m_eval.c revision 417ed16a88bd6c695e9792c2023e3f1737ee1e64
1/* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  3.5
6 *
7 * Copyright (C) 1999-2000  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * eval.c was written by
30 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
31 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
32 *
33 * My original implementation of evaluators was simplistic and didn't
34 * compute surface normal vectors properly.  Bernd and Volker applied
35 * used more sophisticated methods to get better results.
36 *
37 * Thanks guys!
38 */
39
40
41#include "glheader.h"
42#include "config.h"
43#include "m_eval.h"
44
45static GLfloat inv_tab[MAX_EVAL_ORDER];
46
47
48
49/*
50 * Horner scheme for Bezier curves
51 *
52 * Bezier curves can be computed via a Horner scheme.
53 * Horner is numerically less stable than the de Casteljau
54 * algorithm, but it is faster. For curves of degree n
55 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
56 * Since stability is not important for displaying curve
57 * points I decided to use the Horner scheme.
58 *
59 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
60 * written as
61 *
62 *        (([3]        [3]     )     [3]       )     [3]
63 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
64 *
65 *                                           [n]
66 * where s=1-t and the binomial coefficients [i]. These can
67 * be computed iteratively using the identity:
68 *
69 * [n]               [n  ]             [n]
70 * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
71 */
72
73
74void
75_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
76			  GLuint dim, GLuint order)
77{
78   GLfloat s, powert, bincoeff;
79   GLuint i, k;
80
81   if(order >= 2)
82   {
83      bincoeff = (GLfloat) (order - 1);
84      s = 1.0-t;
85
86      for(k=0; k<dim; k++)
87	 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
88
89      for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
90      {
91	 bincoeff *= (GLfloat) (order - i);
92	 bincoeff *= inv_tab[i];
93
94	 for(k=0; k<dim; k++)
95	    out[k] = s*out[k] + bincoeff*powert*cp[k];
96      }
97   }
98   else /* order=1 -> constant curve */
99   {
100      for(k=0; k<dim; k++)
101	 out[k] = cp[k];
102   }
103}
104
105/*
106 * Tensor product Bezier surfaces
107 *
108 * Again the Horner scheme is used to compute a point on a
109 * TP Bezier surface. First a control polygon for a curve
110 * on the surface in one parameter direction is computed,
111 * then the point on the curve for the other parameter
112 * direction is evaluated.
113 *
114 * To store the curve control polygon additional storage
115 * for max(uorder,vorder) points is needed in the
116 * control net cn.
117 */
118
119void
120_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
121			 GLuint dim, GLuint uorder, GLuint vorder)
122{
123   GLfloat *cp = cn + uorder*vorder*dim;
124   GLuint i, uinc = vorder*dim;
125
126   if(vorder > uorder)
127   {
128      if(uorder >= 2)
129      {
130	 GLfloat s, poweru, bincoeff;
131	 GLuint j, k;
132
133	 /* Compute the control polygon for the surface-curve in u-direction */
134	 for(j=0; j<vorder; j++)
135	 {
136	    GLfloat *ucp = &cn[j*dim];
137
138	    /* Each control point is the point for parameter u on a */
139	    /* curve defined by the control polygons in u-direction */
140	    bincoeff = (GLfloat) (uorder - 1);
141	    s = 1.0-u;
142
143	    for(k=0; k<dim; k++)
144	       cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
145
146	    for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
147		i++, poweru*=u, ucp +=uinc)
148	    {
149	       bincoeff *= (GLfloat) (uorder - i);
150	       bincoeff *= inv_tab[i];
151
152	       for(k=0; k<dim; k++)
153		  cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
154	    }
155	 }
156
157	 /* Evaluate curve point in v */
158	 _math_horner_bezier_curve(cp, out, v, dim, vorder);
159      }
160      else /* uorder=1 -> cn defines a curve in v */
161	 _math_horner_bezier_curve(cn, out, v, dim, vorder);
162   }
163   else /* vorder <= uorder */
164   {
165      if(vorder > 1)
166      {
167	 GLuint i;
168
169	 /* Compute the control polygon for the surface-curve in u-direction */
170	 for(i=0; i<uorder; i++, cn += uinc)
171	 {
172	    /* For constant i all cn[i][j] (j=0..vorder) are located */
173	    /* on consecutive memory locations, so we can use        */
174	    /* horner_bezier_curve to compute the control points     */
175
176	    _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
177	 }
178
179	 /* Evaluate curve point in u */
180	 _math_horner_bezier_curve(cp, out, u, dim, uorder);
181      }
182      else  /* vorder=1 -> cn defines a curve in u */
183	 _math_horner_bezier_curve(cn, out, u, dim, uorder);
184   }
185}
186
187/*
188 * The direct de Casteljau algorithm is used when a point on the
189 * surface and the tangent directions spanning the tangent plane
190 * should be computed (this is needed to compute normals to the
191 * surface). In this case the de Casteljau algorithm approach is
192 * nicer because a point and the partial derivatives can be computed
193 * at the same time. To get the correct tangent length du and dv
194 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
195 * Since only the directions are needed, this scaling step is omitted.
196 *
197 * De Casteljau needs additional storage for uorder*vorder
198 * values in the control net cn.
199 */
200
201void
202_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
203			GLfloat u, GLfloat v, GLuint dim,
204			GLuint uorder, GLuint vorder)
205{
206   GLfloat *dcn = cn + uorder*vorder*dim;
207   GLfloat us = 1.0-u, vs = 1.0-v;
208   GLuint h, i, j, k;
209   GLuint minorder = uorder < vorder ? uorder : vorder;
210   GLuint uinc = vorder*dim;
211   GLuint dcuinc = vorder;
212
213   /* Each component is evaluated separately to save buffer space  */
214   /* This does not drasticaly decrease the performance of the     */
215   /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
216   /* points would be available, the components could be accessed  */
217   /* in the innermost loop which could lead to less cache misses. */
218
219#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
220#define DCN(I, J) dcn[(I)*dcuinc+(J)]
221   if(minorder < 3)
222   {
223      if(uorder==vorder)
224      {
225	 for(k=0; k<dim; k++)
226	 {
227	    /* Derivative direction in u */
228	    du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
229	       v*(CN(1,1,k) - CN(0,1,k));
230
231	    /* Derivative direction in v */
232	    dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
233	       u*(CN(1,1,k) - CN(1,0,k));
234
235	    /* bilinear de Casteljau step */
236	    out[k] =  us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
237	       u*(vs*CN(1,0,k) + v*CN(1,1,k));
238	 }
239      }
240      else if(minorder == uorder)
241      {
242	 for(k=0; k<dim; k++)
243	 {
244	    /* bilinear de Casteljau step */
245	    DCN(1,0) =    CN(1,0,k) -   CN(0,0,k);
246	    DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
247
248	    for(j=0; j<vorder-1; j++)
249	    {
250	       /* for the derivative in u */
251	       DCN(1,j+1) =    CN(1,j+1,k) -   CN(0,j+1,k);
252	       DCN(1,j)   = vs*DCN(1,j)    + v*DCN(1,j+1);
253
254	       /* for the `point' */
255	       DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
256	       DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
257	    }
258
259	    /* remaining linear de Casteljau steps until the second last step */
260	    for(h=minorder; h<vorder-1; h++)
261	       for(j=0; j<vorder-h; j++)
262	       {
263		  /* for the derivative in u */
264		  DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
265
266		  /* for the `point' */
267		  DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
268	       }
269
270	    /* derivative direction in v */
271	    dv[k] = DCN(0,1) - DCN(0,0);
272
273	    /* derivative direction in u */
274	    du[k] =   vs*DCN(1,0) + v*DCN(1,1);
275
276	    /* last linear de Casteljau step */
277	    out[k] =  vs*DCN(0,0) + v*DCN(0,1);
278	 }
279      }
280      else /* minorder == vorder */
281      {
282	 for(k=0; k<dim; k++)
283	 {
284	    /* bilinear de Casteljau step */
285	    DCN(0,1) =    CN(0,1,k) -   CN(0,0,k);
286	    DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
287	    for(i=0; i<uorder-1; i++)
288	    {
289	       /* for the derivative in v */
290	       DCN(i+1,1) =    CN(i+1,1,k) -   CN(i+1,0,k);
291	       DCN(i,1)   = us*DCN(i,1)    + u*DCN(i+1,1);
292
293	       /* for the `point' */
294	       DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
295	       DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
296	    }
297
298	    /* remaining linear de Casteljau steps until the second last step */
299	    for(h=minorder; h<uorder-1; h++)
300	       for(i=0; i<uorder-h; i++)
301	       {
302		  /* for the derivative in v */
303		  DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
304
305		  /* for the `point' */
306		  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
307	       }
308
309	    /* derivative direction in u */
310	    du[k] = DCN(1,0) - DCN(0,0);
311
312	    /* derivative direction in v */
313	    dv[k] =   us*DCN(0,1) + u*DCN(1,1);
314
315	    /* last linear de Casteljau step */
316	    out[k] =  us*DCN(0,0) + u*DCN(1,0);
317	 }
318      }
319   }
320   else if(uorder == vorder)
321   {
322      for(k=0; k<dim; k++)
323      {
324	 /* first bilinear de Casteljau step */
325	 for(i=0; i<uorder-1; i++)
326	 {
327	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
328	    for(j=0; j<vorder-1; j++)
329	    {
330	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
331	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
332	    }
333	 }
334
335	 /* remaining bilinear de Casteljau steps until the second last step */
336	 for(h=2; h<minorder-1; h++)
337	    for(i=0; i<uorder-h; i++)
338	    {
339	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
340	       for(j=0; j<vorder-h; j++)
341	       {
342		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
343		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
344	       }
345	    }
346
347	 /* derivative direction in u */
348	 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
349	    v*(DCN(1,1) - DCN(0,1));
350
351	 /* derivative direction in v */
352	 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
353	    u*(DCN(1,1) - DCN(1,0));
354
355	 /* last bilinear de Casteljau step */
356	 out[k] =  us*(vs*DCN(0,0) + v*DCN(0,1)) +
357	    u*(vs*DCN(1,0) + v*DCN(1,1));
358      }
359   }
360   else if(minorder == uorder)
361   {
362      for(k=0; k<dim; k++)
363      {
364	 /* first bilinear de Casteljau step */
365	 for(i=0; i<uorder-1; i++)
366	 {
367	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
368	    for(j=0; j<vorder-1; j++)
369	    {
370	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
371	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
372	    }
373	 }
374
375	 /* remaining bilinear de Casteljau steps until the second last step */
376	 for(h=2; h<minorder-1; h++)
377	    for(i=0; i<uorder-h; i++)
378	    {
379	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
380	       for(j=0; j<vorder-h; j++)
381	       {
382		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
383		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
384	       }
385	    }
386
387	 /* last bilinear de Casteljau step */
388	 DCN(2,0) =    DCN(1,0) -   DCN(0,0);
389	 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
390	 for(j=0; j<vorder-1; j++)
391	 {
392	    /* for the derivative in u */
393	    DCN(2,j+1) =    DCN(1,j+1) -    DCN(0,j+1);
394	    DCN(2,j)   = vs*DCN(2,j)    + v*DCN(2,j+1);
395
396	    /* for the `point' */
397	    DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
398	    DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
399	 }
400
401	 /* remaining linear de Casteljau steps until the second last step */
402	 for(h=minorder; h<vorder-1; h++)
403	    for(j=0; j<vorder-h; j++)
404	    {
405	       /* for the derivative in u */
406	       DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
407
408	       /* for the `point' */
409	       DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
410	    }
411
412	 /* derivative direction in v */
413	 dv[k] = DCN(0,1) - DCN(0,0);
414
415	 /* derivative direction in u */
416	 du[k] =   vs*DCN(2,0) + v*DCN(2,1);
417
418	 /* last linear de Casteljau step */
419	 out[k] =  vs*DCN(0,0) + v*DCN(0,1);
420      }
421   }
422   else /* minorder == vorder */
423   {
424      for(k=0; k<dim; k++)
425      {
426	 /* first bilinear de Casteljau step */
427	 for(i=0; i<uorder-1; i++)
428	 {
429	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
430	    for(j=0; j<vorder-1; j++)
431	    {
432	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
433	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
434	    }
435	 }
436
437	 /* remaining bilinear de Casteljau steps until the second last step */
438	 for(h=2; h<minorder-1; h++)
439	    for(i=0; i<uorder-h; i++)
440	    {
441	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
442	       for(j=0; j<vorder-h; j++)
443	       {
444		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
445		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
446	       }
447	    }
448
449	 /* last bilinear de Casteljau step */
450	 DCN(0,2) =    DCN(0,1) -   DCN(0,0);
451	 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
452	 for(i=0; i<uorder-1; i++)
453	 {
454	    /* for the derivative in v */
455	    DCN(i+1,2) =    DCN(i+1,1)  -   DCN(i+1,0);
456	    DCN(i,2)   = us*DCN(i,2)    + u*DCN(i+1,2);
457
458	    /* for the `point' */
459	    DCN(i+1,0) = vs*DCN(i+1,0)  + v*DCN(i+1,1);
460	    DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
461	 }
462
463	 /* remaining linear de Casteljau steps until the second last step */
464	 for(h=minorder; h<uorder-1; h++)
465	    for(i=0; i<uorder-h; i++)
466	    {
467	       /* for the derivative in v */
468	       DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
469
470	       /* for the `point' */
471	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
472	    }
473
474	 /* derivative direction in u */
475	 du[k] = DCN(1,0) - DCN(0,0);
476
477	 /* derivative direction in v */
478	 dv[k] =   us*DCN(0,2) + u*DCN(1,2);
479
480	 /* last linear de Casteljau step */
481	 out[k] =  us*DCN(0,0) + u*DCN(1,0);
482      }
483   }
484#undef DCN
485#undef CN
486}
487
488
489/*
490 * Do one-time initialization for evaluators.
491 */
492void _math_init_eval( void )
493{
494   GLuint i;
495
496   /* KW: precompute 1/x for useful x.
497    */
498   for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
499      inv_tab[i] = 1.0 / i;
500}
501
502