      case ir_binop_all_equal:
695	 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
696	 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
697	 break;
698
699      case ir_binop_any_nequal:
700	 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
701	 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
702	 break;
703
704      case ir_unop_any:
705	 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
706	 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
707	 break;
708
709      case ir_binop_greater:
710      case ir_binop_gequal:
711      case ir_binop_less:
712      case ir_binop_lequal:
713      case ir_binop_equal:
714      case ir_binop_nequal:
715	 emit(CMP(dst_null_d(), op[0], op[1],
716		  brw_conditional_for_comparison(expr->operation)));
717	 break;
718
719      default:
720	 assert(!"not reached");
721	 break;
722      }
723      return;
724   }
725
726   ir->accept(this);
727
728   resolve_ud_negate(&this->result);
729
730   if (intel->gen >= 6) {
731      vec4_instruction *inst = emit(AND(dst_null_d(),
732					this->result, src_reg(1)));
733      inst->conditional_mod = BRW_CONDITIONAL_NZ;
734   } else {
735      vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
736      inst->conditional_mod = BRW_CONDITIONAL_NZ;
737   }
738}
739
740/**
741 * Emit a gen6 IF statement with the comparison folded into the IF
742 * instruction.
743 */
744void
745vec4_visitor::emit_if_gen6(ir_if *ir)
746{
747   ir_expression *expr = ir->condition->as_expression();
748
749   if (expr) {
750      src_reg op[2];
751      dst_reg temp;
752
753      assert(expr->get_num_operands() <= 2);
754      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
755	 expr->operands[i]->accept(this);
756	 op[i] = this->result;
757      }
758
759      switch (expr->operation) {
760      case ir_unop_logic_not:
761	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
762	 return;
763
764      case ir_binop_logic_xor:
765	 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
766	 return;
767
768      case ir_binop_logic_or:
769	 temp = dst_reg(this, glsl_type::bool_type);
770	 emit(OR(temp, op[0], op[1]));
771	 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
772	 return;
773
774      case ir_binop_logic_and:
775	 temp = dst_reg(this, glsl_type::bool_type);
776	 emit(AND(temp, op[0], op[1]));
777	 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
778	 return;
779
780      case ir_unop_f2b:
781	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
782	 return;
783
784      case ir_unop_i2b:
785	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
786	 return;
787
788      case ir_binop_greater:
789      case ir_binop_gequal:
790      case ir_binop_less:
791      case ir_binop_lequal:
792      case ir_binop_equal:
793      case ir_binop_nequal:
794	 emit(IF(op[0], op[1],
795		 brw_conditional_for_comparison(expr->operation)));
796	 return;
797
798      case ir_binop_all_equal:
799	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
800	 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
801	 return;
802
803      case ir_binop_any_nequal:
804	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
805	 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
806	 return;
807
808      case ir_unop_any:
809	 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
810	 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
811	 return;
812
813      default:
814	 assert(!"not reached");
815	 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
816	 return;
817      }
818      return;
819   }
820
821   ir->condition->accept(this);
822
823   emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
824}
825
826void
827vec4_visitor::visit(ir_variable *ir)
828{
829   dst_reg *reg = NULL;
830
831   if (variable_storage(ir))
832      return;
833
834   switch (ir->mode) {
835   case ir_var_in:
836      reg = new(mem_ctx) dst_reg(ATTR, ir->location);
837
838      /* Do GL_FIXED rescaling for GLES2.0.  Our GL_FIXED attributes
839       * come in as floating point conversions of the integer values.
840       */
841      for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
842	 if (!c->key.gl_fixed_input_size[i])
843	    continue;
844
845	 dst_reg dst = *reg;
846         dst.type = brw_type_for_base_type(ir->type);
847	 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
848	 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
849      }
850      break;
851
852   case ir_var_out:
853      reg = new(mem_ctx) dst_reg(this, ir->type);
854
855      for (int i = 0; i < type_size(ir->type); i++) {
856	 output_reg[ir->location + i] = *reg;
857	 output_reg[ir->location + i].reg_offset = i;
858	 output_reg[ir->location + i].type =
859            brw_type_for_base_type(ir->type->get_scalar_type());
860	 output_reg_annotation[ir->location + i] = ir->name;
861      }
862      break;
863
864   case ir_var_auto:
865   case ir_var_temporary:
866      reg = new(mem_ctx) dst_reg(this, ir->type);
867      break;
868
869   case ir_var_uniform:
870      reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
871
872      /* Track how big the whole uniform variable is, in case we need to put a
873       * copy of its data into pull constants for array access.
874       */
875      this->uniform_size[this->uniforms] = type_size(ir->type);
876
877      if (!strncmp(ir->name, "gl_", 3)) {
878	 setup_builtin_uniform_values(ir);
879      } else {
880	 setup_uniform_values(ir->location, ir->type);
881      }
882      break;
883
884   case ir_var_system_value:
885      /* VertexID is stored by the VF as the last vertex element, but
886       * we don't represent it with a flag in inputs_read, so we call
887       * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
888       */
889      reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
890      prog_data->uses_vertexid = true;
891
892      switch (ir->location) {
893      case SYSTEM_VALUE_VERTEX_ID:
894	 reg->writemask = WRITEMASK_X;
895	 break;
896      case SYSTEM_VALUE_INSTANCE_ID:
897	 reg->writemask = WRITEMASK_Y;
898	 break;
899      default:
900	 assert(!"not reached");
901	 break;
902      }
903      break;
904
905   default:
906      assert(!"not reached");
907   }
908
909   reg->type = brw_type_for_base_type(ir->type);
910   hash_table_insert(this->variable_ht, reg, ir);
911}
912
913void
914vec4_visitor::visit(ir_loop *ir)
915{
916   dst_reg counter;
917
918   /* We don't want debugging output to print the whole body of the
919    * loop as the annotation.
920    */
921   this->base_ir = NULL;
922
923   if (ir->counter != NULL) {
924      this->base_ir = ir->counter;
925      ir->counter->accept(this);
926      counter = *(variable_storage(ir->counter));
927
928      if (ir->from != NULL) {
929	 this->base_ir = ir->from;
930	 ir->from->accept(this);
931
932	 emit(MOV(counter, this->result));
933      }
934   }
935
936   emit(BRW_OPCODE_DO);
937
938   if (ir->to) {
939      this->base_ir = ir->to;
940      ir->to->accept(this);
941
942      emit(CMP(dst_null_d(), src_reg(counter), this->result,
943	       brw_conditional_for_comparison(ir->cmp)));
944
945      vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
946      inst->predicate = BRW_PREDICATE_NORMAL;
947   }
948
949   visit_instructions(&ir->body_instructions);
950
951
952   if (ir->increment) {
953      this->base_ir = ir->increment;
954      ir->increment->accept(this);
955      emit(ADD(counter, src_reg(counter), this->result));
956   }
957
958   emit(BRW_OPCODE_WHILE);
959}
960
961void
962vec4_visitor::visit(ir_loop_jump *ir)
963{
964   switch (ir->mode) {
965   case ir_loop_jump::jump_break:
966      emit(BRW_OPCODE_BREAK);
967      break;
968   case ir_loop_jump::jump_continue:
969      emit(BRW_OPCODE_CONTINUE);
970      break;
971   }
972}
973
974
975void
976vec4_visitor::visit(ir_function_signature *ir)
977{
978   assert(0);
979   (void)ir;
980}
981
982void
983vec4_visitor::visit(ir_function *ir)
984{
985   /* Ignore function bodies other than main() -- we shouldn't see calls to
986    * them since they should all be inlined.
987    */
988   if (strcmp(ir->name, "main") == 0) {
989      const ir_function_signature *sig;
990      exec_list empty;
991
992      sig = ir->matching_signature(&empty);
993
994      assert(sig);
995
996      visit_instructions(&sig->body);
997   }
998}
999
1000bool
1001vec4_visitor::try_emit_sat(ir_expression *ir)
1002{
1003   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1004   if (!sat_src)
1005      return false;
1006
1007   sat_src->accept(this);
1008   src_reg src = this->result;
1009
1010   this->result = src_reg(this, ir->type);
1011   vec4_instruction *inst;
1012   inst = emit(MOV(dst_reg(this->result), src));
1013   inst->saturate = true;
1014
1015   return true;
1016}
1017
1018void
1019vec4_visitor::emit_bool_comparison(unsigned int op,
1020				 dst_reg dst, src_reg src0, src_reg src1)
1021{
1022   /* original gen4 does destination conversion before comparison. */
1023   if (intel->gen < 5)
1024      dst.type = src0.type;
1025
1026   emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1027
1028   dst.type = BRW_REGISTER_TYPE_D;
1029   emit(AND(dst, src_reg(dst), src_reg(0x1)));
1030}
1031
1032void
1033vec4_visitor::visit(ir_expression *ir)
1034{
1035   unsigned int operand;
1036   src_reg op[Elements(ir->operands)];
1037   src_reg result_src;
1038   dst_reg result_dst;
1039   vec4_instruction *inst;
1040
1041   if (try_emit_sat(ir))
1042      return;
1043
1044   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1045      this->result.file = BAD_FILE;
1046      ir->operands[operand]->accept(this);
1047      if (this->result.file == BAD_FILE) {
1048	 printf("Failed to get tree for expression operand:\n");
1049	 ir->operands[operand]->print();
1050	 exit(1);
1051      }
1052      op[operand] = this->result;
1053
1054      /* Matrix expression operands should have been broken down to vector
1055       * operations already.
1056       */
1057      assert(!ir->operands[operand]->type->is_matrix());
1058   }
1059
1060   int vector_elements = ir->operands[0]->type->vector_elements;
1061   if (ir->operands[1]) {
1062      vector_elements = MAX2(vector_elements,
1063			     ir->operands[1]->type->vector_elements);
1064   }
1065
1066   this->result.file = BAD_FILE;
1067
1068   /* Storage for our result.  Ideally for an assignment we'd be using
1069    * the actual storage for the result here, instead.
1070    */
1071   result_src = src_reg(this, ir->type);
1072   /* convenience for the emit functions below. */
1073   result_dst = dst_reg(result_src);
1074   /* If nothing special happens, this is the result. */
1075   this->result = result_src;
1076   /* Limit writes to the channels that will be used by result_src later.
1077    * This does limit this temp's use as a temporary for multi-instruction
1078    * sequences.
1079    */
1080   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1081
1082   switch (ir->operation) {
1083   case ir_unop_logic_not:
1084      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1085       * ones complement of the whole register, not just bit 0.
1086       */
1087      emit(XOR(result_dst, op[0], src_reg(1)));
1088      break;
1089   case ir_unop_neg:
1090      op[0].negate = !op[0].negate;
1091      this->result = op[0];
1092      break;
1093   case ir_unop_abs:
1094      op[0].abs = true;
1095      op[0].negate = false;
1096      this->result = op[0];
1097      break;
1098
1099   case ir_unop_sign:
1100      emit(MOV(result_dst, src_reg(0.0f)));
1101
1102      emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1103      inst = emit(MOV(result_dst, src_reg(1.0f)));
1104      inst->predicate = BRW_PREDICATE_NORMAL;
1105
1106      emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1107      inst = emit(MOV(result_dst, src_reg(-1.0f)));
1108      inst->predicate = BRW_PREDICATE_NORMAL;
1109
1110      break;
1111
1112   case ir_unop_rcp:
1113      emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1114      break;
1115
1116   case ir_unop_exp2:
1117      emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1118      break;
1119   case ir_unop_log2:
1120      emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1121      break;
1122   case ir_unop_exp:
1123   case ir_unop_log:
1124      assert(!"not reached: should be handled by ir_explog_to_explog2");
1125      break;
1126   case ir_unop_sin:
1127   case ir_unop_sin_reduced:
1128      emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1129      break;
1130   case ir_unop_cos:
1131   case ir_unop_cos_reduced:
1132      emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1133      break;
1134
1135   case ir_unop_dFdx:
1136   case ir_unop_dFdy:
1137      assert(!"derivatives not valid in vertex shader");
1138      break;
1139
1140   case ir_unop_noise:
1141      assert(!"not reached: should be handled by lower_noise");
1142      break;
1143
1144   case ir_binop_add:
1145      emit(ADD(result_dst, op[0], op[1]));
1146      break;
1147   case ir_binop_sub:
1148      assert(!"not reached: should be handled by ir_sub_to_add_neg");
1149      break;
1150
1151   case ir_binop_mul:
1152      if (ir->type->is_integer()) {
1153	 /* For integer multiplication, the MUL uses the low 16 bits
1154	  * of one of the operands (src0 on gen6, src1 on gen7).  The
1155	  * MACH accumulates in the contribution of the upper 16 bits
1156	  * of that operand.
1157	  *
1158	  * FINISHME: Emit just the MUL if we know an operand is small
1159	  * enough.
1160	  */
1161	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1162
1163	 emit(MUL(acc, op[0], op[1]));
1164	 emit(MACH(dst_null_d(), op[0], op[1]));
1165	 emit(MOV(result_dst, src_reg(acc)));
1166      } else {
1167	 emit(MUL(result_dst, op[0], op[1]));
1168      }
1169      break;
1170   case ir_binop_div:
1171      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1172      assert(ir->type->is_integer());
1173      emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1174      break;
1175   case ir_binop_mod:
1176      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1177      assert(ir->type->is_integer());
1178      emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1179      break;
1180
1181   case ir_binop_less:
1182   case ir_binop_greater:
1183   case ir_binop_lequal:
1184   case ir_binop_gequal:
1185   case ir_binop_equal:
1186   case ir_binop_nequal: {
1187      emit(CMP(result_dst, op[0], op[1],
1188	       brw_conditional_for_comparison(ir->operation)));
1189      emit(AND(result_dst, result_src, src_reg(0x1)));
1190      break;
1191   }
1192
1193   case ir_binop_all_equal:
1194      /* "==" operator producing a scalar boolean. */
1195      if (ir->operands[0]->type->is_vector() ||
1196	  ir->operands[1]->type->is_vector()) {
1197	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1198	 emit(MOV(result_dst, src_reg(0)));
1199	 inst = emit(MOV(result_dst, src_reg(1)));
1200	 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1201      } else {
1202	 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1203	 emit(AND(result_dst, result_src, src_reg(0x1)));
1204      }
1205      break;
1206   case ir_binop_any_nequal:
1207      /* "!=" operator producing a scalar boolean. */
1208      if (ir->operands[0]->type->is_vector() ||
1209	  ir->operands[1]->type->is_vector()) {
1210	 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1211
1212	 emit(MOV(result_dst, src_reg(0)));
1213	 inst = emit(MOV(result_dst, src_reg(1)));
1214	 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1215      } else {
1216	 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1217	 emit(AND(result_dst, result_src, src_reg(0x1)));
1218      }
1219      break;
1220
1221   case ir_unop_any:
1222      emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1223      emit(MOV(result_dst, src_reg(0)));
1224
1225      inst = emit(MOV(result_dst, src_reg(1)));
1226      inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1227      break;
1228
1229   case ir_binop_logic_xor:
1230      emit(XOR(result_dst, op[0], op[1]));
1231      break;
1232
1233   case ir_binop_logic_or:
1234      emit(OR(result_dst, op[0], op[1]));
1235      break;
1236
1237   case ir_binop_logic_and:
1238      emit(AND(result_dst, op[0], op[1]));
1239      break;
1240
1241   case ir_binop_dot:
1242      assert(ir->operands[0]->type->is_vector());
1243      assert(ir->operands[0]->type == ir->operands[1]->type);
1244      emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1245      break;
1246
1247   case ir_unop_sqrt:
1248      emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1249      break;
1250   case ir_unop_rsq:
1251      emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1252      break;
1253   case ir_unop_i2f:
1254   case ir_unop_i2u:
1255   case ir_unop_u2i:
1256   case ir_unop_u2f:
1257   case ir_unop_b2f:
1258   case ir_unop_b2i:
1259   case ir_unop_f2i:
1260      emit(MOV(result_dst, op[0]));
1261      break;
1262   case ir_unop_f2b:
1263   case ir_unop_i2b: {
1264      emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1265      emit(AND(result_dst, result_src, src_reg(1)));
1266      break;
1267   }
1268
1269   case ir_unop_trunc:
1270      emit(RNDZ(result_dst, op[0]));
1271      break;
1272   case ir_unop_ceil:
1273      op[0].negate = !op[0].negate;
1274      inst = emit(RNDD(result_dst, op[0]));
1275      this->result.negate = true;
1276      break;
1277   case ir_unop_floor:
1278      inst = emit(RNDD(result_dst, op[0]));
1279      break;
1280   case ir_unop_fract:
1281      inst = emit(FRC(result_dst, op[0]));
1282      break;
1283   case ir_unop_round_even:
1284      emit(RNDE(result_dst, op[0]));
1285      break;
1286
1287   case ir_binop_min:
1288      emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1289
1290      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1291      inst->predicate = BRW_PREDICATE_NORMAL;
1292      break;
1293   case ir_binop_max:
1294      emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1295
1296      inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1297      inst->predicate = BRW_PREDICATE_NORMAL;
1298      break;
1299
1300   case ir_binop_pow:
1301      emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1302      break;
1303
1304   case ir_unop_bit_not:
1305      inst = emit(NOT(result_dst, op[0]));
1306      break;
1307   case ir_binop_bit_and:
1308      inst = emit(AND(result_dst, op[0], op[1]));
1309      break;
1310   case ir_binop_bit_xor:
1311      inst = emit(XOR(result_dst, op[0], op[1]));
1312      break;
1313   case ir_binop_bit_or:
1314      inst = emit(OR(result_dst, op[0], op[1]));
1315      break;
1316
1317   case ir_binop_lshift:
1318      inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1319      break;
1320
1321   case ir_binop_rshift:
1322      if (ir->type->base_type == GLSL_TYPE_INT)
1323	 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1324      else
1325	 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1326      break;
1327
1328   case ir_quadop_vector:
1329      assert(!"not reached: should be handled by lower_quadop_vector");
1330      break;
1331   }
1332}
1333
1334
1335void
1336vec4_visitor::visit(ir_swizzle *ir)
1337{
1338   src_reg src;
1339   int i = 0;
1340   int swizzle[4];
1341
1342   /* Note that this is only swizzles in expressions, not those on the left
1343    * hand side of an assignment, which do write masking.  See ir_assignment
1344    * for that.
1345    */
1346
1347   ir->val->accept(this);
1348   src = this->result;
1349   assert(src.file != BAD_FILE);
1350
1351   for (i = 0; i < ir->type->vector_elements; i++) {
1352      switch (i) {
1353      case 0:
1354	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1355	 break;
1356      case 1:
1357	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1358	 break;
1359      case 2:
1360	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1361	 break;
1362      case 3:
1363	 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1364	    break;
1365      }
1366   }
1367   for (; i < 4; i++) {
1368      /* Replicate the last channel out. */
1369      swizzle[i] = swizzle[ir->type->vector_elements - 1];
1370   }
1371
1372   src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1373
1374   this->result = src;
1375}
1376
1377void
1378vec4_visitor::visit(ir_dereference_variable *ir)
1379{
1380   const struct glsl_type *type = ir->type;
1381   dst_reg *reg = variable_storage(ir->var);
1382
1383   if (!reg) {
1384      fail("Failed to find variable storage for %s\n", ir->var->name);
1385      this->result = src_reg(brw_null_reg());
1386      return;
1387   }
1388
1389   this->result = src_reg(*reg);
1390
1391   if (type->is_scalar() || type->is_vector() || type->is_matrix())
1392      this->result.swizzle = swizzle_for_size(type->vector_elements);
1393}
1394
1395void
1396vec4_visitor::visit(ir_dereference_array *ir)
1397{
1398   ir_constant *constant_index;
1399   src_reg src;
1400   int element_size = type_size(ir->type);
1401
1402   constant_index = ir->array_index->constant_expression_value();
1403
1404   ir->array->accept(this);
1405   src = this->result;
1406
1407   if (constant_index) {
1408      src.reg_offset += constant_index->value.i[0] * element_size;
1409   } else {
1410      /* Variable index array dereference.  It eats the "vec4" of the
1411       * base of the array and an index that offsets the Mesa register
1412       * index.
1413       */
1414      ir->array_index->accept(this);
1415
1416      src_reg index_reg;
1417
1418      if (element_size == 1) {
1419	 index_reg = this->result;
1420      } else {
1421	 index_reg = src_reg(this, glsl_type::int_type);
1422
1423	 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1424      }
1425
1426      if (src.reladdr) {
1427	 src_reg temp = src_reg(this, glsl_type::int_type);
1428
1429	 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1430
1431	 index_reg = temp;
1432      }
1433
1434      src.reladdr = ralloc(mem_ctx, src_reg);
1435      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1436   }
1437
1438   /* If the type is smaller than a vec4, replicate the last channel out. */
1439   if (ir->type->is_scalar() || ir->type->is_vector())
1440      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1441   else
1442      src.swizzle = BRW_SWIZZLE_NOOP;
1443   src.type = brw_type_for_base_type(ir->type);
1444
1445   this->result = src;
1446}
1447
1448void
1449vec4_visitor::visit(ir_dereference_record *ir)
1450{
1451   unsigned int i;
1452   const glsl_type *struct_type = ir->record->type;
1453   int offset = 0;
1454
1455   ir->record->accept(this);
1456
1457   for (i = 0; i < struct_type->length; i++) {
1458      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1459	 break;
1460      offset += type_size(struct_type->fields.structure[i].type);
1461   }
1462
1463   /* If the type is smaller than a vec4, replicate the last channel out. */
1464   if (ir->type->is_scalar() || ir->type->is_vector())
1465      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1466   else
1467      this->result.swizzle = BRW_SWIZZLE_NOOP;
1468   this->result.type = brw_type_for_base_type(ir->type);
1469
1470   this->result.reg_offset += offset;
1471}
1472
1473/**
1474 * We want to be careful in assignment setup to hit the actual storage
1475 * instead of potentially using a temporary like we might with the
1476 * ir_dereference handler.
1477 */
1478static dst_reg
1479get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1480{
1481   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1482    * access of a vector, it must be separated into a series conditional moves
1483    * before reaching this point (see ir_vec_index_to_cond_assign).
1484    */
1485   assert(ir->as_dereference());
1486   ir_dereference_array *deref_array = ir->as_dereference_array();
1487   if (deref_array) {
1488      assert(!deref_array->array->type->is_vector());
1489   }
1490
1491   /* Use the rvalue deref handler for the most part.  We'll ignore
1492    * swizzles in it and write swizzles using writemask, though.
1493    */
1494   ir->accept(v);
1495   return dst_reg(v->result);
1496}
1497
1498void
1499vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1500			      const struct glsl_type *type, uint32_t predicate)
1501{
1502   if (type->base_type == GLSL_TYPE_STRUCT) {
1503      for (unsigned int i = 0; i < type->length; i++) {
1504	 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1505      }
1506      return;
1507   }
1508
1509   if (type->is_array()) {
1510      for (unsigned int i = 0; i < type->length; i++) {
1511	 emit_block_move(dst, src, type->fields.array, predicate);
1512      }
1513      return;
1514   }
1515
1516   if (type->is_matrix()) {
1517      const struct glsl_type *vec_type;
1518
1519      vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1520					 type->vector_elements, 1);
1521
1522      for (int i = 0; i < type->matrix_columns; i++) {
1523	 emit_block_move(dst, src, vec_type, predicate);
1524      }
1525      return;
1526   }
1527
1528   assert(type->is_scalar() || type->is_vector());
1529
1530   dst->type = brw_type_for_base_type(type);
1531   src->type = dst->type;
1532
1533   dst->writemask = (1 << type->vector_elements) - 1;
1534
1535   /* Do we need to worry about swizzling a swizzle? */
1536   assert(src->swizzle == BRW_SWIZZLE_NOOP
1537	  || src->swizzle == swizzle_for_size(type->vector_elements));
1538   src->swizzle = swizzle_for_size(type->vector_elements);
1539
1540   vec4_instruction *inst = emit(MOV(*dst, *src));
1541   inst->predicate = predicate;
1542
1543   dst->reg_offset++;
1544   src->reg_offset++;
1545}
1546
1547
1548/* If the RHS processing resulted in an instruction generating a
1549 * temporary value, and it would be easy to rewrite the instruction to
1550 * generate its result right into the LHS instead, do so.  This ends
1551 * up reliably removing instructions where it can be tricky to do so
1552 * later without real UD chain information.
1553 */
1554bool
1555vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1556				     dst_reg dst,
1557				     src_reg src,
1558				     vec4_instruction *pre_rhs_inst,
1559				     vec4_instruction *last_rhs_inst)
1560{
1561   /* This could be supported, but it would take more smarts. */
1562   if (ir->condition)
1563      return false;
1564
1565   if (pre_rhs_inst == last_rhs_inst)
1566      return false; /* No instructions generated to work with. */
1567
1568   /* Make sure the last instruction generated our source reg. */
1569   if (src.file != GRF ||
1570       src.file != last_rhs_inst->dst.file ||
1571       src.reg != last_rhs_inst->dst.reg ||
1572       src.reg_offset != last_rhs_inst->dst.reg_offset ||
1573       src.reladdr ||
1574       src.abs ||
1575       src.negate ||
1576       last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1577      return false;
1578
1579   /* Check that that last instruction fully initialized the channels
1580    * we want to use, in the order we want to use them.  We could
1581    * potentially reswizzle the operands of many instructions so that
1582    * we could handle out of order channels, but don't yet.
1583    */
1584
1585   for (unsigned i = 0; i < 4; i++) {
1586      if (dst.writemask & (1 << i)) {
1587	 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1588	    return false;
1589
1590	 if (BRW_GET_SWZ(src.swizzle, i) != i)
1591	    return false;
1592      }
1593   }
1594
1595   /* Success!  Rewrite the instruction. */
1596   last_rhs_inst->dst.file = dst.file;
1597   last_rhs_inst->dst.reg = dst.reg;
1598   last_rhs_inst->dst.reg_offset = dst.reg_offset;
1599   last_rhs_inst->dst.reladdr = dst.reladdr;
1600   last_rhs_inst->dst.writemask &= dst.writemask;
1601
1602   return true;
1603}
1604
1605void
1606vec4_visitor::visit(ir_assignment *ir)
1607{
1608   dst_reg dst = get_assignment_lhs(ir->lhs, this);
1609   uint32_t predicate = BRW_PREDICATE_NONE;
1610
1611   if (!ir->lhs->type->is_scalar() &&
1612       !ir->lhs->type->is_vector()) {
1613      ir->rhs->accept(this);
1614      src_reg src = this->result;
1615
1616      if (ir->condition) {
1617	 emit_bool_to_cond_code(ir->condition, &predicate);
1618      }
1619
1620      emit_block_move(&dst, &src, ir->rhs->type, predicate);
1621      return;
1622   }
1623
1624   /* Now we're down to just a scalar/vector with writemasks. */
1625   int i;
1626
1627   vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1628   pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1629
1630   ir->rhs->accept(this);
1631
1632   last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1633
1634   src_reg src = this->result;
1635
1636   int swizzles[4];
1637   int first_enabled_chan = 0;
1638   int src_chan = 0;
1639
1640   assert(ir->lhs->type->is_vector() ||
1641	  ir->lhs->type->is_scalar());
1642   dst.writemask = ir->write_mask;
1643
1644   for (int i = 0; i < 4; i++) {
1645      if (dst.writemask & (1 << i)) {
1646	 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1647	 break;
1648      }
1649   }
1650
1651   /* Swizzle a small RHS vector into the channels being written.
1652    *
1653    * glsl ir treats write_mask as dictating how many channels are
1654    * present on the RHS while in our instructions we need to make
1655    * those channels appear in the slots of the vec4 they're written to.
1656    */
1657   for (int i = 0; i < 4; i++) {
1658      if (dst.writemask & (1 << i))
1659	 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1660      else
1661	 swizzles[i] = first_enabled_chan;
1662   }
1663   src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1664			      swizzles[2], swizzles[3]);
1665
1666   if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1667      return;
1668   }
1669
1670   if (ir->condition) {
1671      emit_bool_to_cond_code(ir->condition, &predicate);
1672   }
1673
1674   for (i = 0; i < type_size(ir->lhs->type); i++) {
1675      vec4_instruction *inst = emit(MOV(dst, src));
1676      inst->predicate = predicate;
1677
1678      dst.reg_offset++;
1679      src.reg_offset++;
1680   }
1681}
1682
1683void
1684vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1685{
1686   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1687      foreach_list(node, &ir->components) {
1688	 ir_constant *field_value = (ir_constant *)node;
1689
1690	 emit_constant_values(dst, field_value);
1691      }
1692      return;
1693   }
1694
1695   if (ir->type->is_array()) {
1696      for (unsigned int i = 0; i < ir->type->length; i++) {
1697	 emit_constant_values(dst, ir->array_elements[i]);
1698      }
1699      return;
1700   }
1701
1702   if (ir->type->is_matrix()) {
1703      for (int i = 0; i < ir->type->matrix_columns; i++) {
1704	 for (int j = 0; j < ir->type->vector_elements; j++) {
1705	    dst->writemask = 1 << j;
1706	    dst->type = BRW_REGISTER_TYPE_F;
1707
1708	    emit(MOV(*dst,
1709		     src_reg(ir->value.f[i * ir->type->vector_elements + j])));
1710	 }
1711	 dst->reg_offset++;
1712      }
1713      return;
1714   }
1715
1716   for (int i = 0; i < ir->type->vector_elements; i++) {
1717      dst->writemask = 1 << i;
1718      dst->type = brw_type_for_base_type(ir->type);
1719
1720      switch (ir->type->base_type) {
1721      case GLSL_TYPE_FLOAT:
1722	 emit(MOV(*dst, src_reg(ir->value.f[i])));
1723	 break;
1724      case GLSL_TYPE_INT:
1725	 emit(MOV(*dst, src_reg(ir->value.i[i])));
1726	 break;
1727      case GLSL_TYPE_UINT:
1728	 emit(MOV(*dst, src_reg(ir->value.u[i])));
1729	 break;
1730      case GLSL_TYPE_BOOL:
1731	 emit(MOV(*dst, src_reg(ir->value.b[i])));
1732	 break;
1733      default:
1734	 assert(!"Non-float/uint/int/bool constant");
1735	 break;
1736      }
1737   }
1738   dst->reg_offset++;
1739}
1740
1741void
1742vec4_visitor::visit(ir_constant *ir)
1743{
1744   dst_reg dst = dst_reg(this, ir->type);
1745   this->result = src_reg(dst);
1746
1747   emit_constant_values(&dst, ir);
1748}
1749
1750void
1751vec4_visitor::visit(ir_call *ir)
1752{
1753   assert(!"not reached");
1754}
1755
1756void
1757vec4_visitor::visit(ir_texture *ir)
1758{
1759   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
1760   sampler = vp->Base.SamplerUnits[sampler];
1761
1762   /* Should be lowered by do_lower_texture_projection */
1763   assert(!ir->projector);
1764
1765   vec4_instruction *inst;
1766   switch (ir->op) {
1767   case ir_tex:
1768   case ir_txl:
1769      inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
1770      break;
1771   case ir_txd:
1772      inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
1773      break;
1774   case ir_txf:
1775      inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
1776      break;
1777   case ir_txs:
1778      inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
1779      break;
1780   case ir_txb:
1781      assert(!"TXB is not valid for vertex shaders.");
1782   }
1783
1784   /* Texel offsets go in the message header; Gen4 also requires headers. */
1785   inst->header_present = ir->offset || intel->gen < 5;
1786   inst->base_mrf = 2;
1787   inst->mlen = inst->header_present + 1; /* always at least one */
1788   inst->sampler = sampler;
1789   inst->dst = dst_reg(this, glsl_type::get_instance(ir->type->base_type,4,1));
1790   inst->shadow_compare = ir->shadow_comparitor != NULL;
1791
1792   if (ir->offset != NULL)
1793      inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1794
1795   /* MRF for the first parameter */
1796   int param_base = inst->base_mrf + inst->header_present;
1797
1798   if (ir->op == ir_txs) {
1799      ir->lod_info.lod->accept(this);
1800      int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
1801      emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, writemask),
1802	   this->result));
1803   } else {
1804      int i, coord_mask = 0, zero_mask = 0;
1805      /* Load the coordinate */
1806      /* FINISHME: gl_clamp_mask and saturate */
1807      for (i = 0; i < ir->coordinate->type->vector_elements; i++)
1808	 coord_mask |= (1 << i);
1809      for (; i < 4; i++)
1810	 zero_mask |= (1 << i);
1811
1812      ir->coordinate->accept(this);
1813      emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
1814	       this->result));
1815      emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
1816	       src_reg(0)));
1817      /* Load the shadow comparitor */
1818      if (ir->shadow_comparitor) {
1819	 ir->shadow_comparitor->accept(this);
1820	 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
1821			  WRITEMASK_X),
1822		  this->result));
1823	 inst->mlen++;
1824      }
1825
1826      /* Load the LOD info */
1827      if (ir->op == ir_txl) {
1828	 int mrf, writemask;
1829	 if (intel->gen >= 5) {
1830	    mrf = param_base + 1;
1831	    if (ir->shadow_comparitor) {
1832	       writemask = WRITEMASK_Y;
1833	       /* mlen already incremented */
1834	    } else {
1835	       writemask = WRITEMASK_X;
1836	       inst->mlen++;
1837	    }
1838	 } else /* intel->gen == 4 */ {
1839	    mrf = param_base;
1840	    writemask = WRITEMASK_Z;
1841	 }
1842	 ir->lod_info.lod->accept(this);
1843	 emit(MOV(dst_reg(MRF, mrf, ir->lod_info.lod->type, writemask),
1844		  this->result));
1845      } else if (ir->op == ir_txf) {
1846	 ir->lod_info.lod->accept(this);
1847	 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, WRITEMASK_W),
1848		  this->result));
1849      } else if (ir->op == ir_txd) {
1850	 const glsl_type *type = ir->lod_info.grad.dPdx->type;
1851
1852	 ir->lod_info.grad.dPdx->accept(this);
1853	 src_reg dPdx = this->result;
1854	 ir->lod_info.grad.dPdy->accept(this);
1855	 src_reg dPdy = this->result;
1856
1857	 if (intel->gen >= 5) {
1858	    dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1859	    dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1860	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
1861	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
1862	    inst->mlen++;
1863
1864	    if (ir->type->vector_elements == 3) {
1865	       dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
1866	       dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
1867	       emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
1868	       emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
1869	       inst->mlen++;
1870	    }
1871	 } else /* intel->gen == 4 */ {
1872	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
1873	    emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
1874	    inst->mlen += 2;
1875	 }
1876      }
1877   }
1878
1879   emit(inst);
1880
1881   swizzle_result(ir, src_reg(inst->dst), sampler);
1882}
1883
1884void
1885vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
1886{
1887   this->result = orig_val;
1888
1889   int s = c->key.tex.swizzles[sampler];
1890
1891   if (ir->op == ir_txs || ir->type == glsl_type::float_type
1892			|| s == SWIZZLE_NOOP)
1893      return;
1894
1895   int zero_mask = 0, one_mask = 0, copy_mask = 0;
1896   int swizzle[4];
1897
1898   for (int i = 0; i < 4; i++) {
1899      switch (GET_SWZ(s, i)) {
1900      case SWIZZLE_ZERO:
1901	 zero_mask |= (1 << i);
1902	 break;
1903      case SWIZZLE_ONE:
1904	 one_mask |= (1 << i);
1905	 break;
1906      default:
1907	 copy_mask |= (1 << i);
1908	 swizzle[i] = GET_SWZ(s, i);
1909	 break;
1910      }
1911   }
1912
1913   this->result = src_reg(this, ir->type);
1914   dst_reg swizzled_result(this->result);
1915
1916   if (copy_mask) {
1917      orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1918      swizzled_result.writemask = copy_mask;
1919      emit(MOV(swizzled_result, orig_val));
1920   }
1921
1922   if (zero_mask) {
1923      swizzled_result.writemask = zero_mask;
1924      emit(MOV(swizzled_result, src_reg(0.0f)));
1925   }
1926
1927   if (one_mask) {
1928      swizzled_result.writemask = one_mask;
1929      emit(MOV(swizzled_result, src_reg(1.0f)));
1930   }
1931}
1932
1933void
1934vec4_visitor::visit(ir_return *ir)
1935{
1936   assert(!"not reached");
1937}
1938
1939void
1940vec4_visitor::visit(ir_discard *ir)
1941{
1942   assert(!"not reached");
1943}
1944
1945void
1946vec4_visitor::visit(ir_if *ir)
1947{
1948   /* Don't point the annotation at the if statement, because then it plus
1949    * the then and else blocks get printed.
1950    */
1951   this->base_ir = ir->condition;
1952
1953   if (intel->gen == 6) {
1954      emit_if_gen6(ir);
1955   } else {
1956      uint32_t predicate;
1957      emit_bool_to_cond_code(ir->condition, &predicate);
1958      emit(IF(predicate));
1959   }
1960
1961   visit_instructions(&ir->then_instructions);
1962
1963   if (!ir->else_instructions.is_empty()) {
1964      this->base_ir = ir->condition;
1965      emit(BRW_OPCODE_ELSE);
1966
1967      visit_instructions(&ir->else_instructions);
1968   }
1969
1970   this->base_ir = ir->condition;
1971   emit(BRW_OPCODE_ENDIF);
1972}
1973
1974void
1975vec4_visitor::emit_ndc_computation()
1976{
1977   /* Get the position */
1978   src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
1979
1980   /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1981   dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1982   output_reg[BRW_VERT_RESULT_NDC] = ndc;
1983
1984   current_annotation = "NDC";
1985   dst_reg ndc_w = ndc;
1986   ndc_w.writemask = WRITEMASK_W;
1987   src_reg pos_w = pos;
1988   pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1989   emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1990
1991   dst_reg ndc_xyz = ndc;
1992   ndc_xyz.writemask = WRITEMASK_XYZ;
1993
1994   emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
1995}
1996
1997void
1998vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
1999{
2000   if (intel->gen < 6 &&
2001       ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2002        c->key.userclip_active || brw->has_negative_rhw_bug)) {
2003      dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2004      dst_reg header1_w = header1;
2005      header1_w.writemask = WRITEMASK_W;
2006      GLuint i;
2007
2008      emit(MOV(header1, 0u));
2009
2010      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2011	 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2012
2013	 current_annotation = "Point size";
2014	 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2015	 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2016      }
2017
2018      current_annotation = "Clipping flags";
2019      for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2020	 vec4_instruction *inst;
2021
2022	 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2023                         src_reg(this->userplane[i])));
2024	 inst->conditional_mod = BRW_CONDITIONAL_L;
2025
2026	 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2027	 inst->predicate = BRW_PREDICATE_NORMAL;
2028      }
2029
2030      /* i965 clipping workaround:
2031       * 1) Test for -ve rhw
2032       * 2) If set,
2033       *      set ndc = (0,0,0,0)
2034       *      set ucp[6] = 1
2035       *
2036       * Later, clipping will detect ucp[6] and ensure the primitive is
2037       * clipped against all fixed planes.
2038       */
2039      if (brw->has_negative_rhw_bug) {
2040#if 0
2041	 /* FINISHME */
2042	 brw_CMP(p,
2043		 vec8(brw_null_reg()),
2044		 BRW_CONDITIONAL_L,
2045		 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2046		 brw_imm_f(0));
2047
2048	 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2049	 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2050	 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2051#endif
2052      }
2053
2054      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2055   } else if (intel->gen < 6) {
2056      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2057   } else {
2058      emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2059      if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2060         emit(MOV(brw_writemask(reg, WRITEMASK_W),
2061                  src_reg(output_reg[VERT_RESULT_PSIZ])));
2062      }
2063   }
2064}
2065
2066void
2067vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2068{
2069   if (intel->gen < 6) {
2070      /* Clip distance slots are set aside in gen5, but they are not used.  It
2071       * is not clear whether we actually need to set aside space for them,
2072       * but the performance cost is negligible.
2073       */
2074      return;
2075   }
2076
2077   /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2078    *
2079    *     "If a linked set of shaders forming the vertex stage contains no
2080    *     static write to gl_ClipVertex or gl_ClipDistance, but the
2081    *     application has requested clipping against user clip planes through
2082    *     the API, then the coordinate written to gl_Position is used for
2083    *     comparison against the user clip planes."
2084    *
2085    * This function is only called if the shader didn't write to
2086    * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
2087    * if the user wrote to it; otherwise we use gl_Position.
2088    */
2089   gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2090   if (!(c->prog_data.outputs_written
2091         & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2092      clip_vertex = VERT_RESULT_HPOS;
2093   }
2094
2095   for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2096        ++i) {
2097      emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2098               src_reg(output_reg[clip_vertex]),
2099               src_reg(this->userplane[i + offset])));
2100   }
2101}
2102
2103void
2104vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2105{
2106   assert (vert_result < VERT_RESULT_MAX);
2107   reg.type = output_reg[vert_result].type;
2108   current_annotation = output_reg_annotation[vert_result];
2109   /* Copy the register, saturating if necessary */
2110   vec4_instruction *inst = emit(MOV(reg,
2111                                     src_reg(output_reg[vert_result])));
2112   if ((vert_result == VERT_RESULT_COL0 ||
2113        vert_result == VERT_RESULT_COL1 ||
2114        vert_result == VERT_RESULT_BFC0 ||
2115        vert_result == VERT_RESULT_BFC1) &&
2116       c->key.clamp_vertex_color) {
2117      inst->saturate = true;
2118   }
2119}
2120
2121void
2122vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2123{
2124   struct brw_reg hw_reg = brw_message_reg(mrf);
2125   dst_reg reg = dst_reg(MRF, mrf);
2126   reg.type = BRW_REGISTER_TYPE_F;
2127
2128   switch (vert_result) {
2129   case VERT_RESULT_PSIZ:
2130      /* PSIZ is always in slot 0, and is coupled with other flags. */
2131      current_annotation = "indices, point width, clip flags";
2132      emit_psiz_and_flags(hw_reg);
2133      break;
2134   case BRW_VERT_RESULT_NDC:
2135      current_annotation = "NDC";
2136      emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2137      break;
2138   case BRW_VERT_RESULT_HPOS_DUPLICATE:
2139   case VERT_RESULT_HPOS:
2140      current_annotation = "gl_Position";
2141      emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2142      break;
2143   case VERT_RESULT_CLIP_DIST0:
2144   case VERT_RESULT_CLIP_DIST1:
2145      if (this->c->key.uses_clip_distance) {
2146         emit_generic_urb_slot(reg, vert_result);
2147      } else {
2148         current_annotation = "user clip distances";
2149         emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2150      }
2151      break;
2152   case BRW_VERT_RESULT_PAD:
2153      /* No need to write to this slot */
2154      break;
2155   default:
2156      emit_generic_urb_slot(reg, vert_result);
2157      break;
2158   }
2159}
2160
2161static int
2162align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2163{
2164   struct intel_context *intel = &brw->intel;
2165
2166   if (intel->gen >= 6) {
2167      /* URB data written (does not include the message header reg) must
2168       * be a multiple of 256 bits, or 2 VS registers.  See vol5c.5,
2169       * section 5.4.3.2.2: URB_INTERLEAVED.
2170       *
2171       * URB entries are allocated on a multiple of 1024 bits, so an
2172       * extra 128 bits written here to make the end align to 256 is
2173       * no problem.
2174       */
2175      if ((mlen % 2) != 1)
2176	 mlen++;
2177   }
2178
2179   return mlen;
2180}
2181
2182/**
2183 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2184 * complete the VS thread.
2185 *
2186 * The VUE layout is documented in Volume 2a.
2187 */
2188void
2189vec4_visitor::emit_urb_writes()
2190{
2191   /* MRF 0 is reserved for the debugger, so start with message header
2192    * in MRF 1.
2193    */
2194   int base_mrf = 1;
2195   int mrf = base_mrf;
2196   /* In the process of generating our URB write message contents, we
2197    * may need to unspill a register or load from an array.  Those
2198    * reads would use MRFs 14-15.
2199    */
2200   int max_usable_mrf = 13;
2201
2202   /* The following assertion verifies that max_usable_mrf causes an
2203    * even-numbered amount of URB write data, which will meet gen6's
2204    * requirements for length alignment.
2205    */
2206   assert ((max_usable_mrf - base_mrf) % 2 == 0);
2207
2208   /* FINISHME: edgeflag */
2209
2210   brw_compute_vue_map(&c->vue_map, intel, c->key.userclip_active,
2211                       c->prog_data.outputs_written);
2212
2213   /* First mrf is the g0-based message header containing URB handles and such,
2214    * which is implied in VS_OPCODE_URB_WRITE.
2215    */
2216   mrf++;
2217
2218   if (intel->gen < 6) {
2219      emit_ndc_computation();
2220   }
2221
2222   /* Set up the VUE data for the first URB write */
2223   int slot;
2224   for (slot = 0; slot < c->vue_map.num_slots; ++slot) {
2225      emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
2226
2227      /* If this was max_usable_mrf, we can't fit anything more into this URB
2228       * WRITE.
2229       */
2230      if (mrf > max_usable_mrf) {
2231	 slot++;
2232	 break;
2233      }
2234   }
2235
2236   current_annotation = "URB write";
2237   vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2238   inst->base_mrf = base_mrf;
2239   inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2240   inst->eot = (slot >= c->vue_map.num_slots);
2241
2242   /* Optional second URB write */
2243   if (!inst->eot) {
2244      mrf = base_mrf + 1;
2245
2246      for (; slot < c->vue_map.num_slots; ++slot) {
2247	 assert(mrf < max_usable_mrf);
2248
2249         emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
2250      }
2251
2252      current_annotation = "URB write";
2253      inst = emit(VS_OPCODE_URB_WRITE);
2254      inst->base_mrf = base_mrf;
2255      inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2256      inst->eot = true;
2257      /* URB destination offset.  In the previous write, we got MRFs
2258       * 2-13 minus the one header MRF, so 12 regs.  URB offset is in
2259       * URB row increments, and each of our MRFs is half of one of
2260       * those, since we're doing interleaved writes.
2261       */
2262      inst->offset = (max_usable_mrf - base_mrf) / 2;
2263   }
2264
2265   if (intel->gen == 6)
2266      c->prog_data.urb_entry_size = ALIGN(c->vue_map.num_slots, 8) / 8;
2267   else
2268      c->prog_data.urb_entry_size = ALIGN(c->vue_map.num_slots, 4) / 4;
2269}
2270
2271src_reg
2272vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2273				 src_reg *reladdr, int reg_offset)
2274{
2275   /* Because we store the values to scratch interleaved like our
2276    * vertex data, we need to scale the vec4 index by 2.
2277    */
2278   int message_header_scale = 2;
2279
2280   /* Pre-gen6, the message header uses byte offsets instead of vec4
2281    * (16-byte) offset units.
2282    */
2283   if (intel->gen < 6)
2284      message_header_scale *= 16;
2285
2286   if (reladdr) {
2287      src_reg index = src_reg(this, glsl_type::int_type);
2288
2289      emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2290      emit_before(inst, MUL(dst_reg(index),
2291			    index, src_reg(message_header_scale)));
2292
2293      return index;
2294   } else {
2295      return src_reg(reg_offset * message_header_scale);
2296   }
2297}
2298
2299src_reg
2300vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2301				       src_reg *reladdr, int reg_offset)
2302{
2303   if (reladdr) {
2304      src_reg index = src_reg(this, glsl_type::int_type);
2305
2306      emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2307
2308      /* Pre-gen6, the message header uses byte offsets instead of vec4
2309       * (16-byte) offset units.
2310       */
2311      if (intel->gen < 6) {
2312	 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2313      }
2314
2315      return index;
2316   } else {
2317      int message_header_scale = intel->gen < 6 ? 16 : 1;
2318      return src_reg(reg_offset * message_header_scale);
2319   }
2320}
2321
2322/**
2323 * Emits an instruction before @inst to load the value named by @orig_src
2324 * from scratch space at @base_offset to @temp.
2325 */
2326void
2327vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2328				dst_reg temp, src_reg orig_src,
2329				int base_offset)
2330{
2331   int reg_offset = base_offset + orig_src.reg_offset;
2332   src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2333
2334   emit_before(inst, SCRATCH_READ(temp, index));
2335}
2336
2337/**
2338 * Emits an instruction after @inst to store the value to be written
2339 * to @orig_dst to scratch space at @base_offset, from @temp.
2340 */
2341void
2342vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2343				 src_reg temp, dst_reg orig_dst,
2344				 int base_offset)
2345{
2346   int reg_offset = base_offset + orig_dst.reg_offset;
2347   src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2348
2349   dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2350				       orig_dst.writemask));
2351   vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2352   write->predicate = inst->predicate;
2353   write->ir = inst->ir;
2354   write->annotation = inst->annotation;
2355   inst->insert_after(write);
2356}
2357
2358/**
2359 * We can't generally support array access in GRF space, because a
2360 * single instruction's destination can only span 2 contiguous
2361 * registers.  So, we send all GRF arrays that get variable index
2362 * access to scratch space.
2363 */
2364void
2365vec4_visitor::move_grf_array_access_to_scratch()
2366{
2367   int scratch_loc[this->virtual_grf_count];
2368
2369   for (int i = 0; i < this->virtual_grf_count; i++) {
2370      scratch_loc[i] = -1;
2371   }
2372
2373   /* First, calculate the set of virtual GRFs that need to be punted
2374    * to scratch due to having any array access on them, and where in
2375    * scratch.
2376    */
2377   foreach_list(node, &this->instructions) {
2378      vec4_instruction *inst = (vec4_instruction *)node;
2379
2380      if (inst->dst.file == GRF && inst->dst.reladdr &&
2381	  scratch_loc[inst->dst.reg] == -1) {
2382	 scratch_loc[inst->dst.reg] = c->last_scratch;
2383	 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
2384      }
2385
2386      for (int i = 0 ; i < 3; i++) {
2387	 src_reg *src = &inst->src[i];
2388
2389	 if (src->file == GRF && src->reladdr &&
2390	     scratch_loc[src->reg] == -1) {
2391	    scratch_loc[src->reg] = c->last_scratch;
2392	    c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
2393	 }
2394      }
2395   }
2396
2397   /* Now, for anything that will be accessed through scratch, rewrite
2398    * it to load/store.  Note that this is a _safe list walk, because
2399    * we may generate a new scratch_write instruction after the one
2400    * we're processing.
2401    */
2402   foreach_list_safe(node, &this->instructions) {
2403      vec4_instruction *inst = (vec4_instruction *)node;
2404
2405      /* Set up the annotation tracking for new generated instructions. */
2406      base_ir = inst->ir;
2407      current_annotation = inst->annotation;
2408
2409      if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2410	 src_reg temp = src_reg(this, glsl_type::vec4_type);
2411
2412	 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2413
2414	 inst->dst.file = temp.file;
2415	 inst->dst.reg = temp.reg;
2416	 inst->dst.reg_offset = temp.reg_offset;
2417	 inst->dst.reladdr = NULL;
2418      }
2419
2420      for (int i = 0 ; i < 3; i++) {
2421	 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2422	    continue;
2423
2424	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2425
2426	 emit_scratch_read(inst, temp, inst->src[i],
2427			   scratch_loc[inst->src[i].reg]);
2428
2429	 inst->src[i].file = temp.file;
2430	 inst->src[i].reg = temp.reg;
2431	 inst->src[i].reg_offset = temp.reg_offset;
2432	 inst->src[i].reladdr = NULL;
2433      }
2434   }
2435}
2436
2437/**
2438 * Emits an instruction before @inst to load the value named by @orig_src
2439 * from the pull constant buffer (surface) at @base_offset to @temp.
2440 */
2441void
2442vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2443				      dst_reg temp, src_reg orig_src,
2444				      int base_offset)
2445{
2446   int reg_offset = base_offset + orig_src.reg_offset;
2447   src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2448   vec4_instruction *load;
2449
2450   load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2451					temp, index);
2452   load->base_mrf = 14;
2453   load->mlen = 1;
2454   emit_before(inst, load);
2455}
2456
2457/**
2458 * Implements array access of uniforms by inserting a
2459 * PULL_CONSTANT_LOAD instruction.
2460 *
2461 * Unlike temporary GRF array access (where we don't support it due to
2462 * the difficulty of doing relative addressing on instruction
2463 * destinations), we could potentially do array access of uniforms
2464 * that were loaded in GRF space as push constants.  In real-world
2465 * usage we've seen, though, the arrays being used are always larger
2466 * than we could load as push constants, so just always move all
2467 * uniform array access out to a pull constant buffer.
2468 */
2469void
2470vec4_visitor::move_uniform_array_access_to_pull_constants()
2471{
2472   int pull_constant_loc[this->uniforms];
2473
2474   for (int i = 0; i < this->uniforms; i++) {
2475      pull_constant_loc[i] = -1;
2476   }
2477
2478   /* Walk through and find array access of uniforms.  Put a copy of that
2479    * uniform in the pull constant buffer.
2480    *
2481    * Note that we don't move constant-indexed accesses to arrays.  No
2482    * testing has been done of the performance impact of this choice.
2483    */
2484   foreach_list_safe(node, &this->instructions) {
2485      vec4_instruction *inst = (vec4_instruction *)node;
2486
2487      for (int i = 0 ; i < 3; i++) {
2488	 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2489	    continue;
2490
2491	 int uniform = inst->src[i].reg;
2492
2493	 /* If this array isn't already present in the pull constant buffer,
2494	  * add it.
2495	  */
2496	 if (pull_constant_loc[uniform] == -1) {
2497	    const float **values = &prog_data->param[uniform * 4];
2498
2499	    pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2500
2501	    for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2502	       prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2503	    }
2504	 }
2505
2506	 /* Set up the annotation tracking for new generated instructions. */
2507	 base_ir = inst->ir;
2508	 current_annotation = inst->annotation;
2509
2510	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2511
2512	 emit_pull_constant_load(inst, temp, inst->src[i],
2513				 pull_constant_loc[uniform]);
2514
2515	 inst->src[i].file = temp.file;
2516	 inst->src[i].reg = temp.reg;
2517	 inst->src[i].reg_offset = temp.reg_offset;
2518	 inst->src[i].reladdr = NULL;
2519      }
2520   }
2521
2522   /* Now there are no accesses of the UNIFORM file with a reladdr, so
2523    * no need to track them as larger-than-vec4 objects.  This will be
2524    * relied on in cutting out unused uniform vectors from push
2525    * constants.
2526    */
2527   split_uniform_registers();
2528}
2529
2530void
2531vec4_visitor::resolve_ud_negate(src_reg *reg)
2532{
2533   if (reg->type != BRW_REGISTER_TYPE_UD ||
2534       !reg->negate)
2535      return;
2536
2537   src_reg temp = src_reg(this, glsl_type::uvec4_type);
2538   emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2539   *reg = temp;
2540}
2541
2542vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2543			   struct gl_shader_program *prog,
2544			   struct brw_shader *shader)
2545{
2546   this->c = c;
2547   this->p = &c->func;
2548   this->brw = p->brw;
2549   this->intel = &brw->intel;
2550   this->ctx = &intel->ctx;
2551   this->prog = prog;
2552   this->shader = shader;
2553
2554   this->mem_ctx = ralloc_context(NULL);
2555   this->failed = false;
2556
2557   this->base_ir = NULL;
2558   this->current_annotation = NULL;
2559
2560   this->c = c;
2561   this->vp = (struct gl_vertex_program *)
2562     prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2563   this->prog_data = &c->prog_data;
2564
2565   this->variable_ht = hash_table_ctor(0,
2566				       hash_table_pointer_hash,
2567				       hash_table_pointer_compare);
2568
2569   this->virtual_grf_def = NULL;
2570   this->virtual_grf_use = NULL;
2571   this->virtual_grf_sizes = NULL;
2572   this->virtual_grf_count = 0;
2573   this->virtual_grf_reg_map = NULL;
2574   this->virtual_grf_reg_count = 0;
2575   this->virtual_grf_array_size = 0;
2576   this->live_intervals_valid = false;
2577
2578   this->uniforms = 0;
2579
2580   this->variable_ht = hash_table_ctor(0,
2581				       hash_table_pointer_hash,
2582				       hash_table_pointer_compare);
2583}
2584
2585vec4_visitor::~vec4_visitor()
2586{
2587   ralloc_free(this->mem_ctx);
2588   hash_table_dtor(this->variable_ht);
2589}
2590
2591
2592void
2593vec4_visitor::fail(const char *format, ...)
2594{
2595   va_list va;
2596   char *msg;
2597
2598   if (failed)
2599      return;
2600
2601   failed = true;
2602
2603   va_start(va, format);
2604   msg = ralloc_vasprintf(mem_ctx, format, va);
2605   va_end(va);
2606   msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2607
2608   this->fail_msg = msg;
2609
2610   if (INTEL_DEBUG & DEBUG_VS) {
2611      fprintf(stderr, "%s",  msg);
2612   }
2613}
2614
2615} /* namespace brw */
2616