1/**
2 * \file hash.c
3 * Generic hash table.
4 *
5 * Used for display lists, texture objects, vertex/fragment programs,
6 * buffer objects, etc.  The hash functions are thread-safe.
7 *
8 * \note key=0 is illegal.
9 *
10 * \author Brian Paul
11 */
12
13/*
14 * Mesa 3-D graphics library
15 * Version:  6.5.1
16 *
17 * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a
20 * copy of this software and associated documentation files (the "Software"),
21 * to deal in the Software without restriction, including without limitation
22 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
23 * and/or sell copies of the Software, and to permit persons to whom the
24 * Software is furnished to do so, subject to the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included
27 * in all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
30 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
32 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
33 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
35 */
36
37
38#include "glheader.h"
39#include "imports.h"
40#include "glapi/glthread.h"
41#include "hash.h"
42
43
44#define TABLE_SIZE 1023  /**< Size of lookup table/array */
45
46#define HASH_FUNC(K)  ((K) % TABLE_SIZE)
47
48
49/**
50 * An entry in the hash table.
51 */
52struct HashEntry {
53   GLuint Key;             /**< the entry's key */
54   void *Data;             /**< the entry's data */
55   struct HashEntry *Next; /**< pointer to next entry */
56};
57
58
59/**
60 * The hash table data structure.
61 */
62struct _mesa_HashTable {
63   struct HashEntry *Table[TABLE_SIZE];  /**< the lookup table */
64   GLuint MaxKey;                        /**< highest key inserted so far */
65   _glthread_Mutex Mutex;                /**< mutual exclusion lock */
66   _glthread_Mutex WalkMutex;            /**< for _mesa_HashWalk() */
67   GLboolean InDeleteAll;                /**< Debug check */
68};
69
70
71
72/**
73 * Create a new hash table.
74 *
75 * \return pointer to a new, empty hash table.
76 */
77struct _mesa_HashTable *
78_mesa_NewHashTable(void)
79{
80   struct _mesa_HashTable *table = CALLOC_STRUCT(_mesa_HashTable);
81   if (table) {
82      _glthread_INIT_MUTEX(table->Mutex);
83      _glthread_INIT_MUTEX(table->WalkMutex);
84   }
85   return table;
86}
87
88
89
90/**
91 * Delete a hash table.
92 * Frees each entry on the hash table and then the hash table structure itself.
93 * Note that the caller should have already traversed the table and deleted
94 * the objects in the table (i.e. We don't free the entries' data pointer).
95 *
96 * \param table the hash table to delete.
97 */
98void
99_mesa_DeleteHashTable(struct _mesa_HashTable *table)
100{
101   GLuint pos;
102   assert(table);
103   for (pos = 0; pos < TABLE_SIZE; pos++) {
104      struct HashEntry *entry = table->Table[pos];
105      while (entry) {
106	 struct HashEntry *next = entry->Next;
107         if (entry->Data) {
108            _mesa_problem(NULL,
109                          "In _mesa_DeleteHashTable, found non-freed data");
110         }
111	 free(entry);
112	 entry = next;
113      }
114   }
115   _glthread_DESTROY_MUTEX(table->Mutex);
116   _glthread_DESTROY_MUTEX(table->WalkMutex);
117   free(table);
118}
119
120
121
122/**
123 * Lookup an entry in the hash table, without locking.
124 * \sa _mesa_HashLookup
125 */
126static inline void *
127_mesa_HashLookup_unlocked(struct _mesa_HashTable *table, GLuint key)
128{
129   GLuint pos;
130   const struct HashEntry *entry;
131
132   assert(table);
133   assert(key);
134
135   pos = HASH_FUNC(key);
136   entry = table->Table[pos];
137   while (entry) {
138      if (entry->Key == key) {
139         return entry->Data;
140      }
141      entry = entry->Next;
142   }
143   return NULL;
144}
145
146
147/**
148 * Lookup an entry in the hash table.
149 *
150 * \param table the hash table.
151 * \param key the key.
152 *
153 * \return pointer to user's data or NULL if key not in table
154 */
155void *
156_mesa_HashLookup(struct _mesa_HashTable *table, GLuint key)
157{
158   void *res;
159   assert(table);
160   _glthread_LOCK_MUTEX(table->Mutex);
161   res = _mesa_HashLookup_unlocked(table, key);
162   _glthread_UNLOCK_MUTEX(table->Mutex);
163   return res;
164}
165
166
167/**
168 * Insert a key/pointer pair into the hash table.
169 * If an entry with this key already exists we'll replace the existing entry.
170 *
171 * \param table the hash table.
172 * \param key the key (not zero).
173 * \param data pointer to user data.
174 */
175void
176_mesa_HashInsert(struct _mesa_HashTable *table, GLuint key, void *data)
177{
178   /* search for existing entry with this key */
179   GLuint pos;
180   struct HashEntry *entry;
181
182   assert(table);
183   assert(key);
184
185   _glthread_LOCK_MUTEX(table->Mutex);
186
187   if (key > table->MaxKey)
188      table->MaxKey = key;
189
190   pos = HASH_FUNC(key);
191
192   /* check if replacing an existing entry with same key */
193   for (entry = table->Table[pos]; entry; entry = entry->Next) {
194      if (entry->Key == key) {
195         /* replace entry's data */
196#if 0 /* not sure this check is always valid */
197         if (entry->Data) {
198            _mesa_problem(NULL, "Memory leak detected in _mesa_HashInsert");
199         }
200#endif
201	 entry->Data = data;
202         _glthread_UNLOCK_MUTEX(table->Mutex);
203	 return;
204      }
205   }
206
207   /* alloc and insert new table entry */
208   entry = MALLOC_STRUCT(HashEntry);
209   if (entry) {
210      entry->Key = key;
211      entry->Data = data;
212      entry->Next = table->Table[pos];
213      table->Table[pos] = entry;
214   }
215
216   _glthread_UNLOCK_MUTEX(table->Mutex);
217}
218
219
220
221/**
222 * Remove an entry from the hash table.
223 *
224 * \param table the hash table.
225 * \param key key of entry to remove.
226 *
227 * While holding the hash table's lock, searches the entry with the matching
228 * key and unlinks it.
229 */
230void
231_mesa_HashRemove(struct _mesa_HashTable *table, GLuint key)
232{
233   GLuint pos;
234   struct HashEntry *entry, *prev;
235
236   assert(table);
237   assert(key);
238
239   /* have to check this outside of mutex lock */
240   if (table->InDeleteAll) {
241      _mesa_problem(NULL, "_mesa_HashRemove illegally called from "
242                    "_mesa_HashDeleteAll callback function");
243      return;
244   }
245
246   _glthread_LOCK_MUTEX(table->Mutex);
247
248   pos = HASH_FUNC(key);
249   prev = NULL;
250   entry = table->Table[pos];
251   while (entry) {
252      if (entry->Key == key) {
253         /* found it! */
254         if (prev) {
255            prev->Next = entry->Next;
256         }
257         else {
258            table->Table[pos] = entry->Next;
259         }
260         free(entry);
261         _glthread_UNLOCK_MUTEX(table->Mutex);
262	 return;
263      }
264      prev = entry;
265      entry = entry->Next;
266   }
267
268   _glthread_UNLOCK_MUTEX(table->Mutex);
269}
270
271
272
273/**
274 * Delete all entries in a hash table, but don't delete the table itself.
275 * Invoke the given callback function for each table entry.
276 *
277 * \param table  the hash table to delete
278 * \param callback  the callback function
279 * \param userData  arbitrary pointer to pass along to the callback
280 *                  (this is typically a struct gl_context pointer)
281 */
282void
283_mesa_HashDeleteAll(struct _mesa_HashTable *table,
284                    void (*callback)(GLuint key, void *data, void *userData),
285                    void *userData)
286{
287   GLuint pos;
288   ASSERT(table);
289   ASSERT(callback);
290   _glthread_LOCK_MUTEX(table->Mutex);
291   table->InDeleteAll = GL_TRUE;
292   for (pos = 0; pos < TABLE_SIZE; pos++) {
293      struct HashEntry *entry, *next;
294      for (entry = table->Table[pos]; entry; entry = next) {
295         callback(entry->Key, entry->Data, userData);
296         next = entry->Next;
297         free(entry);
298      }
299      table->Table[pos] = NULL;
300   }
301   table->InDeleteAll = GL_FALSE;
302   _glthread_UNLOCK_MUTEX(table->Mutex);
303}
304
305
306/**
307 * Walk over all entries in a hash table, calling callback function for each.
308 * Note: we use a separate mutex in this function to avoid a recursive
309 * locking deadlock (in case the callback calls _mesa_HashRemove()) and to
310 * prevent multiple threads/contexts from getting tangled up.
311 * A lock-less version of this function could be used when the table will
312 * not be modified.
313 * \param table  the hash table to walk
314 * \param callback  the callback function
315 * \param userData  arbitrary pointer to pass along to the callback
316 *                  (this is typically a struct gl_context pointer)
317 */
318void
319_mesa_HashWalk(const struct _mesa_HashTable *table,
320               void (*callback)(GLuint key, void *data, void *userData),
321               void *userData)
322{
323   /* cast-away const */
324   struct _mesa_HashTable *table2 = (struct _mesa_HashTable *) table;
325   GLuint pos;
326   ASSERT(table);
327   ASSERT(callback);
328   _glthread_LOCK_MUTEX(table2->WalkMutex);
329   for (pos = 0; pos < TABLE_SIZE; pos++) {
330      struct HashEntry *entry, *next;
331      for (entry = table->Table[pos]; entry; entry = next) {
332         /* save 'next' pointer now in case the callback deletes the entry */
333         next = entry->Next;
334         callback(entry->Key, entry->Data, userData);
335      }
336   }
337   _glthread_UNLOCK_MUTEX(table2->WalkMutex);
338}
339
340
341/**
342 * Return the key of the "first" entry in the hash table.
343 * While holding the lock, walks through all table positions until finding
344 * the first entry of the first non-empty one.
345 *
346 * \param table  the hash table
347 * \return key for the "first" entry in the hash table.
348 */
349GLuint
350_mesa_HashFirstEntry(struct _mesa_HashTable *table)
351{
352   GLuint pos;
353   assert(table);
354   _glthread_LOCK_MUTEX(table->Mutex);
355   for (pos = 0; pos < TABLE_SIZE; pos++) {
356      if (table->Table[pos]) {
357         _glthread_UNLOCK_MUTEX(table->Mutex);
358         return table->Table[pos]->Key;
359      }
360   }
361   _glthread_UNLOCK_MUTEX(table->Mutex);
362   return 0;
363}
364
365
366/**
367 * Given a hash table key, return the next key.  This is used to walk
368 * over all entries in the table.  Note that the keys returned during
369 * walking won't be in any particular order.
370 * \return next hash key or 0 if end of table.
371 */
372GLuint
373_mesa_HashNextEntry(const struct _mesa_HashTable *table, GLuint key)
374{
375   const struct HashEntry *entry;
376   GLuint pos;
377
378   assert(table);
379   assert(key);
380
381   /* Find the entry with given key */
382   pos = HASH_FUNC(key);
383   for (entry = table->Table[pos]; entry ; entry = entry->Next) {
384      if (entry->Key == key) {
385         break;
386      }
387   }
388
389   if (!entry) {
390      /* the given key was not found, so we can't find the next entry */
391      return 0;
392   }
393
394   if (entry->Next) {
395      /* return next in linked list */
396      return entry->Next->Key;
397   }
398   else {
399      /* look for next non-empty table slot */
400      pos++;
401      while (pos < TABLE_SIZE) {
402         if (table->Table[pos]) {
403            return table->Table[pos]->Key;
404         }
405         pos++;
406      }
407      return 0;
408   }
409}
410
411
412/**
413 * Dump contents of hash table for debugging.
414 *
415 * \param table the hash table.
416 */
417void
418_mesa_HashPrint(const struct _mesa_HashTable *table)
419{
420   GLuint pos;
421   assert(table);
422   for (pos = 0; pos < TABLE_SIZE; pos++) {
423      const struct HashEntry *entry = table->Table[pos];
424      while (entry) {
425	 _mesa_debug(NULL, "%u %p\n", entry->Key, entry->Data);
426	 entry = entry->Next;
427      }
428   }
429}
430
431
432
433/**
434 * Find a block of adjacent unused hash keys.
435 *
436 * \param table the hash table.
437 * \param numKeys number of keys needed.
438 *
439 * \return Starting key of free block or 0 if failure.
440 *
441 * If there are enough free keys between the maximum key existing in the table
442 * (_mesa_HashTable::MaxKey) and the maximum key possible, then simply return
443 * the adjacent key. Otherwise do a full search for a free key block in the
444 * allowable key range.
445 */
446GLuint
447_mesa_HashFindFreeKeyBlock(struct _mesa_HashTable *table, GLuint numKeys)
448{
449   const GLuint maxKey = ~((GLuint) 0);
450   _glthread_LOCK_MUTEX(table->Mutex);
451   if (maxKey - numKeys > table->MaxKey) {
452      /* the quick solution */
453      _glthread_UNLOCK_MUTEX(table->Mutex);
454      return table->MaxKey + 1;
455   }
456   else {
457      /* the slow solution */
458      GLuint freeCount = 0;
459      GLuint freeStart = 1;
460      GLuint key;
461      for (key = 1; key != maxKey; key++) {
462	 if (_mesa_HashLookup_unlocked(table, key)) {
463	    /* darn, this key is already in use */
464	    freeCount = 0;
465	    freeStart = key+1;
466	 }
467	 else {
468	    /* this key not in use, check if we've found enough */
469	    freeCount++;
470	    if (freeCount == numKeys) {
471               _glthread_UNLOCK_MUTEX(table->Mutex);
472	       return freeStart;
473	    }
474	 }
475      }
476      /* cannot allocate a block of numKeys consecutive keys */
477      _glthread_UNLOCK_MUTEX(table->Mutex);
478      return 0;
479   }
480}
481
482
483/**
484 * Return the number of entries in the hash table.
485 */
486GLuint
487_mesa_HashNumEntries(const struct _mesa_HashTable *table)
488{
489   GLuint pos, count = 0;
490
491   for (pos = 0; pos < TABLE_SIZE; pos++) {
492      const struct HashEntry *entry;
493      for (entry = table->Table[pos]; entry; entry = entry->Next) {
494         count++;
495      }
496   }
497
498   return count;
499}
500
501
502
503#if 0 /* debug only */
504
505/**
506 * Test walking over all the entries in a hash table.
507 */
508static void
509test_hash_walking(void)
510{
511   struct _mesa_HashTable *t = _mesa_NewHashTable();
512   const GLuint limit = 50000;
513   GLuint i;
514
515   /* create some entries */
516   for (i = 0; i < limit; i++) {
517      GLuint dummy;
518      GLuint k = (rand() % (limit * 10)) + 1;
519      while (_mesa_HashLookup(t, k)) {
520         /* id already in use, try another */
521         k = (rand() % (limit * 10)) + 1;
522      }
523      _mesa_HashInsert(t, k, &dummy);
524   }
525
526   /* walk over all entries */
527   {
528      GLuint k = _mesa_HashFirstEntry(t);
529      GLuint count = 0;
530      while (k) {
531         GLuint knext = _mesa_HashNextEntry(t, k);
532         assert(knext != k);
533         _mesa_HashRemove(t, k);
534         count++;
535         k = knext;
536      }
537      assert(count == limit);
538      k = _mesa_HashFirstEntry(t);
539      assert(k==0);
540   }
541
542   _mesa_DeleteHashTable(t);
543}
544
545
546void
547_mesa_test_hash_functions(void)
548{
549   int a, b, c;
550   struct _mesa_HashTable *t;
551
552   t = _mesa_NewHashTable();
553   _mesa_HashInsert(t, 501, &a);
554   _mesa_HashInsert(t, 10, &c);
555   _mesa_HashInsert(t, 0xfffffff8, &b);
556   /*_mesa_HashPrint(t);*/
557
558   assert(_mesa_HashLookup(t,501));
559   assert(!_mesa_HashLookup(t,1313));
560   assert(_mesa_HashFindFreeKeyBlock(t, 100));
561
562   _mesa_DeleteHashTable(t);
563
564   test_hash_walking();
565}
566
567#endif
568