brw_wm.c revision f8a8f069ee2dae35470c6e2a681e5e110044e6fe
1/*
2 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28  * Authors:
29  *   Keith Whitwell <keith@tungstengraphics.com>
30  */
31
32#include "brw_context.h"
33#include "brw_wm.h"
34#include "brw_state.h"
35#include "main/formats.h"
36#include "main/fbobject.h"
37#include "main/samplerobj.h"
38#include "program/prog_parameter.h"
39
40#include "glsl/ralloc.h"
41
42/** Return number of src args for given instruction */
43GLuint brw_wm_nr_args( GLuint opcode )
44{
45   switch (opcode) {
46   case WM_FRONTFACING:
47   case WM_PIXELXY:
48      return 0;
49   case WM_CINTERP:
50   case WM_WPOSXY:
51   case WM_DELTAXY:
52      return 1;
53   case WM_LINTERP:
54   case WM_PIXELW:
55      return 2;
56   case WM_FB_WRITE:
57   case WM_PINTERP:
58      return 3;
59   default:
60      assert(opcode < MAX_OPCODE);
61      return _mesa_num_inst_src_regs(opcode);
62   }
63}
64
65
66GLuint brw_wm_is_scalar_result( GLuint opcode )
67{
68   switch (opcode) {
69   case OPCODE_COS:
70   case OPCODE_EX2:
71   case OPCODE_LG2:
72   case OPCODE_POW:
73   case OPCODE_RCP:
74   case OPCODE_RSQ:
75   case OPCODE_SIN:
76   case OPCODE_DP2:
77   case OPCODE_DP3:
78   case OPCODE_DP4:
79   case OPCODE_DPH:
80   case OPCODE_DST:
81      return 1;
82
83   default:
84      return 0;
85   }
86}
87
88
89/**
90 * Do GPU code generation for non-GLSL shader.  non-GLSL shaders have
91 * no flow control instructions so we can more readily do SSA-style
92 * optimizations.
93 */
94static void
95brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
96{
97   /* Augment fragment program.  Add instructions for pre- and
98    * post-fragment-program tasks such as interpolation and fogging.
99    */
100   brw_wm_pass_fp(c);
101
102   /* Translate to intermediate representation.  Build register usage
103    * chains.
104    */
105   brw_wm_pass0(c);
106
107   /* Dead code removal.
108    */
109   brw_wm_pass1(c);
110
111   /* Register allocation.
112    * Divide by two because we operate on 16 pixels at a time and require
113    * two GRF entries for each logical shader register.
114    */
115   c->grf_limit = BRW_WM_MAX_GRF / 2;
116
117   brw_wm_pass2(c);
118
119   /* how many general-purpose registers are used */
120   c->prog_data.reg_blocks = brw_register_blocks(c->max_wm_grf);
121
122   /* Emit GEN4 code.
123    */
124   brw_wm_emit(c);
125}
126
127
128/**
129 * Return a bitfield where bit n is set if barycentric interpolation mode n
130 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
131 */
132static unsigned
133brw_compute_barycentric_interp_modes(struct brw_context *brw,
134                                     bool shade_model_flat,
135                                     const struct gl_fragment_program *fprog)
136{
137   unsigned barycentric_interp_modes = 0;
138   int attr;
139
140   /* Loop through all fragment shader inputs to figure out what interpolation
141    * modes are in use, and set the appropriate bits in
142    * barycentric_interp_modes.
143    */
144   for (attr = 0; attr < FRAG_ATTRIB_MAX; ++attr) {
145      enum glsl_interp_qualifier interp_qualifier =
146         fprog->InterpQualifier[attr];
147      bool is_centroid = fprog->IsCentroid & BITFIELD64_BIT(attr);
148      bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1;
149
150      /* Ignore unused inputs. */
151      if (!(fprog->Base.InputsRead & BITFIELD64_BIT(attr)))
152         continue;
153
154      /* Ignore WPOS and FACE, because they don't require interpolation. */
155      if (attr == FRAG_ATTRIB_WPOS || attr == FRAG_ATTRIB_FACE)
156         continue;
157
158      /* Determine the set (or sets) of barycentric coordinates needed to
159       * interpolate this variable.  Note that when
160       * brw->needs_unlit_centroid_workaround is set, centroid interpolation
161       * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
162       * for lit pixels, so we need both sets of barycentric coordinates.
163       */
164      if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
165         if (is_centroid) {
166            barycentric_interp_modes |=
167               1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
168         }
169         if (!is_centroid || brw->needs_unlit_centroid_workaround) {
170            barycentric_interp_modes |=
171               1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
172         }
173      } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
174                 (!(shade_model_flat && is_gl_Color) &&
175                  interp_qualifier == INTERP_QUALIFIER_NONE)) {
176         if (is_centroid) {
177            barycentric_interp_modes |=
178               1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
179         }
180         if (!is_centroid || brw->needs_unlit_centroid_workaround) {
181            barycentric_interp_modes |=
182               1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
183         }
184      }
185   }
186
187   return barycentric_interp_modes;
188}
189
190
191void
192brw_wm_payload_setup(struct brw_context *brw,
193		     struct brw_wm_compile *c)
194{
195   struct intel_context *intel = &brw->intel;
196   bool uses_depth = (c->fp->program.Base.InputsRead &
197		      (1 << FRAG_ATTRIB_WPOS)) != 0;
198   unsigned barycentric_interp_modes = c->prog_data.barycentric_interp_modes;
199   int i;
200
201   if (intel->gen >= 6) {
202      /* R0-1: masks, pixel X/Y coordinates. */
203      c->nr_payload_regs = 2;
204      /* R2: only for 32-pixel dispatch.*/
205
206      /* R3-26: barycentric interpolation coordinates.  These appear in the
207       * same order that they appear in the brw_wm_barycentric_interp_mode
208       * enum.  Each set of coordinates occupies 2 registers if dispatch width
209       * == 8 and 4 registers if dispatch width == 16.  Coordinates only
210       * appear if they were enabled using the "Barycentric Interpolation
211       * Mode" bits in WM_STATE.
212       */
213      for (i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
214         if (barycentric_interp_modes & (1 << i)) {
215            c->barycentric_coord_reg[i] = c->nr_payload_regs;
216            c->nr_payload_regs += 2;
217            if (c->dispatch_width == 16) {
218               c->nr_payload_regs += 2;
219            }
220         }
221      }
222
223      /* R27: interpolated depth if uses source depth */
224      if (uses_depth) {
225	 c->source_depth_reg = c->nr_payload_regs;
226	 c->nr_payload_regs++;
227	 if (c->dispatch_width == 16) {
228	    /* R28: interpolated depth if not 8-wide. */
229	    c->nr_payload_regs++;
230	 }
231      }
232      /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W.
233       */
234      if (uses_depth) {
235	 c->source_w_reg = c->nr_payload_regs;
236	 c->nr_payload_regs++;
237	 if (c->dispatch_width == 16) {
238	    /* R30: interpolated W if not 8-wide. */
239	    c->nr_payload_regs++;
240	 }
241      }
242      /* R31: MSAA position offsets. */
243      /* R32-: bary for 32-pixel. */
244      /* R58-59: interp W for 32-pixel. */
245
246      if (c->fp->program.Base.OutputsWritten &
247	  BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
248	 c->source_depth_to_render_target = true;
249	 c->computes_depth = true;
250      }
251   } else {
252      brw_wm_lookup_iz(intel, c);
253   }
254}
255
256/**
257 * All Mesa program -> GPU code generation goes through this function.
258 * Depending on the instructions used (i.e. flow control instructions)
259 * we'll use one of two code generators.
260 */
261bool do_wm_prog(struct brw_context *brw,
262		struct gl_shader_program *prog,
263		struct brw_fragment_program *fp,
264		struct brw_wm_prog_key *key)
265{
266   struct intel_context *intel = &brw->intel;
267   struct brw_wm_compile *c;
268   const GLuint *program;
269   GLuint program_size;
270
271   c = brw->wm.compile_data;
272   if (c == NULL) {
273      brw->wm.compile_data = rzalloc(NULL, struct brw_wm_compile);
274      c = brw->wm.compile_data;
275      if (c == NULL) {
276         /* Ouch - big out of memory problem.  Can't continue
277          * without triggering a segfault, no way to signal,
278          * so just return.
279          */
280         return false;
281      }
282   } else {
283      void *instruction = c->instruction;
284      void *prog_instructions = c->prog_instructions;
285      void *vreg = c->vreg;
286      void *refs = c->refs;
287      memset(c, 0, sizeof(*brw->wm.compile_data));
288      c->instruction = instruction;
289      c->prog_instructions = prog_instructions;
290      c->vreg = vreg;
291      c->refs = refs;
292   }
293   memcpy(&c->key, key, sizeof(*key));
294
295   c->fp = fp;
296   c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
297
298   brw_init_compile(brw, &c->func, c);
299
300   c->prog_data.barycentric_interp_modes =
301      brw_compute_barycentric_interp_modes(brw, c->key.flat_shade,
302                                           &fp->program);
303
304   if (prog && prog->_LinkedShaders[MESA_SHADER_FRAGMENT]) {
305      if (!brw_wm_fs_emit(brw, c, prog))
306	 return false;
307   } else {
308      if (!c->instruction) {
309	 c->instruction = rzalloc_array(c, struct brw_wm_instruction, BRW_WM_MAX_INSN);
310	 c->prog_instructions = rzalloc_array(c, struct prog_instruction, BRW_WM_MAX_INSN);
311	 c->vreg = rzalloc_array(c, struct brw_wm_value, BRW_WM_MAX_VREG);
312	 c->refs = rzalloc_array(c, struct brw_wm_ref, BRW_WM_MAX_REF);
313      }
314
315      /* Fallback for fixed function and ARB_fp shaders. */
316      c->dispatch_width = 16;
317      brw_wm_payload_setup(brw, c);
318      brw_wm_non_glsl_emit(brw, c);
319      c->prog_data.dispatch_width = 16;
320   }
321
322   /* Scratch space is used for register spilling */
323   if (c->last_scratch) {
324      perf_debug("Fragment shader triggered register spilling.  "
325                 "Try reducing the number of live scalar values to "
326                 "improve performance.\n");
327
328      c->prog_data.total_scratch = brw_get_scratch_size(c->last_scratch);
329
330      brw_get_scratch_bo(intel, &brw->wm.scratch_bo,
331			 c->prog_data.total_scratch * brw->max_wm_threads);
332   }
333
334   if (unlikely(INTEL_DEBUG & DEBUG_WM))
335      fprintf(stderr, "\n");
336
337   /* get the program
338    */
339   program = brw_get_program(&c->func, &program_size);
340
341   brw_upload_cache(&brw->cache, BRW_WM_PROG,
342		    &c->key, sizeof(c->key),
343		    program, program_size,
344		    &c->prog_data, sizeof(c->prog_data),
345		    &brw->wm.prog_offset, &brw->wm.prog_data);
346
347   return true;
348}
349
350static bool
351key_debug(const char *name, int a, int b)
352{
353   if (a != b) {
354      perf_debug("  %s %d->%d\n", name, a, b);
355      return true;
356   } else {
357      return false;
358   }
359}
360
361bool
362brw_debug_recompile_sampler_key(const struct brw_sampler_prog_key_data *old_key,
363                                const struct brw_sampler_prog_key_data *key)
364{
365   bool found = false;
366
367   for (unsigned int i = 0; i < MAX_SAMPLERS; i++) {
368      found |= key_debug("EXT_texture_swizzle or DEPTH_TEXTURE_MODE",
369                         old_key->swizzles[i], key->swizzles[i]);
370   }
371   found |= key_debug("GL_CLAMP enabled on any texture unit's 1st coordinate",
372                      old_key->gl_clamp_mask[0], key->gl_clamp_mask[0]);
373   found |= key_debug("GL_CLAMP enabled on any texture unit's 2nd coordinate",
374                      old_key->gl_clamp_mask[1], key->gl_clamp_mask[1]);
375   found |= key_debug("GL_CLAMP enabled on any texture unit's 3rd coordinate",
376                      old_key->gl_clamp_mask[2], key->gl_clamp_mask[2]);
377   found |= key_debug("GL_MESA_ycbcr texturing\n",
378                      old_key->yuvtex_mask, key->yuvtex_mask);
379   found |= key_debug("GL_MESA_ycbcr UV swapping\n",
380                      old_key->yuvtex_swap_mask, key->yuvtex_swap_mask);
381
382   return found;
383}
384
385void
386brw_wm_debug_recompile(struct brw_context *brw,
387                       struct gl_shader_program *prog,
388                       const struct brw_wm_prog_key *key)
389{
390   struct brw_cache_item *c = NULL;
391   const struct brw_wm_prog_key *old_key = NULL;
392   bool found = false;
393
394   perf_debug("Recompiling fragment shader for program %d\n", prog->Name);
395
396   for (unsigned int i = 0; i < brw->cache.size; i++) {
397      for (c = brw->cache.items[i]; c; c = c->next) {
398         if (c->cache_id == BRW_WM_PROG) {
399            old_key = c->key;
400
401            if (old_key->program_string_id == key->program_string_id)
402               break;
403         }
404      }
405      if (c)
406         break;
407   }
408
409   if (!c) {
410      perf_debug("  Didn't find previous compile in the shader cache for "
411                 "debug\n");
412      return;
413   }
414
415   found |= key_debug("alphatest, computed depth, depth test, or depth write",
416                      old_key->iz_lookup, key->iz_lookup);
417   found |= key_debug("depth statistics", old_key->stats_wm, key->stats_wm);
418   found |= key_debug("flat shading", old_key->flat_shade, key->flat_shade);
419   found |= key_debug("number of color buffers", old_key->nr_color_regions, key->nr_color_regions);
420   found |= key_debug("rendering to FBO", old_key->render_to_fbo, key->render_to_fbo);
421   found |= key_debug("fragment color clamping", old_key->clamp_fragment_color, key->clamp_fragment_color);
422   found |= key_debug("line smoothing", old_key->line_aa, key->line_aa);
423   found |= key_debug("proj_attrib_mask", old_key->proj_attrib_mask, key->proj_attrib_mask);
424   found |= key_debug("renderbuffer height", old_key->drawable_height, key->drawable_height);
425   found |= key_debug("vertex shader outputs", old_key->vp_outputs_written, key->vp_outputs_written);
426
427   found |= brw_debug_recompile_sampler_key(&old_key->tex, &key->tex);
428
429   if (!found) {
430      perf_debug("  Something else\n");
431   }
432}
433
434void
435brw_populate_sampler_prog_key_data(struct gl_context *ctx,
436				   const struct gl_program *prog,
437				   struct brw_sampler_prog_key_data *key)
438{
439   for (int s = 0; s < MAX_SAMPLERS; s++) {
440      key->swizzles[s] = SWIZZLE_NOOP;
441
442      if (!(prog->SamplersUsed & (1 << s)))
443	 continue;
444
445      int unit_id = prog->SamplerUnits[s];
446      const struct gl_texture_unit *unit = &ctx->Texture.Unit[unit_id];
447
448      if (unit->_ReallyEnabled && unit->_Current->Target != GL_TEXTURE_BUFFER) {
449	 const struct gl_texture_object *t = unit->_Current;
450	 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
451	 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit_id);
452	 int swizzles[SWIZZLE_NIL + 1] = {
453	    SWIZZLE_X,
454	    SWIZZLE_Y,
455	    SWIZZLE_Z,
456	    SWIZZLE_W,
457	    SWIZZLE_ZERO,
458	    SWIZZLE_ONE,
459	    SWIZZLE_NIL
460	 };
461
462	 if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
463	     img->_BaseFormat == GL_DEPTH_STENCIL) {
464	    /* We handle GL_DEPTH_TEXTURE_MODE here instead of as surface
465	     * format overrides because shadow comparison always returns the
466	     * result of the comparison in all channels anyway.
467	     */
468	    switch (t->DepthMode) {
469	    case GL_ALPHA:
470	       swizzles[0] = SWIZZLE_ZERO;
471	       swizzles[1] = SWIZZLE_ZERO;
472	       swizzles[2] = SWIZZLE_ZERO;
473	       swizzles[3] = SWIZZLE_X;
474	       break;
475	    case GL_LUMINANCE:
476	       swizzles[0] = SWIZZLE_X;
477	       swizzles[1] = SWIZZLE_X;
478	       swizzles[2] = SWIZZLE_X;
479	       swizzles[3] = SWIZZLE_ONE;
480	       break;
481	    case GL_INTENSITY:
482	       swizzles[0] = SWIZZLE_X;
483	       swizzles[1] = SWIZZLE_X;
484	       swizzles[2] = SWIZZLE_X;
485	       swizzles[3] = SWIZZLE_X;
486	       break;
487	    case GL_RED:
488	       swizzles[0] = SWIZZLE_X;
489	       swizzles[1] = SWIZZLE_ZERO;
490	       swizzles[2] = SWIZZLE_ZERO;
491	       swizzles[3] = SWIZZLE_ONE;
492	       break;
493	    }
494	 }
495
496	 if (img->InternalFormat == GL_YCBCR_MESA) {
497	    key->yuvtex_mask |= 1 << s;
498	    if (img->TexFormat == MESA_FORMAT_YCBCR)
499		key->yuvtex_swap_mask |= 1 << s;
500	 }
501
502	 key->swizzles[s] =
503	    MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
504			  swizzles[GET_SWZ(t->_Swizzle, 1)],
505			  swizzles[GET_SWZ(t->_Swizzle, 2)],
506			  swizzles[GET_SWZ(t->_Swizzle, 3)]);
507
508	 if (sampler->MinFilter != GL_NEAREST &&
509	     sampler->MagFilter != GL_NEAREST) {
510	    if (sampler->WrapS == GL_CLAMP)
511	       key->gl_clamp_mask[0] |= 1 << s;
512	    if (sampler->WrapT == GL_CLAMP)
513	       key->gl_clamp_mask[1] |= 1 << s;
514	    if (sampler->WrapR == GL_CLAMP)
515	       key->gl_clamp_mask[2] |= 1 << s;
516	 }
517      }
518   }
519}
520
521static void brw_wm_populate_key( struct brw_context *brw,
522				 struct brw_wm_prog_key *key )
523{
524   struct gl_context *ctx = &brw->intel.ctx;
525   struct intel_context *intel = &brw->intel;
526   /* BRW_NEW_FRAGMENT_PROGRAM */
527   const struct brw_fragment_program *fp =
528      (struct brw_fragment_program *)brw->fragment_program;
529   const struct gl_program *prog = (struct gl_program *) brw->fragment_program;
530   GLuint lookup = 0;
531   GLuint line_aa;
532   bool program_uses_dfdy = fp->program.UsesDFdy;
533
534   memset(key, 0, sizeof(*key));
535
536   /* Build the index for table lookup
537    */
538   if (intel->gen < 6) {
539      /* _NEW_COLOR */
540      if (fp->program.UsesKill || ctx->Color.AlphaEnabled)
541	 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
542
543      if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
544	 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
545
546      /* _NEW_DEPTH */
547      if (ctx->Depth.Test)
548	 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
549
550      if (ctx->Depth.Test && ctx->Depth.Mask) /* ?? */
551	 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
552
553      /* _NEW_STENCIL */
554      if (ctx->Stencil._Enabled) {
555	 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
556
557	 if (ctx->Stencil.WriteMask[0] ||
558	     ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
559	    lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
560      }
561      key->iz_lookup = lookup;
562   }
563
564   line_aa = AA_NEVER;
565
566   /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
567   if (ctx->Line.SmoothFlag) {
568      if (brw->intel.reduced_primitive == GL_LINES) {
569	 line_aa = AA_ALWAYS;
570      }
571      else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
572	 if (ctx->Polygon.FrontMode == GL_LINE) {
573	    line_aa = AA_SOMETIMES;
574
575	    if (ctx->Polygon.BackMode == GL_LINE ||
576		(ctx->Polygon.CullFlag &&
577		 ctx->Polygon.CullFaceMode == GL_BACK))
578	       line_aa = AA_ALWAYS;
579	 }
580	 else if (ctx->Polygon.BackMode == GL_LINE) {
581	    line_aa = AA_SOMETIMES;
582
583	    if ((ctx->Polygon.CullFlag &&
584		 ctx->Polygon.CullFaceMode == GL_FRONT))
585	       line_aa = AA_ALWAYS;
586	 }
587      }
588   }
589
590   key->line_aa = line_aa;
591
592   if (intel->gen < 6)
593      key->stats_wm = brw->intel.stats_wm;
594
595   /* BRW_NEW_WM_INPUT_DIMENSIONS */
596   /* Only set this for fixed function.  The optimization it enables isn't
597    * useful for programs using shaders.
598    */
599   if (ctx->Shader.CurrentFragmentProgram)
600      key->proj_attrib_mask = 0xffffffff;
601   else
602      key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
603
604   /* _NEW_LIGHT */
605   key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
606
607   /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
608   key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
609
610   /* _NEW_TEXTURE */
611   brw_populate_sampler_prog_key_data(ctx, prog, &key->tex);
612
613   /* _NEW_BUFFERS */
614   /*
615    * Include the draw buffer origin and height so that we can calculate
616    * fragment position values relative to the bottom left of the drawable,
617    * from the incoming screen origin relative position we get as part of our
618    * payload.
619    *
620    * This is only needed for the WM_WPOSXY opcode when the fragment program
621    * uses the gl_FragCoord input.
622    *
623    * We could avoid recompiling by including this as a constant referenced by
624    * our program, but if we were to do that it would also be nice to handle
625    * getting that constant updated at batchbuffer submit time (when we
626    * hold the lock and know where the buffer really is) rather than at emit
627    * time when we don't hold the lock and are just guessing.  We could also
628    * just avoid using this as key data if the program doesn't use
629    * fragment.position.
630    *
631    * For DRI2 the origin_x/y will always be (0,0) but we still need the
632    * drawable height in order to invert the Y axis.
633    */
634   if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
635      key->drawable_height = ctx->DrawBuffer->Height;
636   }
637
638   if ((fp->program.Base.InputsRead & FRAG_BIT_WPOS) || program_uses_dfdy) {
639      key->render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
640   }
641
642   /* _NEW_BUFFERS */
643   key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
644  /* _NEW_MULTISAMPLE */
645   key->sample_alpha_to_coverage = ctx->Multisample.SampleAlphaToCoverage;
646
647   /* CACHE_NEW_VS_PROG */
648   if (intel->gen < 6)
649      key->vp_outputs_written = brw->vs.prog_data->outputs_written;
650
651   /* The unique fragment program ID */
652   key->program_string_id = fp->id;
653}
654
655
656static void
657brw_upload_wm_prog(struct brw_context *brw)
658{
659   struct intel_context *intel = &brw->intel;
660   struct gl_context *ctx = &intel->ctx;
661   struct brw_wm_prog_key key;
662   struct brw_fragment_program *fp = (struct brw_fragment_program *)
663      brw->fragment_program;
664
665   brw_wm_populate_key(brw, &key);
666
667   if (!brw_search_cache(&brw->cache, BRW_WM_PROG,
668			 &key, sizeof(key),
669			 &brw->wm.prog_offset, &brw->wm.prog_data)) {
670      bool success = do_wm_prog(brw, ctx->Shader._CurrentFragmentProgram, fp,
671				&key);
672      (void) success;
673      assert(success);
674   }
675}
676
677
678const struct brw_tracked_state brw_wm_prog = {
679   .dirty = {
680      .mesa  = (_NEW_COLOR |
681		_NEW_DEPTH |
682		_NEW_STENCIL |
683		_NEW_POLYGON |
684		_NEW_LINE |
685		_NEW_LIGHT |
686		_NEW_FRAG_CLAMP |
687		_NEW_BUFFERS |
688		_NEW_TEXTURE |
689		_NEW_MULTISAMPLE),
690      .brw   = (BRW_NEW_FRAGMENT_PROGRAM |
691		BRW_NEW_WM_INPUT_DIMENSIONS |
692		BRW_NEW_REDUCED_PRIMITIVE),
693      .cache = CACHE_NEW_VS_PROG,
694   },
695   .emit = brw_upload_wm_prog
696};
697
698