brw_vs.c revision 25d2bf3845e9a6faaef8d808c1255ec57dc71dba
1/*
2 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28  * Authors:
29  *   Keith Whitwell <keith@tungstengraphics.com>
30  */
31
32
33#include "main/compiler.h"
34#include "brw_context.h"
35#include "brw_vs.h"
36#include "brw_util.h"
37#include "brw_state.h"
38#include "program/prog_print.h"
39#include "program/prog_parameter.h"
40
41#include "glsl/ralloc.h"
42
43static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44                                   int vert_result)
45{
46   /* Make sure this vert_result hasn't been assigned a slot already */
47   assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49   vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50   vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51}
52
53/**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60static void
61brw_compute_vue_map(struct brw_vs_compile *c)
62{
63   struct brw_context *brw = c->func.brw;
64   const struct intel_context *intel = &brw->intel;
65   struct brw_vue_map *vue_map = &c->prog_data.vue_map;
66   GLbitfield64 outputs_written = c->prog_data.outputs_written;
67   int i;
68
69   vue_map->num_slots = 0;
70   for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
71      vue_map->vert_result_to_slot[i] = -1;
72      vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
73   }
74
75   /* VUE header: format depends on chip generation and whether clipping is
76    * enabled.
77    */
78   switch (intel->gen) {
79   case 4:
80      /* There are 8 dwords in VUE header pre-Ironlake:
81       * dword 0-3 is indices, point width, clip flags.
82       * dword 4-7 is ndc position
83       * dword 8-11 is the first vertex data.
84       */
85      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
86      assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
87      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
88      break;
89   case 5:
90      /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
91       * dword 0-3 of the header is indices, point width, clip flags.
92       * dword 4-7 is the ndc position
93       * dword 8-11 of the vertex header is the 4D space position
94       * dword 12-19 of the vertex header is the user clip distance.
95       * dword 20-23 is a pad so that the vertex element data is aligned
96       * dword 24-27 is the first vertex data we fill.
97       *
98       * Note: future pipeline stages expect 4D space position to be
99       * contiguous with the other vert_results, so we make dword 24-27 a
100       * duplicate copy of the 4D space position.
101       */
102      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
103      assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
104      assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
105      assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
106      assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
107      assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
108      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
109      break;
110   case 6:
111   case 7:
112      /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
113       * dword 0-3 of the header is indices, point width, clip flags.
114       * dword 4-7 is the 4D space position
115       * dword 8-15 of the vertex header is the user clip distance if
116       * enabled.
117       * dword 8-11 or 16-19 is the first vertex element data we fill.
118       */
119      assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
120      assign_vue_slot(vue_map, VERT_RESULT_HPOS);
121      if (c->key.userclip_active) {
122         assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
123         assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
124      }
125      /* front and back colors need to be consecutive so that we can use
126       * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
127       * two-sided color.
128       */
129      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
130         assign_vue_slot(vue_map, VERT_RESULT_COL0);
131      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
132         assign_vue_slot(vue_map, VERT_RESULT_BFC0);
133      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
134         assign_vue_slot(vue_map, VERT_RESULT_COL1);
135      if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
136         assign_vue_slot(vue_map, VERT_RESULT_BFC1);
137      break;
138   default:
139      assert (!"VUE map not known for this chip generation");
140      break;
141   }
142
143   /* The hardware doesn't care about the rest of the vertex outputs, so just
144    * assign them contiguously.  Don't reassign outputs that already have a
145    * slot.
146    *
147    * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
148    * since it is unsupported.  In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
149    * be needed for transform feedback; since we don't want to have to
150    * recompute the VUE map (and everything that depends on it) when transform
151    * feedback is enabled or disabled, just go ahead and assign a slot for it.
152    */
153   for (int i = 0; i < VERT_RESULT_MAX; ++i) {
154      if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
155         continue;
156      if ((outputs_written & BITFIELD64_BIT(i)) &&
157          vue_map->vert_result_to_slot[i] == -1) {
158         assign_vue_slot(vue_map, i);
159      }
160   }
161}
162
163
164/**
165 * Decide which set of clip planes should be used when clipping via
166 * gl_Position or gl_ClipVertex.
167 */
168gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
169{
170   if (ctx->Shader.CurrentVertexProgram) {
171      /* There is currently a GLSL vertex shader, so clip according to GLSL
172       * rules, which means compare gl_ClipVertex (or gl_Position, if
173       * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
174       * that were stored in EyeUserPlane at the time the clip planes were
175       * specified.
176       */
177      return ctx->Transform.EyeUserPlane;
178   } else {
179      /* Either we are using fixed function or an ARB vertex program.  In
180       * either case the clip planes are going to be compared against
181       * gl_Position (which is in clip coordinates) so we have to clip using
182       * _ClipUserPlane, which was transformed into clip coordinates by Mesa
183       * core.
184       */
185      return ctx->Transform._ClipUserPlane;
186   }
187}
188
189
190static bool
191do_vs_prog(struct brw_context *brw,
192	   struct gl_shader_program *prog,
193	   struct brw_vertex_program *vp,
194	   struct brw_vs_prog_key *key)
195{
196   struct gl_context *ctx = &brw->intel.ctx;
197   struct intel_context *intel = &brw->intel;
198   GLuint program_size;
199   const GLuint *program;
200   struct brw_vs_compile c;
201   void *mem_ctx;
202   int aux_size;
203   int i;
204
205   memset(&c, 0, sizeof(c));
206   memcpy(&c.key, key, sizeof(*key));
207
208   mem_ctx = ralloc_context(NULL);
209
210   brw_init_compile(brw, &c.func, mem_ctx);
211   c.vp = vp;
212
213   c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
214   c.prog_data.inputs_read = vp->program.Base.InputsRead;
215
216   if (c.key.copy_edgeflag) {
217      c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
218      c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
219   }
220
221   /* Put dummy slots into the VUE for the SF to put the replaced
222    * point sprite coords in.  We shouldn't need these dummy slots,
223    * which take up precious URB space, but it would mean that the SF
224    * doesn't get nice aligned pairs of input coords into output
225    * coords, which would be a pain to handle.
226    */
227   for (i = 0; i < 8; i++) {
228      if (c.key.point_coord_replace & (1 << i))
229	 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
230   }
231
232   brw_compute_vue_map(&c);
233
234   if (0) {
235      _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
236			       true);
237   }
238
239   /* Emit GEN4 code.
240    */
241   if (prog) {
242      if (!brw_vs_emit(prog, &c)) {
243	 ralloc_free(mem_ctx);
244	 return false;
245      }
246   } else {
247      brw_old_vs_emit(&c);
248   }
249
250   if (c.prog_data.nr_pull_params)
251      c.prog_data.num_surfaces = 1;
252   if (c.vp->program.Base.SamplersUsed)
253      c.prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
254
255   /* Scratch space is used for register spilling */
256   if (c.last_scratch) {
257      c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
258
259      brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
260			 c.prog_data.total_scratch * brw->max_vs_threads);
261   }
262
263   /* get the program
264    */
265   program = brw_get_program(&c.func, &program_size);
266
267   /* We upload from &c.prog_data including the constant_map assuming
268    * they're packed together.  It would be nice to have a
269    * compile-time assert macro here.
270    */
271   assert(c.constant_map == (int8_t *)&c.prog_data +
272	  sizeof(c.prog_data));
273   assert(ctx->Const.VertexProgram.MaxNativeParameters ==
274	  ARRAY_SIZE(c.constant_map));
275   (void) ctx;
276
277   aux_size = sizeof(c.prog_data);
278   /* constant_map */
279   aux_size += c.vp->program.Base.Parameters->NumParameters;
280
281   brw_upload_cache(&brw->cache, BRW_VS_PROG,
282		    &c.key, sizeof(c.key),
283		    program, program_size,
284		    &c.prog_data, aux_size,
285		    &brw->vs.prog_offset, &brw->vs.prog_data);
286   ralloc_free(mem_ctx);
287
288   return true;
289}
290
291
292static void brw_upload_vs_prog(struct brw_context *brw)
293{
294   struct intel_context *intel = &brw->intel;
295   struct gl_context *ctx = &intel->ctx;
296   struct brw_vs_prog_key key;
297   /* BRW_NEW_VERTEX_PROGRAM */
298   struct brw_vertex_program *vp =
299      (struct brw_vertex_program *)brw->vertex_program;
300   struct gl_program *prog = (struct gl_program *) brw->vertex_program;
301   int i;
302
303   memset(&key, 0, sizeof(key));
304
305   /* Just upload the program verbatim for now.  Always send it all
306    * the inputs it asks for, whether they are varying or not.
307    */
308   key.program_string_id = vp->id;
309   key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
310   key.uses_clip_distance = vp->program.UsesClipDistance;
311   if (key.userclip_active && !key.uses_clip_distance) {
312      if (intel->gen < 6) {
313         key.nr_userclip_plane_consts
314            = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
315         key.userclip_planes_enabled_gen_4_5
316            = ctx->Transform.ClipPlanesEnabled;
317      } else {
318         key.nr_userclip_plane_consts
319            = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
320      }
321   }
322   key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
323			ctx->Polygon.BackMode != GL_FILL);
324
325   /* _NEW_LIGHT | _NEW_BUFFERS */
326   key.clamp_vertex_color = ctx->Light._ClampVertexColor;
327
328   /* _NEW_POINT */
329   if (ctx->Point.PointSprite) {
330      for (i = 0; i < 8; i++) {
331	 if (ctx->Point.CoordReplace[i])
332	    key.point_coord_replace |= (1 << i);
333      }
334   }
335
336   /* _NEW_TEXTURE */
337   brw_populate_sampler_prog_key_data(ctx, prog, &key.tex);
338
339   /* BRW_NEW_VERTICES */
340   for (i = 0; i < VERT_ATTRIB_MAX; i++) {
341      if (vp->program.Base.InputsRead & BITFIELD64_BIT(i) &&
342	  brw->vb.inputs[i].glarray->Type == GL_FIXED) {
343	 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
344      }
345   }
346
347   if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
348			 &key, sizeof(key),
349			 &brw->vs.prog_offset, &brw->vs.prog_data)) {
350      bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
351				vp, &key);
352
353      assert(success);
354   }
355   brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
356			   sizeof(*brw->vs.prog_data));
357}
358
359/* See brw_vs.c:
360 */
361const struct brw_tracked_state brw_vs_prog = {
362   .dirty = {
363      .mesa  = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
364		_NEW_TEXTURE |
365		_NEW_BUFFERS),
366      .brw   = (BRW_NEW_VERTEX_PROGRAM |
367		BRW_NEW_VERTICES),
368      .cache = 0
369   },
370   .emit = brw_upload_vs_prog
371};
372
373bool
374brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
375{
376   struct brw_context *brw = brw_context(ctx);
377   struct brw_vs_prog_key key;
378   uint32_t old_prog_offset = brw->vs.prog_offset;
379   struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
380   bool success;
381
382   if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
383      return true;
384
385   struct gl_vertex_program *vp = (struct gl_vertex_program *)
386      prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
387   struct brw_vertex_program *bvp = brw_vertex_program(vp);
388
389   memset(&key, 0, sizeof(key));
390
391   key.program_string_id = bvp->id;
392   key.clamp_vertex_color = true;
393
394   success = do_vs_prog(brw, prog, bvp, &key);
395
396   brw->vs.prog_offset = old_prog_offset;
397   brw->vs.prog_data = old_prog_data;
398
399   return success;
400}
401