imports.h revision 2efa86ea3040c37965987160733b22e2a0541a3e
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.5
4 *
5 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35#ifndef IMPORTS_H
36#define IMPORTS_H
37
38
39#include "compiler.h"
40#include "glheader.h"
41
42
43#ifdef __cplusplus
44extern "C" {
45#endif
46
47
48/**********************************************************************/
49/** Memory macros */
50/*@{*/
51
52/** Allocate \p BYTES bytes */
53#define MALLOC(BYTES)      _mesa_malloc(BYTES)
54/** Allocate and zero \p BYTES bytes */
55#define CALLOC(BYTES)      _mesa_calloc(BYTES)
56/** Allocate a structure of type \p T */
57#define MALLOC_STRUCT(T)   (struct T *) _mesa_malloc(sizeof(struct T))
58/** Allocate and zero a structure of type \p T */
59#define CALLOC_STRUCT(T)   (struct T *) _mesa_calloc(sizeof(struct T))
60/** Free memory */
61#define FREE(PTR)          _mesa_free(PTR)
62
63/** Allocate \p BYTES aligned at \p N bytes */
64#define ALIGN_MALLOC(BYTES, N)     _mesa_align_malloc(BYTES, N)
65/** Allocate and zero \p BYTES bytes aligned at \p N bytes */
66#define ALIGN_CALLOC(BYTES, N)     _mesa_align_calloc(BYTES, N)
67/** Allocate a structure of type \p T aligned at \p N bytes */
68#define ALIGN_MALLOC_STRUCT(T, N)  (struct T *) _mesa_align_malloc(sizeof(struct T), N)
69/** Allocate and zero a structure of type \p T aligned at \p N bytes */
70#define ALIGN_CALLOC_STRUCT(T, N)  (struct T *) _mesa_align_calloc(sizeof(struct T), N)
71/** Free aligned memory */
72#define ALIGN_FREE(PTR)            _mesa_align_free(PTR)
73
74/** Copy \p BYTES bytes from \p SRC into \p DST */
75#define MEMCPY( DST, SRC, BYTES)   memcpy(DST, SRC, BYTES)
76/** Set \p N bytes in \p DST to \p VAL */
77#define MEMSET( DST, VAL, N )      memset(DST, VAL, N)
78
79/*@}*/
80
81
82/*
83 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
84 * as offsets into buffer stores.  Since the vertex array pointer and
85 * buffer store pointer are both pointers and we need to add them, we use
86 * this macro.
87 * Both pointers/offsets are expressed in bytes.
88 */
89#define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
90
91
92/**
93 * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
94 * as a int (thereby using integer registers instead of FP registers) is
95 * a performance win.  Typically, this can be done with ordinary casts.
96 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
97 * these casts generate warnings.
98 * The following union typedef is used to solve that.
99 */
100typedef union { GLfloat f; GLint i; } fi_type;
101
102
103
104/**********************************************************************
105 * Math macros
106 */
107
108#define MAX_GLUSHORT	0xffff
109#define MAX_GLUINT	0xffffffff
110
111/* Degrees to radians conversion: */
112#define DEG2RAD (M_PI/180.0)
113
114
115/***
116 *** SQRTF: single-precision square root
117 ***/
118#if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
119#  define SQRTF(X)  _mesa_sqrtf(X)
120#else
121#  define SQRTF(X)  (float) sqrt((float) (X))
122#endif
123
124
125/***
126 *** INV_SQRTF: single-precision inverse square root
127 ***/
128#if 0
129#define INV_SQRTF(X) _mesa_inv_sqrt(X)
130#else
131#define INV_SQRTF(X) (1.0F / SQRTF(X))  /* this is faster on a P4 */
132#endif
133
134
135/***
136 *** LOG2: Log base 2 of float
137 ***/
138#ifdef USE_IEEE
139#if 0
140/* This is pretty fast, but not accurate enough (only 2 fractional bits).
141 * Based on code from http://www.stereopsis.com/log2.html
142 */
143static INLINE GLfloat LOG2(GLfloat x)
144{
145   const GLfloat y = x * x * x * x;
146   const GLuint ix = *((GLuint *) &y);
147   const GLuint exp = (ix >> 23) & 0xFF;
148   const GLint log2 = ((GLint) exp) - 127;
149   return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
150}
151#endif
152/* Pretty fast, and accurate.
153 * Based on code from http://www.flipcode.com/totd/
154 */
155static INLINE GLfloat LOG2(GLfloat val)
156{
157   fi_type num;
158   GLint log_2;
159   num.f = val;
160   log_2 = ((num.i >> 23) & 255) - 128;
161   num.i &= ~(255 << 23);
162   num.i += 127 << 23;
163   num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
164   return num.f + log_2;
165}
166#else
167/*
168 * NOTE: log_base_2(x) = log(x) / log(2)
169 * NOTE: 1.442695 = 1/log(2).
170 */
171#define LOG2(x)  ((GLfloat) (log(x) * 1.442695F))
172#endif
173
174
175/***
176 *** IS_INF_OR_NAN: test if float is infinite or NaN
177 ***/
178#ifdef USE_IEEE
179static INLINE int IS_INF_OR_NAN( float x )
180{
181   fi_type tmp;
182   tmp.f = x;
183   return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
184}
185#elif defined(isfinite)
186#define IS_INF_OR_NAN(x)        (!isfinite(x))
187#elif defined(finite)
188#define IS_INF_OR_NAN(x)        (!finite(x))
189#elif defined(__VMS)
190#define IS_INF_OR_NAN(x)        (!finite(x))
191#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
192#define IS_INF_OR_NAN(x)        (!isfinite(x))
193#else
194#define IS_INF_OR_NAN(x)        (!finite(x))
195#endif
196
197
198/***
199 *** IS_NEGATIVE: test if float is negative
200 ***/
201#if defined(USE_IEEE)
202static INLINE int GET_FLOAT_BITS( float x )
203{
204   fi_type fi;
205   fi.f = x;
206   return fi.i;
207}
208#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
209#else
210#define IS_NEGATIVE(x) (x < 0.0F)
211#endif
212
213
214/***
215 *** DIFFERENT_SIGNS: test if two floats have opposite signs
216 ***/
217#if defined(USE_IEEE)
218#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
219#else
220/* Could just use (x*y<0) except for the flatshading requirements.
221 * Maybe there's a better way?
222 */
223#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
224#endif
225
226
227/***
228 *** CEILF: ceiling of float
229 *** FLOORF: floor of float
230 *** FABSF: absolute value of float
231 *** LOGF: the natural logarithm (base e) of the value
232 *** EXPF: raise e to the value
233 *** LDEXPF: multiply value by an integral power of two
234 *** FREXPF: extract mantissa and exponent from value
235 ***/
236#if defined(__gnu_linux__)
237/* C99 functions */
238#define CEILF(x)   ceilf(x)
239#define FLOORF(x)  floorf(x)
240#define FABSF(x)   fabsf(x)
241#define LOGF(x)    logf(x)
242#define EXPF(x)    expf(x)
243#define LDEXPF(x,y)  ldexpf(x,y)
244#define FREXPF(x,y)  frexpf(x,y)
245#else
246#define CEILF(x)   ((GLfloat) ceil(x))
247#define FLOORF(x)  ((GLfloat) floor(x))
248#define FABSF(x)   ((GLfloat) fabs(x))
249#define LOGF(x)    ((GLfloat) log(x))
250#define EXPF(x)    ((GLfloat) exp(x))
251#define LDEXPF(x,y)  ((GLfloat) ldexp(x,y))
252#define FREXPF(x,y)  ((GLfloat) frexp(x,y))
253#endif
254
255
256/***
257 *** IROUND: return (as an integer) float rounded to nearest integer
258 ***/
259#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) && \
260			(!(defined(__BEOS__) || defined(__HAIKU__))  || \
261			(__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)))
262static INLINE int iround(float f)
263{
264   int r;
265   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
266   return r;
267}
268#define IROUND(x)  iround(x)
269#elif defined(USE_X86_ASM) && defined(_MSC_VER)
270static INLINE int iround(float f)
271{
272   int r;
273   _asm {
274	 fld f
275	 fistp r
276	}
277   return r;
278}
279#define IROUND(x)  iround(x)
280#elif defined(__WATCOMC__) && defined(__386__)
281long iround(float f);
282#pragma aux iround =                    \
283	"push   eax"                        \
284	"fistp  dword ptr [esp]"            \
285	"pop    eax"                        \
286	parm [8087]                         \
287	value [eax]                         \
288	modify exact [eax];
289#define IROUND(x)  iround(x)
290#else
291#define IROUND(f)  ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
292#endif
293
294#define IROUND64(f)  ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
295
296/***
297 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
298 ***/
299#ifdef DEBUG
300#define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
301#else
302#define IROUND_POS(f) (IROUND(f))
303#endif
304
305
306/***
307 *** IFLOOR: return (as an integer) floor of float
308 ***/
309#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
310/*
311 * IEEE floor for computers that round to nearest or even.
312 * 'f' must be between -4194304 and 4194303.
313 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
314 * but uses some IEEE specific tricks for better speed.
315 * Contributed by Josh Vanderhoof
316 */
317static INLINE int ifloor(float f)
318{
319   int ai, bi;
320   double af, bf;
321   af = (3 << 22) + 0.5 + (double)f;
322   bf = (3 << 22) + 0.5 - (double)f;
323   /* GCC generates an extra fstp/fld without this. */
324   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
325   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
326   return (ai - bi) >> 1;
327}
328#define IFLOOR(x)  ifloor(x)
329#elif defined(USE_IEEE)
330static INLINE int ifloor(float f)
331{
332   int ai, bi;
333   double af, bf;
334   fi_type u;
335
336   af = (3 << 22) + 0.5 + (double)f;
337   bf = (3 << 22) + 0.5 - (double)f;
338   u.f = (float) af;  ai = u.i;
339   u.f = (float) bf;  bi = u.i;
340   return (ai - bi) >> 1;
341}
342#define IFLOOR(x)  ifloor(x)
343#else
344static INLINE int ifloor(float f)
345{
346   int i = IROUND(f);
347   return (i > f) ? i - 1 : i;
348}
349#define IFLOOR(x)  ifloor(x)
350#endif
351
352
353/***
354 *** ICEIL: return (as an integer) ceiling of float
355 ***/
356#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
357/*
358 * IEEE ceil for computers that round to nearest or even.
359 * 'f' must be between -4194304 and 4194303.
360 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
361 * but uses some IEEE specific tricks for better speed.
362 * Contributed by Josh Vanderhoof
363 */
364static INLINE int iceil(float f)
365{
366   int ai, bi;
367   double af, bf;
368   af = (3 << 22) + 0.5 + (double)f;
369   bf = (3 << 22) + 0.5 - (double)f;
370   /* GCC generates an extra fstp/fld without this. */
371   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
372   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
373   return (ai - bi + 1) >> 1;
374}
375#define ICEIL(x)  iceil(x)
376#elif defined(USE_IEEE)
377static INLINE int iceil(float f)
378{
379   int ai, bi;
380   double af, bf;
381   fi_type u;
382   af = (3 << 22) + 0.5 + (double)f;
383   bf = (3 << 22) + 0.5 - (double)f;
384   u.f = (float) af; ai = u.i;
385   u.f = (float) bf; bi = u.i;
386   return (ai - bi + 1) >> 1;
387}
388#define ICEIL(x)  iceil(x)
389#else
390static INLINE int iceil(float f)
391{
392   int i = IROUND(f);
393   return (i < f) ? i + 1 : i;
394}
395#define ICEIL(x)  iceil(x)
396#endif
397
398
399/**
400 * Is x a power of two?
401 */
402static INLINE int
403_mesa_is_pow_two(int x)
404{
405   return !(x & (x - 1));
406}
407
408/**
409 * Round given integer to next higer power of two
410 * If X is zero result is undefined.
411 *
412 * Source for the fallback implementation is
413 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
414 * http://graphics.stanford.edu/~seander/bithacks.html
415 *
416 * When using builtin function have to do some work
417 * for case when passed values 1 to prevent hiting
418 * undefined result from __builtin_clz. Undefined
419 * results would be different depending on optimization
420 * level used for build.
421 */
422static INLINE int32_t
423_mesa_next_pow_two_32(uint32_t x)
424{
425#ifdef __GNUC__
426	uint32_t y = (x != 1);
427	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
428#else
429	x--;
430	x |= x >> 1;
431	x |= x >> 2;
432	x |= x >> 4;
433	x |= x >> 8;
434	x |= x >> 16;
435	x++;
436	return x;
437#endif
438}
439
440static INLINE int64_t
441_mesa_next_pow_two_64(uint64_t x)
442{
443#ifdef __GNUC__
444	uint64_t y = (x != 1);
445	if (sizeof(x) == sizeof(long))
446		return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
447	else
448		return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
449#else
450	x--;
451	x |= x >> 1;
452	x |= x >> 2;
453	x |= x >> 4;
454	x |= x >> 8;
455	x |= x >> 16;
456	x |= x >> 32;
457	x++;
458	return x;
459#endif
460}
461
462
463/***
464 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
465 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
466 ***/
467#if defined(USE_IEEE) && !defined(DEBUG)
468#define IEEE_0996 0x3f7f0000	/* 0.996 or so */
469/* This function/macro is sensitive to precision.  Test very carefully
470 * if you change it!
471 */
472#define UNCLAMPED_FLOAT_TO_UBYTE(UB, F)					\
473        do {								\
474           fi_type __tmp;						\
475           __tmp.f = (F);						\
476           if (__tmp.i < 0)						\
477              UB = (GLubyte) 0;						\
478           else if (__tmp.i >= IEEE_0996)				\
479              UB = (GLubyte) 255;					\
480           else {							\
481              __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F;		\
482              UB = (GLubyte) __tmp.i;					\
483           }								\
484        } while (0)
485#define CLAMPED_FLOAT_TO_UBYTE(UB, F)					\
486        do {								\
487           fi_type __tmp;						\
488           __tmp.f = (F) * (255.0F/256.0F) + 32768.0F;			\
489           UB = (GLubyte) __tmp.i;					\
490        } while (0)
491#else
492#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
493	ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
494#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
495	ub = ((GLubyte) IROUND((f) * 255.0F))
496#endif
497
498
499/**
500 * Return 1 if this is a little endian machine, 0 if big endian.
501 */
502static INLINE GLboolean
503_mesa_little_endian(void)
504{
505   const GLuint ui = 1; /* intentionally not static */
506   return *((const GLubyte *) &ui);
507}
508
509
510
511/**********************************************************************
512 * Functions
513 */
514
515extern void *
516_mesa_malloc( size_t bytes );
517
518extern void *
519_mesa_calloc( size_t bytes );
520
521extern void
522_mesa_free( void *ptr );
523
524extern void *
525_mesa_align_malloc( size_t bytes, unsigned long alignment );
526
527extern void *
528_mesa_align_calloc( size_t bytes, unsigned long alignment );
529
530extern void
531_mesa_align_free( void *ptr );
532
533extern void *
534_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
535                    unsigned long alignment);
536
537extern void *
538_mesa_exec_malloc( GLuint size );
539
540extern void
541_mesa_exec_free( void *addr );
542
543extern void *
544_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
545
546extern void
547_mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
548
549extern void
550_mesa_bzero( void *dst, size_t n );
551
552extern double
553_mesa_sin(double a);
554
555extern float
556_mesa_sinf(float a);
557
558extern double
559_mesa_cos(double a);
560
561extern float
562_mesa_asinf(float x);
563
564extern float
565_mesa_atanf(float x);
566
567extern double
568_mesa_sqrtd(double x);
569
570extern float
571_mesa_sqrtf(float x);
572
573extern float
574_mesa_inv_sqrtf(float x);
575
576extern void
577_mesa_init_sqrt_table(void);
578
579extern double
580_mesa_pow(double x, double y);
581
582extern int
583_mesa_ffs(int32_t i);
584
585extern int
586_mesa_ffsll(int64_t i);
587
588extern unsigned int
589_mesa_bitcount(unsigned int n);
590
591extern GLhalfARB
592_mesa_float_to_half(float f);
593
594extern float
595_mesa_half_to_float(GLhalfARB h);
596
597
598extern void *
599_mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
600               int (*compar)(const void *, const void *) );
601
602extern char *
603_mesa_getenv( const char *var );
604
605extern char *
606_mesa_strdup( const char *s );
607
608extern double
609_mesa_strtod( const char *s, char **end );
610
611extern unsigned int
612_mesa_str_checksum(const char *str);
613
614extern int
615_mesa_sprintf( char *str, const char *fmt, ... );
616
617extern int
618_mesa_snprintf( char *str, size_t size, const char *fmt, ... );
619
620extern void
621_mesa_printf( const char *fmtString, ... );
622
623extern void
624_mesa_fprintf( FILE *f, const char *fmtString, ... );
625
626extern int
627_mesa_vsprintf( char *str, const char *fmt, va_list args );
628
629
630extern void
631_mesa_warning( __GLcontext *gc, const char *fmtString, ... );
632
633extern void
634_mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
635
636extern void
637_mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
638
639extern void
640_mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
641
642#ifdef __cplusplus
643}
644#endif
645
646
647#endif /* IMPORTS_H */
648