1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc.  All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30extern "C" {
31#include "glheader.h"
32#include "imports.h"
33#include "mtypes.h"
34#include "main/uniforms.h"
35#include "main/macros.h"
36#include "main/samplerobj.h"
37#include "program/program.h"
38#include "program/prog_parameter.h"
39#include "program/prog_cache.h"
40#include "program/prog_instruction.h"
41#include "program/prog_print.h"
42#include "program/prog_statevars.h"
43#include "program/programopt.h"
44#include "texenvprogram.h"
45}
46#include "main/uniforms.h"
47#include "../glsl/glsl_types.h"
48#include "../glsl/ir.h"
49#include "../glsl/ir_builder.h"
50#include "../glsl/glsl_symbol_table.h"
51#include "../glsl/glsl_parser_extras.h"
52#include "../glsl/ir_optimization.h"
53#include "../glsl/ir_print_visitor.h"
54#include "../program/ir_to_mesa.h"
55
56using namespace ir_builder;
57
58/*
59 * Note on texture units:
60 *
61 * The number of texture units supported by fixed-function fragment
62 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
63 * That's because there's a one-to-one correspondence between texture
64 * coordinates and samplers in fixed-function processing.
65 *
66 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
67 * sets of texcoords, so is fixed-function fragment processing.
68 *
69 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
70 */
71
72
73struct texenvprog_cache_item
74{
75   GLuint hash;
76   void *key;
77   struct gl_shader_program *data;
78   struct texenvprog_cache_item *next;
79};
80
81static GLboolean
82texenv_doing_secondary_color(struct gl_context *ctx)
83{
84   if (ctx->Light.Enabled &&
85       (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
86      return GL_TRUE;
87
88   if (ctx->Fog.ColorSumEnabled)
89      return GL_TRUE;
90
91   return GL_FALSE;
92}
93
94struct mode_opt {
95#ifdef __GNUC__
96   __extension__ GLubyte Source:4;  /**< SRC_x */
97   __extension__ GLubyte Operand:3; /**< OPR_x */
98#else
99   GLubyte Source;  /**< SRC_x */
100   GLubyte Operand; /**< OPR_x */
101#endif
102};
103
104struct state_key {
105   GLuint nr_enabled_units:8;
106   GLuint enabled_units:8;
107   GLuint separate_specular:1;
108   GLuint fog_enabled:1;
109   GLuint fog_mode:2;          /**< FOG_x */
110   GLuint inputs_available:12;
111   GLuint num_draw_buffers:4;
112
113   /* NOTE: This array of structs must be last! (see "keySize" below) */
114   struct {
115      GLuint enabled:1;
116      GLuint source_index:4;   /**< TEXTURE_x_INDEX */
117      GLuint shadow:1;
118      GLuint ScaleShiftRGB:2;
119      GLuint ScaleShiftA:2;
120
121      GLuint NumArgsRGB:3;  /**< up to MAX_COMBINER_TERMS */
122      GLuint ModeRGB:5;     /**< MODE_x */
123
124      GLuint NumArgsA:3;  /**< up to MAX_COMBINER_TERMS */
125      GLuint ModeA:5;     /**< MODE_x */
126
127      struct mode_opt OptRGB[MAX_COMBINER_TERMS];
128      struct mode_opt OptA[MAX_COMBINER_TERMS];
129   } unit[MAX_TEXTURE_UNITS];
130};
131
132#define FOG_LINEAR  0
133#define FOG_EXP     1
134#define FOG_EXP2    2
135#define FOG_UNKNOWN 3
136
137static GLuint translate_fog_mode( GLenum mode )
138{
139   switch (mode) {
140   case GL_LINEAR: return FOG_LINEAR;
141   case GL_EXP: return FOG_EXP;
142   case GL_EXP2: return FOG_EXP2;
143   default: return FOG_UNKNOWN;
144   }
145}
146
147#define OPR_SRC_COLOR           0
148#define OPR_ONE_MINUS_SRC_COLOR 1
149#define OPR_SRC_ALPHA           2
150#define OPR_ONE_MINUS_SRC_ALPHA	3
151#define OPR_ZERO                4
152#define OPR_ONE                 5
153#define OPR_UNKNOWN             7
154
155static GLuint translate_operand( GLenum operand )
156{
157   switch (operand) {
158   case GL_SRC_COLOR: return OPR_SRC_COLOR;
159   case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
160   case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
161   case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
162   case GL_ZERO: return OPR_ZERO;
163   case GL_ONE: return OPR_ONE;
164   default:
165      assert(0);
166      return OPR_UNKNOWN;
167   }
168}
169
170#define SRC_TEXTURE  0
171#define SRC_TEXTURE0 1
172#define SRC_TEXTURE1 2
173#define SRC_TEXTURE2 3
174#define SRC_TEXTURE3 4
175#define SRC_TEXTURE4 5
176#define SRC_TEXTURE5 6
177#define SRC_TEXTURE6 7
178#define SRC_TEXTURE7 8
179#define SRC_CONSTANT 9
180#define SRC_PRIMARY_COLOR 10
181#define SRC_PREVIOUS 11
182#define SRC_ZERO     12
183#define SRC_UNKNOWN  15
184
185static GLuint translate_source( GLenum src )
186{
187   switch (src) {
188   case GL_TEXTURE: return SRC_TEXTURE;
189   case GL_TEXTURE0:
190   case GL_TEXTURE1:
191   case GL_TEXTURE2:
192   case GL_TEXTURE3:
193   case GL_TEXTURE4:
194   case GL_TEXTURE5:
195   case GL_TEXTURE6:
196   case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
197   case GL_CONSTANT: return SRC_CONSTANT;
198   case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
199   case GL_PREVIOUS: return SRC_PREVIOUS;
200   case GL_ZERO:
201      return SRC_ZERO;
202   default:
203      assert(0);
204      return SRC_UNKNOWN;
205   }
206}
207
208#define MODE_REPLACE                     0  /* r = a0 */
209#define MODE_MODULATE                    1  /* r = a0 * a1 */
210#define MODE_ADD                         2  /* r = a0 + a1 */
211#define MODE_ADD_SIGNED                  3  /* r = a0 + a1 - 0.5 */
212#define MODE_INTERPOLATE                 4  /* r = a0 * a2 + a1 * (1 - a2) */
213#define MODE_SUBTRACT                    5  /* r = a0 - a1 */
214#define MODE_DOT3_RGB                    6  /* r = a0 . a1 */
215#define MODE_DOT3_RGB_EXT                7  /* r = a0 . a1 */
216#define MODE_DOT3_RGBA                   8  /* r = a0 . a1 */
217#define MODE_DOT3_RGBA_EXT               9  /* r = a0 . a1 */
218#define MODE_MODULATE_ADD_ATI           10  /* r = a0 * a2 + a1 */
219#define MODE_MODULATE_SIGNED_ADD_ATI    11  /* r = a0 * a2 + a1 - 0.5 */
220#define MODE_MODULATE_SUBTRACT_ATI      12  /* r = a0 * a2 - a1 */
221#define MODE_ADD_PRODUCTS               13  /* r = a0 * a1 + a2 * a3 */
222#define MODE_ADD_PRODUCTS_SIGNED        14  /* r = a0 * a1 + a2 * a3 - 0.5 */
223#define MODE_BUMP_ENVMAP_ATI            15  /* special */
224#define MODE_UNKNOWN                    16
225
226/**
227 * Translate GL combiner state into a MODE_x value
228 */
229static GLuint translate_mode( GLenum envMode, GLenum mode )
230{
231   switch (mode) {
232   case GL_REPLACE: return MODE_REPLACE;
233   case GL_MODULATE: return MODE_MODULATE;
234   case GL_ADD:
235      if (envMode == GL_COMBINE4_NV)
236         return MODE_ADD_PRODUCTS;
237      else
238         return MODE_ADD;
239   case GL_ADD_SIGNED:
240      if (envMode == GL_COMBINE4_NV)
241         return MODE_ADD_PRODUCTS_SIGNED;
242      else
243         return MODE_ADD_SIGNED;
244   case GL_INTERPOLATE: return MODE_INTERPOLATE;
245   case GL_SUBTRACT: return MODE_SUBTRACT;
246   case GL_DOT3_RGB: return MODE_DOT3_RGB;
247   case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
248   case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
249   case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
250   case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
251   case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
252   case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
253   case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
254   default:
255      assert(0);
256      return MODE_UNKNOWN;
257   }
258}
259
260
261/**
262 * Do we need to clamp the results of the given texture env/combine mode?
263 * If the inputs to the mode are in [0,1] we don't always have to clamp
264 * the results.
265 */
266static GLboolean
267need_saturate( GLuint mode )
268{
269   switch (mode) {
270   case MODE_REPLACE:
271   case MODE_MODULATE:
272   case MODE_INTERPOLATE:
273      return GL_FALSE;
274   case MODE_ADD:
275   case MODE_ADD_SIGNED:
276   case MODE_SUBTRACT:
277   case MODE_DOT3_RGB:
278   case MODE_DOT3_RGB_EXT:
279   case MODE_DOT3_RGBA:
280   case MODE_DOT3_RGBA_EXT:
281   case MODE_MODULATE_ADD_ATI:
282   case MODE_MODULATE_SIGNED_ADD_ATI:
283   case MODE_MODULATE_SUBTRACT_ATI:
284   case MODE_ADD_PRODUCTS:
285   case MODE_ADD_PRODUCTS_SIGNED:
286   case MODE_BUMP_ENVMAP_ATI:
287      return GL_TRUE;
288   default:
289      assert(0);
290      return GL_FALSE;
291   }
292}
293
294
295
296/**
297 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
298 */
299static GLuint translate_tex_src_bit( GLbitfield bit )
300{
301   ASSERT(bit);
302   return ffs(bit) - 1;
303}
304
305
306#define VERT_BIT_TEX_ANY    (0xff << VERT_ATTRIB_TEX0)
307#define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
308
309/**
310 * Identify all possible varying inputs.  The fragment program will
311 * never reference non-varying inputs, but will track them via state
312 * constants instead.
313 *
314 * This function figures out all the inputs that the fragment program
315 * has access to.  The bitmask is later reduced to just those which
316 * are actually referenced.
317 */
318static GLbitfield get_fp_input_mask( struct gl_context *ctx )
319{
320   /* _NEW_PROGRAM */
321   const GLboolean vertexShader =
322      (ctx->Shader.CurrentVertexProgram &&
323       ctx->Shader.CurrentVertexProgram->LinkStatus &&
324       ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]);
325   const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
326   GLbitfield fp_inputs = 0x0;
327
328   if (ctx->VertexProgram._Overriden) {
329      /* Somebody's messing with the vertex program and we don't have
330       * a clue what's happening.  Assume that it could be producing
331       * all possible outputs.
332       */
333      fp_inputs = ~0;
334   }
335   else if (ctx->RenderMode == GL_FEEDBACK) {
336      /* _NEW_RENDERMODE */
337      fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
338   }
339   else if (!(vertexProgram || vertexShader)) {
340      /* Fixed function vertex logic */
341      /* _NEW_VARYING_VP_INPUTS */
342      GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
343
344      /* These get generated in the setup routine regardless of the
345       * vertex program:
346       */
347      /* _NEW_POINT */
348      if (ctx->Point.PointSprite)
349         varying_inputs |= FRAG_BITS_TEX_ANY;
350
351      /* First look at what values may be computed by the generated
352       * vertex program:
353       */
354      /* _NEW_LIGHT */
355      if (ctx->Light.Enabled) {
356         fp_inputs |= FRAG_BIT_COL0;
357
358         if (texenv_doing_secondary_color(ctx))
359            fp_inputs |= FRAG_BIT_COL1;
360      }
361
362      /* _NEW_TEXTURE */
363      fp_inputs |= (ctx->Texture._TexGenEnabled |
364                    ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
365
366      /* Then look at what might be varying as a result of enabled
367       * arrays, etc:
368       */
369      if (varying_inputs & VERT_BIT_COLOR0)
370         fp_inputs |= FRAG_BIT_COL0;
371      if (varying_inputs & VERT_BIT_COLOR1)
372         fp_inputs |= FRAG_BIT_COL1;
373
374      fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
375                    << FRAG_ATTRIB_TEX0);
376
377   }
378   else {
379      /* calculate from vp->outputs */
380      struct gl_program *vprog;
381      GLbitfield64 vp_outputs;
382
383      /* Choose GLSL vertex shader over ARB vertex program.  Need this
384       * since vertex shader state validation comes after fragment state
385       * validation (see additional comments in state.c).
386       */
387      if (vertexShader)
388         vprog = ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
389      else
390         vprog = &ctx->VertexProgram.Current->Base;
391
392      vp_outputs = vprog->OutputsWritten;
393
394      /* These get generated in the setup routine regardless of the
395       * vertex program:
396       */
397      /* _NEW_POINT */
398      if (ctx->Point.PointSprite)
399         vp_outputs |= FRAG_BITS_TEX_ANY;
400
401      if (vp_outputs & (1 << VERT_RESULT_COL0))
402         fp_inputs |= FRAG_BIT_COL0;
403      if (vp_outputs & (1 << VERT_RESULT_COL1))
404         fp_inputs |= FRAG_BIT_COL1;
405
406      fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
407                    << FRAG_ATTRIB_TEX0);
408   }
409
410   return fp_inputs;
411}
412
413
414/**
415 * Examine current texture environment state and generate a unique
416 * key to identify it.
417 */
418static GLuint make_state_key( struct gl_context *ctx,  struct state_key *key )
419{
420   GLuint i, j;
421   GLbitfield inputs_referenced = FRAG_BIT_COL0;
422   const GLbitfield inputs_available = get_fp_input_mask( ctx );
423   GLuint keySize;
424
425   memset(key, 0, sizeof(*key));
426
427   /* _NEW_TEXTURE */
428   for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
429      const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
430      const struct gl_texture_object *texObj = texUnit->_Current;
431      const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
432      const struct gl_sampler_object *samp;
433      GLenum format;
434
435      if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
436         continue;
437
438      samp = _mesa_get_samplerobj(ctx, i);
439      format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
440
441      key->unit[i].enabled = 1;
442      key->enabled_units |= (1<<i);
443      key->nr_enabled_units = i + 1;
444      inputs_referenced |= FRAG_BIT_TEX(i);
445
446      key->unit[i].source_index =
447         translate_tex_src_bit(texUnit->_ReallyEnabled);
448
449      key->unit[i].shadow =
450         ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
451          ((format == GL_DEPTH_COMPONENT) ||
452           (format == GL_DEPTH_STENCIL_EXT)));
453
454      key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
455      key->unit[i].NumArgsA = comb->_NumArgsA;
456
457      key->unit[i].ModeRGB =
458	 translate_mode(texUnit->EnvMode, comb->ModeRGB);
459      key->unit[i].ModeA =
460	 translate_mode(texUnit->EnvMode, comb->ModeA);
461
462      key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
463      key->unit[i].ScaleShiftA = comb->ScaleShiftA;
464
465      for (j = 0; j < MAX_COMBINER_TERMS; j++) {
466         key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
467         key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
468         key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
469         key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
470      }
471
472      if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
473         /* requires some special translation */
474         key->unit[i].NumArgsRGB = 2;
475         key->unit[i].ScaleShiftRGB = 0;
476         key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
477         key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
478         key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
479         key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
480       }
481   }
482
483   /* _NEW_LIGHT | _NEW_FOG */
484   if (texenv_doing_secondary_color(ctx)) {
485      key->separate_specular = 1;
486      inputs_referenced |= FRAG_BIT_COL1;
487   }
488
489   /* _NEW_FOG */
490   if (ctx->Fog.Enabled) {
491      key->fog_enabled = 1;
492      key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
493      inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
494   }
495
496   /* _NEW_BUFFERS */
497   key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
498
499   /* _NEW_COLOR */
500   if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
501      /* if alpha test is enabled we need to emit at least one color */
502      key->num_draw_buffers = 1;
503   }
504
505   key->inputs_available = (inputs_available & inputs_referenced);
506
507   /* compute size of state key, ignoring unused texture units */
508   keySize = sizeof(*key) - sizeof(key->unit)
509      + key->nr_enabled_units * sizeof(key->unit[0]);
510
511   return keySize;
512}
513
514
515/** State used to build the fragment program:
516 */
517class texenv_fragment_program : public ir_factory {
518public:
519   struct gl_shader_program *shader_program;
520   struct gl_shader *shader;
521   exec_list *top_instructions;
522   struct state_key *state;
523
524   ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
525   /* Reg containing each texture unit's sampled texture color,
526    * else undef.
527    */
528
529   /* Texcoord override from bumpmapping. */
530   ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
531
532   /* Reg containing texcoord for a texture unit,
533    * needed for bump mapping, else undef.
534    */
535
536   ir_rvalue *src_previous;	/**< Reg containing color from previous
537				 * stage.  May need to be decl'd.
538				 */
539};
540
541static ir_rvalue *
542get_current_attrib(struct texenv_fragment_program *p, GLuint attrib)
543{
544   ir_variable *current;
545   ir_rvalue *val;
546
547   current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
548   current->max_array_access = MAX2(current->max_array_access, attrib);
549   val = new(p->mem_ctx) ir_dereference_variable(current);
550   ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
551   return new(p->mem_ctx) ir_dereference_array(val, index);
552}
553
554static ir_rvalue *
555get_gl_Color(struct texenv_fragment_program *p)
556{
557   if (p->state->inputs_available & FRAG_BIT_COL0) {
558      ir_variable *var = p->shader->symbols->get_variable("gl_Color");
559      assert(var);
560      return new(p->mem_ctx) ir_dereference_variable(var);
561   } else {
562      return get_current_attrib(p, VERT_ATTRIB_COLOR0);
563   }
564}
565
566static ir_rvalue *
567get_source(struct texenv_fragment_program *p,
568	   GLuint src, GLuint unit)
569{
570   ir_variable *var;
571   ir_dereference *deref;
572
573   switch (src) {
574   case SRC_TEXTURE:
575      return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
576
577   case SRC_TEXTURE0:
578   case SRC_TEXTURE1:
579   case SRC_TEXTURE2:
580   case SRC_TEXTURE3:
581   case SRC_TEXTURE4:
582   case SRC_TEXTURE5:
583   case SRC_TEXTURE6:
584   case SRC_TEXTURE7:
585      return new(p->mem_ctx)
586	 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
587
588   case SRC_CONSTANT:
589      var = p->shader->symbols->get_variable("gl_TextureEnvColor");
590      assert(var);
591      deref = new(p->mem_ctx) ir_dereference_variable(var);
592      var->max_array_access = MAX2(var->max_array_access, unit);
593      return new(p->mem_ctx) ir_dereference_array(deref,
594						  new(p->mem_ctx) ir_constant(unit));
595
596   case SRC_PRIMARY_COLOR:
597      var = p->shader->symbols->get_variable("gl_Color");
598      assert(var);
599      return new(p->mem_ctx) ir_dereference_variable(var);
600
601   case SRC_ZERO:
602      return new(p->mem_ctx) ir_constant(0.0f);
603
604   case SRC_PREVIOUS:
605      if (!p->src_previous) {
606	 return get_gl_Color(p);
607      } else {
608	 return p->src_previous->clone(p->mem_ctx, NULL);
609      }
610
611   default:
612      assert(0);
613      return NULL;
614   }
615}
616
617static ir_rvalue *
618emit_combine_source(struct texenv_fragment_program *p,
619		    GLuint unit,
620		    GLuint source,
621		    GLuint operand)
622{
623   ir_rvalue *src;
624
625   src = get_source(p, source, unit);
626
627   switch (operand) {
628   case OPR_ONE_MINUS_SRC_COLOR:
629      return sub(new(p->mem_ctx) ir_constant(1.0f), src);
630
631   case OPR_SRC_ALPHA:
632      return src->type->is_scalar() ? src : swizzle_w(src);
633
634   case OPR_ONE_MINUS_SRC_ALPHA: {
635      ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
636
637      return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
638   }
639
640   case OPR_ZERO:
641      return new(p->mem_ctx) ir_constant(0.0f);
642   case OPR_ONE:
643      return new(p->mem_ctx) ir_constant(1.0f);
644   case OPR_SRC_COLOR:
645      return src;
646   default:
647      assert(0);
648      return src;
649   }
650}
651
652/**
653 * Check if the RGB and Alpha sources and operands match for the given
654 * texture unit's combinder state.  When the RGB and A sources and
655 * operands match, we can emit fewer instructions.
656 */
657static GLboolean args_match( const struct state_key *key, GLuint unit )
658{
659   GLuint i, numArgs = key->unit[unit].NumArgsRGB;
660
661   for (i = 0; i < numArgs; i++) {
662      if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
663	 return GL_FALSE;
664
665      switch (key->unit[unit].OptA[i].Operand) {
666      case OPR_SRC_ALPHA:
667	 switch (key->unit[unit].OptRGB[i].Operand) {
668	 case OPR_SRC_COLOR:
669	 case OPR_SRC_ALPHA:
670	    break;
671	 default:
672	    return GL_FALSE;
673	 }
674	 break;
675      case OPR_ONE_MINUS_SRC_ALPHA:
676	 switch (key->unit[unit].OptRGB[i].Operand) {
677	 case OPR_ONE_MINUS_SRC_COLOR:
678	 case OPR_ONE_MINUS_SRC_ALPHA:
679	    break;
680	 default:
681	    return GL_FALSE;
682	 }
683	 break;
684      default:
685	 return GL_FALSE;	/* impossible */
686      }
687   }
688
689   return GL_TRUE;
690}
691
692static ir_rvalue *
693smear(struct texenv_fragment_program *p, ir_rvalue *val)
694{
695   if (!val->type->is_scalar())
696      return val;
697
698   return swizzle_xxxx(val);
699}
700
701static ir_rvalue *
702emit_combine(struct texenv_fragment_program *p,
703	     GLuint unit,
704	     GLuint nr,
705	     GLuint mode,
706	     const struct mode_opt *opt)
707{
708   ir_rvalue *src[MAX_COMBINER_TERMS];
709   ir_rvalue *tmp0, *tmp1;
710   GLuint i;
711
712   assert(nr <= MAX_COMBINER_TERMS);
713
714   for (i = 0; i < nr; i++)
715      src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
716
717   switch (mode) {
718   case MODE_REPLACE:
719      return src[0];
720
721   case MODE_MODULATE:
722      return mul(src[0], src[1]);
723
724   case MODE_ADD:
725      return add(src[0], src[1]);
726
727   case MODE_ADD_SIGNED:
728      return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
729
730   case MODE_INTERPOLATE:
731      /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
732      tmp0 = mul(src[0], src[2]);
733      tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
734			     src[2]->clone(p->mem_ctx, NULL)));
735      return add(tmp0, tmp1);
736
737   case MODE_SUBTRACT:
738      return sub(src[0], src[1]);
739
740   case MODE_DOT3_RGBA:
741   case MODE_DOT3_RGBA_EXT:
742   case MODE_DOT3_RGB_EXT:
743   case MODE_DOT3_RGB: {
744      tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
745      tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
746
747      tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
748      tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
749
750      return dot(swizzle_xyz(smear(p, tmp0)), swizzle_xyz(smear(p, tmp1)));
751   }
752   case MODE_MODULATE_ADD_ATI:
753      return add(mul(src[0], src[2]), src[1]);
754
755   case MODE_MODULATE_SIGNED_ADD_ATI:
756      return add(add(mul(src[0], src[2]), src[1]),
757		 new(p->mem_ctx) ir_constant(-0.5f));
758
759   case MODE_MODULATE_SUBTRACT_ATI:
760      return sub(mul(src[0], src[2]), src[1]);
761
762   case MODE_ADD_PRODUCTS:
763      return add(mul(src[0], src[1]), mul(src[2], src[3]));
764
765   case MODE_ADD_PRODUCTS_SIGNED:
766      return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
767		 new(p->mem_ctx) ir_constant(-0.5f));
768
769   case MODE_BUMP_ENVMAP_ATI:
770      /* special - not handled here */
771      assert(0);
772      return src[0];
773   default:
774      assert(0);
775      return src[0];
776   }
777}
778
779/**
780 * Generate instructions for one texture unit's env/combiner mode.
781 */
782static ir_rvalue *
783emit_texenv(struct texenv_fragment_program *p, GLuint unit)
784{
785   const struct state_key *key = p->state;
786   GLboolean rgb_saturate, alpha_saturate;
787   GLuint rgb_shift, alpha_shift;
788
789   if (!key->unit[unit].enabled) {
790      return get_source(p, SRC_PREVIOUS, 0);
791   }
792   if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
793      /* this isn't really a env stage delivering a color and handled elsewhere */
794      return get_source(p, SRC_PREVIOUS, 0);
795   }
796
797   switch (key->unit[unit].ModeRGB) {
798   case MODE_DOT3_RGB_EXT:
799      alpha_shift = key->unit[unit].ScaleShiftA;
800      rgb_shift = 0;
801      break;
802   case MODE_DOT3_RGBA_EXT:
803      alpha_shift = 0;
804      rgb_shift = 0;
805      break;
806   default:
807      rgb_shift = key->unit[unit].ScaleShiftRGB;
808      alpha_shift = key->unit[unit].ScaleShiftA;
809      break;
810   }
811
812   /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
813    * We don't want to clamp twice.
814    */
815   if (rgb_shift)
816      rgb_saturate = GL_FALSE;  /* saturate after rgb shift */
817   else if (need_saturate(key->unit[unit].ModeRGB))
818      rgb_saturate = GL_TRUE;
819   else
820      rgb_saturate = GL_FALSE;
821
822   if (alpha_shift)
823      alpha_saturate = GL_FALSE;  /* saturate after alpha shift */
824   else if (need_saturate(key->unit[unit].ModeA))
825      alpha_saturate = GL_TRUE;
826   else
827      alpha_saturate = GL_FALSE;
828
829   ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
830   ir_dereference *deref;
831   ir_rvalue *val;
832
833   /* Emit the RGB and A combine ops
834    */
835   if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
836       args_match(key, unit)) {
837      val = emit_combine(p, unit,
838			 key->unit[unit].NumArgsRGB,
839			 key->unit[unit].ModeRGB,
840			 key->unit[unit].OptRGB);
841      val = smear(p, val);
842      if (rgb_saturate)
843	 val = saturate(val);
844
845      p->emit(assign(temp_var, val));
846   }
847   else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
848	    key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
849      ir_rvalue *val = emit_combine(p, unit,
850				    key->unit[unit].NumArgsRGB,
851				    key->unit[unit].ModeRGB,
852				    key->unit[unit].OptRGB);
853      val = smear(p, val);
854      if (rgb_saturate)
855	 val = saturate(val);
856      p->emit(assign(temp_var, val));
857   }
858   else {
859      /* Need to do something to stop from re-emitting identical
860       * argument calculations here:
861       */
862      val = emit_combine(p, unit,
863			 key->unit[unit].NumArgsRGB,
864			 key->unit[unit].ModeRGB,
865			 key->unit[unit].OptRGB);
866      val = swizzle_xyz(smear(p, val));
867      if (rgb_saturate)
868	 val = saturate(val);
869      p->emit(assign(temp_var, val, WRITEMASK_XYZ));
870
871      val = emit_combine(p, unit,
872			 key->unit[unit].NumArgsA,
873			 key->unit[unit].ModeA,
874			 key->unit[unit].OptA);
875      val = swizzle_w(smear(p, val));
876      if (alpha_saturate)
877	 val = saturate(val);
878      p->emit(assign(temp_var, val, WRITEMASK_W));
879   }
880
881   deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
882
883   /* Deal with the final shift:
884    */
885   if (alpha_shift || rgb_shift) {
886      ir_constant *shift;
887
888      if (rgb_shift == alpha_shift) {
889	 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
890      }
891      else {
892	 float const_data[4] = {
893	    1 << rgb_shift,
894	    1 << rgb_shift,
895	    1 << rgb_shift,
896	    1 << alpha_shift
897	 };
898	 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
899					     (ir_constant_data *)const_data);
900      }
901
902      return saturate(mul(deref, shift));
903   }
904   else
905      return deref;
906}
907
908
909/**
910 * Generate instruction for getting a texture source term.
911 */
912static void load_texture( struct texenv_fragment_program *p, GLuint unit )
913{
914   ir_dereference *deref;
915
916   if (p->src_texture[unit])
917      return;
918
919   const GLuint texTarget = p->state->unit[unit].source_index;
920   ir_rvalue *texcoord;
921
922   if (!(p->state->inputs_available & (FRAG_BIT_TEX0 << unit))) {
923      texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
924   } else if (p->texcoord_tex[unit]) {
925      texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
926   } else {
927      ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
928      assert(tc_array);
929      texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
930      ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
931      texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
932      tc_array->max_array_access = MAX2(tc_array->max_array_access, unit);
933   }
934
935   if (!p->state->unit[unit].enabled) {
936      p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
937					  "dummy_tex");
938      p->emit(p->src_texture[unit]);
939
940      p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
941      return ;
942   }
943
944   const glsl_type *sampler_type = NULL;
945   int coords = 0;
946
947   switch (texTarget) {
948   case TEXTURE_1D_INDEX:
949      if (p->state->unit[unit].shadow)
950	 sampler_type = p->shader->symbols->get_type("sampler1DShadow");
951      else
952	 sampler_type = p->shader->symbols->get_type("sampler1D");
953      coords = 1;
954      break;
955   case TEXTURE_1D_ARRAY_INDEX:
956      if (p->state->unit[unit].shadow)
957	 sampler_type = p->shader->symbols->get_type("sampler1DArrayShadow");
958      else
959	 sampler_type = p->shader->symbols->get_type("sampler1DArray");
960      coords = 2;
961      break;
962   case TEXTURE_2D_INDEX:
963      if (p->state->unit[unit].shadow)
964	 sampler_type = p->shader->symbols->get_type("sampler2DShadow");
965      else
966	 sampler_type = p->shader->symbols->get_type("sampler2D");
967      coords = 2;
968      break;
969   case TEXTURE_2D_ARRAY_INDEX:
970      if (p->state->unit[unit].shadow)
971	 sampler_type = p->shader->symbols->get_type("sampler2DArrayShadow");
972      else
973	 sampler_type = p->shader->symbols->get_type("sampler2DArray");
974      coords = 3;
975      break;
976   case TEXTURE_RECT_INDEX:
977      if (p->state->unit[unit].shadow)
978	 sampler_type = p->shader->symbols->get_type("sampler2DRectShadow");
979      else
980	 sampler_type = p->shader->symbols->get_type("sampler2DRect");
981      coords = 2;
982      break;
983   case TEXTURE_3D_INDEX:
984      assert(!p->state->unit[unit].shadow);
985      sampler_type = p->shader->symbols->get_type("sampler3D");
986      coords = 3;
987      break;
988   case TEXTURE_CUBE_INDEX:
989      if (p->state->unit[unit].shadow)
990	 sampler_type = p->shader->symbols->get_type("samplerCubeShadow");
991      else
992	 sampler_type = p->shader->symbols->get_type("samplerCube");
993      coords = 3;
994      break;
995   case TEXTURE_EXTERNAL_INDEX:
996      assert(!p->state->unit[unit].shadow);
997      sampler_type = p->shader->symbols->get_type("samplerExternalOES");
998      coords = 2;
999      break;
1000   }
1001
1002   p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
1003				       "tex");
1004
1005   ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
1006
1007
1008   char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
1009   ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
1010						      sampler_name,
1011						      ir_var_uniform);
1012   p->top_instructions->push_head(sampler);
1013
1014   /* Set the texture unit for this sampler.  The linker will pick this value
1015    * up and do-the-right-thing.
1016    *
1017    * NOTE: The cast to int is important.  Without it, the constant will have
1018    * type uint, and things later on may get confused.
1019    */
1020   sampler->constant_value = new(p->mem_ctx) ir_constant(int(unit));
1021
1022   deref = new(p->mem_ctx) ir_dereference_variable(sampler);
1023   tex->set_sampler(deref, glsl_type::vec4_type);
1024
1025   tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
1026
1027   if (p->state->unit[unit].shadow) {
1028      texcoord = texcoord->clone(p->mem_ctx, NULL);
1029      tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord,
1030							  coords, 0, 0, 0,
1031							  1);
1032      coords++;
1033   }
1034
1035   texcoord = texcoord->clone(p->mem_ctx, NULL);
1036   tex->projector = swizzle_w(texcoord);
1037
1038   p->emit(assign(p->src_texture[unit], tex));
1039}
1040
1041static void
1042load_texenv_source(struct texenv_fragment_program *p,
1043		   GLuint src, GLuint unit)
1044{
1045   switch (src) {
1046   case SRC_TEXTURE:
1047      load_texture(p, unit);
1048      break;
1049
1050   case SRC_TEXTURE0:
1051   case SRC_TEXTURE1:
1052   case SRC_TEXTURE2:
1053   case SRC_TEXTURE3:
1054   case SRC_TEXTURE4:
1055   case SRC_TEXTURE5:
1056   case SRC_TEXTURE6:
1057   case SRC_TEXTURE7:
1058      load_texture(p, src - SRC_TEXTURE0);
1059      break;
1060
1061   default:
1062      /* not a texture src - do nothing */
1063      break;
1064   }
1065}
1066
1067
1068/**
1069 * Generate instructions for loading all texture source terms.
1070 */
1071static GLboolean
1072load_texunit_sources( struct texenv_fragment_program *p, GLuint unit )
1073{
1074   const struct state_key *key = p->state;
1075   GLuint i;
1076
1077   for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1078      load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1079   }
1080
1081   for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1082      load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1083   }
1084
1085   return GL_TRUE;
1086}
1087
1088/**
1089 * Generate instructions for loading bump map textures.
1090 */
1091static void
1092load_texunit_bumpmap( struct texenv_fragment_program *p, GLuint unit )
1093{
1094   const struct state_key *key = p->state;
1095   GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1096   ir_rvalue *bump;
1097   ir_rvalue *texcoord;
1098   ir_variable *rot_mat_0, *rot_mat_1;
1099
1100   rot_mat_0 = p->shader->symbols->get_variable("gl_BumpRotMatrix0MESA");
1101   rot_mat_1 = p->shader->symbols->get_variable("gl_BumpRotMatrix1MESA");
1102
1103   ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
1104   assert(tc_array);
1105   texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
1106   ir_rvalue *index = new(p->mem_ctx) ir_constant(bumpedUnitNr);
1107   texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
1108   tc_array->max_array_access = MAX2(tc_array->max_array_access, unit);
1109
1110   load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1111
1112   /* Apply rot matrix and add coords to be available in next phase.
1113    * dest = Arg1 + (Arg0.xx * rotMat0) + (Arg0.yy * rotMat1)
1114    * note only 2 coords are affected the rest are left unchanged (mul by 0)
1115    */
1116   ir_rvalue *bump_x, *bump_y;
1117
1118   texcoord = smear(p, texcoord);
1119
1120   /* bump_texcoord = texcoord */
1121   ir_variable *bumped = p->make_temp(texcoord->type, "bump_texcoord");
1122   p->emit(bumped);
1123   p->emit(assign(bumped, texcoord));
1124
1125   /* bump_texcoord.xy += arg0.x * rotmat0 + arg0.y * rotmat1 */
1126   bump = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1127   bump_x = mul(swizzle_x(bump), rot_mat_0);
1128   bump_y = mul(swizzle_y(bump->clone(p->mem_ctx, NULL)), rot_mat_1);
1129
1130   p->emit(assign(bumped, add(swizzle_xy(bumped), add(bump_x, bump_y)),
1131		  WRITEMASK_XY));
1132
1133   p->texcoord_tex[bumpedUnitNr] = bumped;
1134}
1135
1136/**
1137 * Applies the fog calculations.
1138 *
1139 * This is basically like the ARB_fragment_prorgam fog options.  Note
1140 * that ffvertex_prog.c produces fogcoord for us when
1141 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
1142 */
1143static ir_rvalue *
1144emit_fog_instructions(struct texenv_fragment_program *p,
1145		      ir_rvalue *fragcolor)
1146{
1147   struct state_key *key = p->state;
1148   ir_rvalue *f, *temp;
1149   ir_variable *params, *oparams;
1150   ir_variable *fogcoord;
1151
1152   /* Temporary storage for the whole fog result.  Fog calculations
1153    * only affect rgb so we're hanging on to the .a value of fragcolor
1154    * this way.
1155    */
1156   ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
1157   p->emit(assign(fog_result, fragcolor));
1158
1159   fragcolor = swizzle_xyz(fog_result);
1160
1161   oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
1162   fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
1163   params = p->shader->symbols->get_variable("gl_Fog");
1164   f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
1165
1166   ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
1167
1168   switch (key->fog_mode) {
1169   case FOG_LINEAR:
1170      /* f = (end - z) / (end - start)
1171       *
1172       * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
1173       * (end / (end - start)) so we can generate a single MAD.
1174       */
1175      f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
1176      break;
1177   case FOG_EXP:
1178      /* f = e^(-(density * fogcoord))
1179       *
1180       * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
1181       * use EXP2 which is generally the native instruction without
1182       * having to do any further math on the fog density uniform.
1183       */
1184      f = mul(f, swizzle_z(oparams));
1185      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1186      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1187      break;
1188   case FOG_EXP2:
1189      /* f = e^(-(density * fogcoord)^2)
1190       *
1191       * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
1192       * can do this like FOG_EXP but with a squaring after the
1193       * multiply by density.
1194       */
1195      ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
1196      p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
1197
1198      f = mul(temp_var, temp_var);
1199      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1200      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1201      break;
1202   }
1203
1204   p->emit(assign(f_var, saturate(f)));
1205
1206   f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
1207   temp = new(p->mem_ctx) ir_dereference_variable(params);
1208   temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
1209   temp = mul(swizzle_xyz(temp), f);
1210
1211   p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
1212
1213   return new(p->mem_ctx) ir_dereference_variable(fog_result);
1214}
1215
1216static void
1217emit_instructions(struct texenv_fragment_program *p)
1218{
1219   struct state_key *key = p->state;
1220   GLuint unit;
1221
1222   if (key->enabled_units) {
1223      /* Zeroth pass - bump map textures first */
1224      for (unit = 0; unit < key->nr_enabled_units; unit++) {
1225	 if (key->unit[unit].enabled &&
1226             key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1227	    load_texunit_bumpmap(p, unit);
1228	 }
1229      }
1230
1231      /* First pass - to support texture_env_crossbar, first identify
1232       * all referenced texture sources and emit texld instructions
1233       * for each:
1234       */
1235      for (unit = 0; unit < key->nr_enabled_units; unit++)
1236	 if (key->unit[unit].enabled) {
1237	    load_texunit_sources(p, unit);
1238	 }
1239
1240      /* Second pass - emit combine instructions to build final color:
1241       */
1242      for (unit = 0; unit < key->nr_enabled_units; unit++) {
1243	 if (key->unit[unit].enabled) {
1244	    p->src_previous = emit_texenv(p, unit);
1245	 }
1246      }
1247   }
1248
1249   ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
1250
1251   if (key->separate_specular) {
1252      ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1253					      "specular_add");
1254      p->emit(assign(spec_result, cf));
1255
1256      ir_rvalue *secondary;
1257      if (p->state->inputs_available & FRAG_BIT_COL1) {
1258	 ir_variable *var =
1259	    p->shader->symbols->get_variable("gl_SecondaryColor");
1260	 assert(var);
1261	 secondary = swizzle_xyz(var);
1262      } else {
1263	 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1264      }
1265
1266      p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1267		     WRITEMASK_XYZ));
1268
1269      cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1270   }
1271
1272   if (key->fog_enabled) {
1273      cf = emit_fog_instructions(p, cf);
1274   }
1275
1276   ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1277   assert(frag_color);
1278   p->emit(assign(frag_color, cf));
1279}
1280
1281/**
1282 * Generate a new fragment program which implements the context's
1283 * current texture env/combine mode.
1284 */
1285static struct gl_shader_program *
1286create_new_program(struct gl_context *ctx, struct state_key *key)
1287{
1288   texenv_fragment_program p;
1289   unsigned int unit;
1290   _mesa_glsl_parse_state *state;
1291
1292   p.mem_ctx = ralloc_context(NULL);
1293   p.shader = ctx->Driver.NewShader(ctx, 0, GL_FRAGMENT_SHADER);
1294   p.shader->ir = new(p.shader) exec_list;
1295   state = new(p.shader) _mesa_glsl_parse_state(ctx, GL_FRAGMENT_SHADER,
1296						p.shader);
1297   p.shader->symbols = state->symbols;
1298   p.top_instructions = p.shader->ir;
1299   p.instructions = p.shader->ir;
1300   p.state = key;
1301   p.shader_program = ctx->Driver.NewShaderProgram(ctx, 0);
1302
1303   /* Tell the linker to ignore the fact that we're building a
1304    * separate shader, in case we're in a GLES2 context that would
1305    * normally reject that.  The real problem is that we're building a
1306    * fixed function program in a GLES2 context at all, but that's a
1307    * big mess to clean up.
1308    */
1309   p.shader_program->InternalSeparateShader = GL_TRUE;
1310
1311   state->language_version = 130;
1312   if (ctx->Extensions.OES_EGL_image_external)
1313      state->OES_EGL_image_external_enable = true;
1314   _mesa_glsl_initialize_types(state);
1315   _mesa_glsl_initialize_variables(p.instructions, state);
1316
1317   for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1318      p.src_texture[unit] = NULL;
1319      p.texcoord_tex[unit] = NULL;
1320   }
1321
1322   p.src_previous = NULL;
1323
1324   ir_function *main_f = new(p.mem_ctx) ir_function("main");
1325   p.emit(main_f);
1326   state->symbols->add_function(main_f);
1327
1328   ir_function_signature *main_sig =
1329      new(p.mem_ctx) ir_function_signature(p.shader->symbols->get_type("void"));
1330   main_sig->is_defined = true;
1331   main_f->add_signature(main_sig);
1332
1333   p.instructions = &main_sig->body;
1334   if (key->num_draw_buffers)
1335      emit_instructions(&p);
1336
1337   validate_ir_tree(p.shader->ir);
1338
1339   while (do_common_optimization(p.shader->ir, false, false, 32))
1340      ;
1341   reparent_ir(p.shader->ir, p.shader->ir);
1342
1343   p.shader->CompileStatus = true;
1344   p.shader->Version = state->language_version;
1345   p.shader->num_builtins_to_link = state->num_builtins_to_link;
1346   p.shader_program->Shaders =
1347      (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1348   p.shader_program->Shaders[0] = p.shader;
1349   p.shader_program->NumShaders = 1;
1350
1351   _mesa_glsl_link_shader(ctx, p.shader_program);
1352
1353   /* Set the sampler uniforms, and relink to get them into the linked
1354    * program.
1355    */
1356   struct gl_shader *const fs =
1357      p.shader_program->_LinkedShaders[MESA_SHADER_FRAGMENT];
1358   struct gl_program *const fp = fs->Program;
1359
1360   _mesa_generate_parameters_list_for_uniforms(p.shader_program, fs,
1361					       fp->Parameters);
1362
1363   _mesa_associate_uniform_storage(ctx, p.shader_program, fp->Parameters);
1364
1365   _mesa_update_shader_textures_used(p.shader_program, fp);
1366   if (ctx->Driver.SamplerUniformChange)
1367      ctx->Driver.SamplerUniformChange(ctx, fp->Target, fp);
1368
1369   if (!p.shader_program->LinkStatus)
1370      _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1371		    p.shader_program->InfoLog);
1372
1373   ralloc_free(p.mem_ctx);
1374   return p.shader_program;
1375}
1376
1377extern "C" {
1378
1379/**
1380 * Return a fragment program which implements the current
1381 * fixed-function texture, fog and color-sum operations.
1382 */
1383struct gl_shader_program *
1384_mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1385{
1386   struct gl_shader_program *shader_program;
1387   struct state_key key;
1388   GLuint keySize;
1389
1390   keySize = make_state_key(ctx, &key);
1391
1392   shader_program = (struct gl_shader_program *)
1393      _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1394                                 &key, keySize);
1395
1396   if (!shader_program) {
1397      shader_program = create_new_program(ctx, &key);
1398
1399      _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1400				&key, keySize, shader_program);
1401   }
1402
1403   return shader_program;
1404}
1405
1406}
1407