m_matrix.c revision 1e37d54d9d323482b39bf888c09c9857a379bb1c
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.3
4 *
5 * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36
37#include "main/glheader.h"
38#include "main/imports.h"
39#include "main/macros.h"
40
41#include "m_matrix.h"
42
43
44/**
45 * \defgroup MatFlags MAT_FLAG_XXX-flags
46 *
47 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
48 * It would be nice to make all these flags private to m_matrix.c
49 */
50/*@{*/
51#define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
52                                       *   (Not actually used - the identity
53                                       *   matrix is identified by the absense
54                                       *   of all other flags.)
55                                       */
56#define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
57#define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
58#define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
59#define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
60#define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
61#define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
62#define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
63#define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
64#define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
65#define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
66#define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
67
68/** angle preserving matrix flags mask */
69#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
70				    MAT_FLAG_TRANSLATION | \
71				    MAT_FLAG_UNIFORM_SCALE)
72
73/** geometry related matrix flags mask */
74#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
75			    MAT_FLAG_ROTATION | \
76			    MAT_FLAG_TRANSLATION | \
77			    MAT_FLAG_UNIFORM_SCALE | \
78			    MAT_FLAG_GENERAL_SCALE | \
79			    MAT_FLAG_GENERAL_3D | \
80			    MAT_FLAG_PERSPECTIVE | \
81	                    MAT_FLAG_SINGULAR)
82
83/** length preserving matrix flags mask */
84#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
85				     MAT_FLAG_TRANSLATION)
86
87
88/** 3D (non-perspective) matrix flags mask */
89#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
90		      MAT_FLAG_TRANSLATION | \
91		      MAT_FLAG_UNIFORM_SCALE | \
92		      MAT_FLAG_GENERAL_SCALE | \
93		      MAT_FLAG_GENERAL_3D)
94
95/** dirty matrix flags mask */
96#define MAT_DIRTY          (MAT_DIRTY_TYPE | \
97			    MAT_DIRTY_FLAGS | \
98			    MAT_DIRTY_INVERSE)
99
100/*@}*/
101
102
103/**
104 * Test geometry related matrix flags.
105 *
106 * \param mat a pointer to a GLmatrix structure.
107 * \param a flags mask.
108 *
109 * \returns non-zero if all geometry related matrix flags are contained within
110 * the mask, or zero otherwise.
111 */
112#define TEST_MAT_FLAGS(mat, a)  \
113    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
114
115
116
117/**
118 * Names of the corresponding GLmatrixtype values.
119 */
120static const char *types[] = {
121   "MATRIX_GENERAL",
122   "MATRIX_IDENTITY",
123   "MATRIX_3D_NO_ROT",
124   "MATRIX_PERSPECTIVE",
125   "MATRIX_2D",
126   "MATRIX_2D_NO_ROT",
127   "MATRIX_3D"
128};
129
130
131/**
132 * Identity matrix.
133 */
134static GLfloat Identity[16] = {
135   1.0, 0.0, 0.0, 0.0,
136   0.0, 1.0, 0.0, 0.0,
137   0.0, 0.0, 1.0, 0.0,
138   0.0, 0.0, 0.0, 1.0
139};
140
141
142
143/**********************************************************************/
144/** \name Matrix multiplication */
145/*@{*/
146
147#define A(row,col)  a[(col<<2)+row]
148#define B(row,col)  b[(col<<2)+row]
149#define P(row,col)  product[(col<<2)+row]
150
151/**
152 * Perform a full 4x4 matrix multiplication.
153 *
154 * \param a matrix.
155 * \param b matrix.
156 * \param product will receive the product of \p a and \p b.
157 *
158 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
159 *
160 * \note KW: 4*16 = 64 multiplications
161 *
162 * \author This \c matmul was contributed by Thomas Malik
163 */
164static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
165{
166   GLint i;
167   for (i = 0; i < 4; i++) {
168      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
169      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
170      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
171      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
172      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
173   }
174}
175
176/**
177 * Multiply two matrices known to occupy only the top three rows, such
178 * as typical model matrices, and orthogonal matrices.
179 *
180 * \param a matrix.
181 * \param b matrix.
182 * \param product will receive the product of \p a and \p b.
183 */
184static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
185{
186   GLint i;
187   for (i = 0; i < 3; i++) {
188      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
189      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
190      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
191      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
192      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
193   }
194   P(3,0) = 0;
195   P(3,1) = 0;
196   P(3,2) = 0;
197   P(3,3) = 1;
198}
199
200#undef A
201#undef B
202#undef P
203
204/**
205 * Multiply a matrix by an array of floats with known properties.
206 *
207 * \param mat pointer to a GLmatrix structure containing the left multiplication
208 * matrix, and that will receive the product result.
209 * \param m right multiplication matrix array.
210 * \param flags flags of the matrix \p m.
211 *
212 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
213 * if both matrices are 3D, or matmul4() otherwise.
214 */
215static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
216{
217   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
218
219   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
220      matmul34( mat->m, mat->m, m );
221   else
222      matmul4( mat->m, mat->m, m );
223}
224
225/**
226 * Matrix multiplication.
227 *
228 * \param dest destination matrix.
229 * \param a left matrix.
230 * \param b right matrix.
231 *
232 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
233 * if both matrices are 3D, or matmul4() otherwise.
234 */
235void
236_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
237{
238   dest->flags = (a->flags |
239		  b->flags |
240		  MAT_DIRTY_TYPE |
241		  MAT_DIRTY_INVERSE);
242
243   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
244      matmul34( dest->m, a->m, b->m );
245   else
246      matmul4( dest->m, a->m, b->m );
247}
248
249/**
250 * Matrix multiplication.
251 *
252 * \param dest left and destination matrix.
253 * \param m right matrix array.
254 *
255 * Marks the matrix flags with general flag, and type and inverse dirty flags.
256 * Calls matmul4() for the multiplication.
257 */
258void
259_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
260{
261   dest->flags |= (MAT_FLAG_GENERAL |
262		   MAT_DIRTY_TYPE |
263		   MAT_DIRTY_INVERSE |
264                   MAT_DIRTY_FLAGS);
265
266   matmul4( dest->m, dest->m, m );
267}
268
269/*@}*/
270
271
272/**********************************************************************/
273/** \name Matrix output */
274/*@{*/
275
276/**
277 * Print a matrix array.
278 *
279 * \param m matrix array.
280 *
281 * Called by _math_matrix_print() to print a matrix or its inverse.
282 */
283static void print_matrix_floats( const GLfloat m[16] )
284{
285   int i;
286   for (i=0;i<4;i++) {
287      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
288   }
289}
290
291/**
292 * Dumps the contents of a GLmatrix structure.
293 *
294 * \param m pointer to the GLmatrix structure.
295 */
296void
297_math_matrix_print( const GLmatrix *m )
298{
299   GLfloat prod[16];
300
301   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
302   print_matrix_floats(m->m);
303   _mesa_debug(NULL, "Inverse: \n");
304   print_matrix_floats(m->inv);
305   matmul4(prod, m->m, m->inv);
306   _mesa_debug(NULL, "Mat * Inverse:\n");
307   print_matrix_floats(prod);
308}
309
310/*@}*/
311
312
313/**
314 * References an element of 4x4 matrix.
315 *
316 * \param m matrix array.
317 * \param c column of the desired element.
318 * \param r row of the desired element.
319 *
320 * \return value of the desired element.
321 *
322 * Calculate the linear storage index of the element and references it.
323 */
324#define MAT(m,r,c) (m)[(c)*4+(r)]
325
326
327/**********************************************************************/
328/** \name Matrix inversion */
329/*@{*/
330
331/**
332 * Swaps the values of two floating point variables.
333 *
334 * Used by invert_matrix_general() to swap the row pointers.
335 */
336#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
337
338/**
339 * Compute inverse of 4x4 transformation matrix.
340 *
341 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
342 * stored in the GLmatrix::inv attribute.
343 *
344 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
345 *
346 * \author
347 * Code contributed by Jacques Leroy jle@star.be
348 *
349 * Calculates the inverse matrix by performing the gaussian matrix reduction
350 * with partial pivoting followed by back/substitution with the loops manually
351 * unrolled.
352 */
353static GLboolean invert_matrix_general( GLmatrix *mat )
354{
355   const GLfloat *m = mat->m;
356   GLfloat *out = mat->inv;
357   GLfloat wtmp[4][8];
358   GLfloat m0, m1, m2, m3, s;
359   GLfloat *r0, *r1, *r2, *r3;
360
361   r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
362
363   r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
364   r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
365   r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
366
367   r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
368   r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
369   r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
370
371   r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
372   r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
373   r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
374
375   r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
376   r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
377   r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
378
379   /* choose pivot - or die */
380   if (FABSF(r3[0])>FABSF(r2[0])) SWAP_ROWS(r3, r2);
381   if (FABSF(r2[0])>FABSF(r1[0])) SWAP_ROWS(r2, r1);
382   if (FABSF(r1[0])>FABSF(r0[0])) SWAP_ROWS(r1, r0);
383   if (0.0 == r0[0])  return GL_FALSE;
384
385   /* eliminate first variable     */
386   m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
387   s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
388   s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
389   s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
390   s = r0[4];
391   if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
392   s = r0[5];
393   if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
394   s = r0[6];
395   if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
396   s = r0[7];
397   if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
398
399   /* choose pivot - or die */
400   if (FABSF(r3[1])>FABSF(r2[1])) SWAP_ROWS(r3, r2);
401   if (FABSF(r2[1])>FABSF(r1[1])) SWAP_ROWS(r2, r1);
402   if (0.0 == r1[1])  return GL_FALSE;
403
404   /* eliminate second variable */
405   m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
406   r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
407   r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
408   s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
409   s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
410   s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
411   s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
412
413   /* choose pivot - or die */
414   if (FABSF(r3[2])>FABSF(r2[2])) SWAP_ROWS(r3, r2);
415   if (0.0 == r2[2])  return GL_FALSE;
416
417   /* eliminate third variable */
418   m3 = r3[2]/r2[2];
419   r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
420   r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
421   r3[7] -= m3 * r2[7];
422
423   /* last check */
424   if (0.0 == r3[3]) return GL_FALSE;
425
426   s = 1.0F/r3[3];             /* now back substitute row 3 */
427   r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
428
429   m2 = r2[3];                 /* now back substitute row 2 */
430   s  = 1.0F/r2[2];
431   r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
432   r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
433   m1 = r1[3];
434   r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
435   r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
436   m0 = r0[3];
437   r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
438   r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
439
440   m1 = r1[2];                 /* now back substitute row 1 */
441   s  = 1.0F/r1[1];
442   r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
443   r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
444   m0 = r0[2];
445   r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
446   r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
447
448   m0 = r0[1];                 /* now back substitute row 0 */
449   s  = 1.0F/r0[0];
450   r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
451   r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
452
453   MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
454   MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
455   MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
456   MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
457   MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
458   MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
459   MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
460   MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
461
462   return GL_TRUE;
463}
464#undef SWAP_ROWS
465
466/**
467 * Compute inverse of a general 3d transformation matrix.
468 *
469 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
470 * stored in the GLmatrix::inv attribute.
471 *
472 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
473 *
474 * \author Adapted from graphics gems II.
475 *
476 * Calculates the inverse of the upper left by first calculating its
477 * determinant and multiplying it to the symmetric adjust matrix of each
478 * element. Finally deals with the translation part by transforming the
479 * original translation vector using by the calculated submatrix inverse.
480 */
481static GLboolean invert_matrix_3d_general( GLmatrix *mat )
482{
483   const GLfloat *in = mat->m;
484   GLfloat *out = mat->inv;
485   GLfloat pos, neg, t;
486   GLfloat det;
487
488   /* Calculate the determinant of upper left 3x3 submatrix and
489    * determine if the matrix is singular.
490    */
491   pos = neg = 0.0;
492   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
493   if (t >= 0.0) pos += t; else neg += t;
494
495   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
496   if (t >= 0.0) pos += t; else neg += t;
497
498   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
499   if (t >= 0.0) pos += t; else neg += t;
500
501   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
502   if (t >= 0.0) pos += t; else neg += t;
503
504   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
505   if (t >= 0.0) pos += t; else neg += t;
506
507   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
508   if (t >= 0.0) pos += t; else neg += t;
509
510   det = pos + neg;
511
512   if (FABSF(det) < 1e-25)
513      return GL_FALSE;
514
515   det = 1.0F / det;
516   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
517   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
518   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
519   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
520   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
521   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
522   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
523   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
524   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
525
526   /* Do the translation part */
527   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
528		     MAT(in,1,3) * MAT(out,0,1) +
529		     MAT(in,2,3) * MAT(out,0,2) );
530   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
531		     MAT(in,1,3) * MAT(out,1,1) +
532		     MAT(in,2,3) * MAT(out,1,2) );
533   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
534		     MAT(in,1,3) * MAT(out,2,1) +
535		     MAT(in,2,3) * MAT(out,2,2) );
536
537   return GL_TRUE;
538}
539
540/**
541 * Compute inverse of a 3d transformation matrix.
542 *
543 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
544 * stored in the GLmatrix::inv attribute.
545 *
546 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
547 *
548 * If the matrix is not an angle preserving matrix then calls
549 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
550 * the inverse matrix analyzing and inverting each of the scaling, rotation and
551 * translation parts.
552 */
553static GLboolean invert_matrix_3d( GLmatrix *mat )
554{
555   const GLfloat *in = mat->m;
556   GLfloat *out = mat->inv;
557
558   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
559      return invert_matrix_3d_general( mat );
560   }
561
562   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
563      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
564                       MAT(in,0,1) * MAT(in,0,1) +
565                       MAT(in,0,2) * MAT(in,0,2));
566
567      if (scale == 0.0)
568         return GL_FALSE;
569
570      scale = 1.0F / scale;
571
572      /* Transpose and scale the 3 by 3 upper-left submatrix. */
573      MAT(out,0,0) = scale * MAT(in,0,0);
574      MAT(out,1,0) = scale * MAT(in,0,1);
575      MAT(out,2,0) = scale * MAT(in,0,2);
576      MAT(out,0,1) = scale * MAT(in,1,0);
577      MAT(out,1,1) = scale * MAT(in,1,1);
578      MAT(out,2,1) = scale * MAT(in,1,2);
579      MAT(out,0,2) = scale * MAT(in,2,0);
580      MAT(out,1,2) = scale * MAT(in,2,1);
581      MAT(out,2,2) = scale * MAT(in,2,2);
582   }
583   else if (mat->flags & MAT_FLAG_ROTATION) {
584      /* Transpose the 3 by 3 upper-left submatrix. */
585      MAT(out,0,0) = MAT(in,0,0);
586      MAT(out,1,0) = MAT(in,0,1);
587      MAT(out,2,0) = MAT(in,0,2);
588      MAT(out,0,1) = MAT(in,1,0);
589      MAT(out,1,1) = MAT(in,1,1);
590      MAT(out,2,1) = MAT(in,1,2);
591      MAT(out,0,2) = MAT(in,2,0);
592      MAT(out,1,2) = MAT(in,2,1);
593      MAT(out,2,2) = MAT(in,2,2);
594   }
595   else {
596      /* pure translation */
597      memcpy( out, Identity, sizeof(Identity) );
598      MAT(out,0,3) = - MAT(in,0,3);
599      MAT(out,1,3) = - MAT(in,1,3);
600      MAT(out,2,3) = - MAT(in,2,3);
601      return GL_TRUE;
602   }
603
604   if (mat->flags & MAT_FLAG_TRANSLATION) {
605      /* Do the translation part */
606      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
607			MAT(in,1,3) * MAT(out,0,1) +
608			MAT(in,2,3) * MAT(out,0,2) );
609      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
610			MAT(in,1,3) * MAT(out,1,1) +
611			MAT(in,2,3) * MAT(out,1,2) );
612      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
613			MAT(in,1,3) * MAT(out,2,1) +
614			MAT(in,2,3) * MAT(out,2,2) );
615   }
616   else {
617      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
618   }
619
620   return GL_TRUE;
621}
622
623/**
624 * Compute inverse of an identity transformation matrix.
625 *
626 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
627 * stored in the GLmatrix::inv attribute.
628 *
629 * \return always GL_TRUE.
630 *
631 * Simply copies Identity into GLmatrix::inv.
632 */
633static GLboolean invert_matrix_identity( GLmatrix *mat )
634{
635   memcpy( mat->inv, Identity, sizeof(Identity) );
636   return GL_TRUE;
637}
638
639/**
640 * Compute inverse of a no-rotation 3d transformation matrix.
641 *
642 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
643 * stored in the GLmatrix::inv attribute.
644 *
645 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
646 *
647 * Calculates the
648 */
649static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
650{
651   const GLfloat *in = mat->m;
652   GLfloat *out = mat->inv;
653
654   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
655      return GL_FALSE;
656
657   memcpy( out, Identity, 16 * sizeof(GLfloat) );
658   MAT(out,0,0) = 1.0F / MAT(in,0,0);
659   MAT(out,1,1) = 1.0F / MAT(in,1,1);
660   MAT(out,2,2) = 1.0F / MAT(in,2,2);
661
662   if (mat->flags & MAT_FLAG_TRANSLATION) {
663      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
664      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
665      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
666   }
667
668   return GL_TRUE;
669}
670
671/**
672 * Compute inverse of a no-rotation 2d transformation matrix.
673 *
674 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
675 * stored in the GLmatrix::inv attribute.
676 *
677 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
678 *
679 * Calculates the inverse matrix by applying the inverse scaling and
680 * translation to the identity matrix.
681 */
682static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
683{
684   const GLfloat *in = mat->m;
685   GLfloat *out = mat->inv;
686
687   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
688      return GL_FALSE;
689
690   memcpy( out, Identity, 16 * sizeof(GLfloat) );
691   MAT(out,0,0) = 1.0F / MAT(in,0,0);
692   MAT(out,1,1) = 1.0F / MAT(in,1,1);
693
694   if (mat->flags & MAT_FLAG_TRANSLATION) {
695      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
696      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
697   }
698
699   return GL_TRUE;
700}
701
702#if 0
703/* broken */
704static GLboolean invert_matrix_perspective( GLmatrix *mat )
705{
706   const GLfloat *in = mat->m;
707   GLfloat *out = mat->inv;
708
709   if (MAT(in,2,3) == 0)
710      return GL_FALSE;
711
712   memcpy( out, Identity, 16 * sizeof(GLfloat) );
713
714   MAT(out,0,0) = 1.0F / MAT(in,0,0);
715   MAT(out,1,1) = 1.0F / MAT(in,1,1);
716
717   MAT(out,0,3) = MAT(in,0,2);
718   MAT(out,1,3) = MAT(in,1,2);
719
720   MAT(out,2,2) = 0;
721   MAT(out,2,3) = -1;
722
723   MAT(out,3,2) = 1.0F / MAT(in,2,3);
724   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
725
726   return GL_TRUE;
727}
728#endif
729
730/**
731 * Matrix inversion function pointer type.
732 */
733typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
734
735/**
736 * Table of the matrix inversion functions according to the matrix type.
737 */
738static inv_mat_func inv_mat_tab[7] = {
739   invert_matrix_general,
740   invert_matrix_identity,
741   invert_matrix_3d_no_rot,
742#if 0
743   /* Don't use this function for now - it fails when the projection matrix
744    * is premultiplied by a translation (ala Chromium's tilesort SPU).
745    */
746   invert_matrix_perspective,
747#else
748   invert_matrix_general,
749#endif
750   invert_matrix_3d,		/* lazy! */
751   invert_matrix_2d_no_rot,
752   invert_matrix_3d
753};
754
755/**
756 * Compute inverse of a transformation matrix.
757 *
758 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
759 * stored in the GLmatrix::inv attribute.
760 *
761 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
762 *
763 * Calls the matrix inversion function in inv_mat_tab corresponding to the
764 * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
765 * and copies the identity matrix into GLmatrix::inv.
766 */
767static GLboolean matrix_invert( GLmatrix *mat )
768{
769   if (inv_mat_tab[mat->type](mat)) {
770      mat->flags &= ~MAT_FLAG_SINGULAR;
771      return GL_TRUE;
772   } else {
773      mat->flags |= MAT_FLAG_SINGULAR;
774      memcpy( mat->inv, Identity, sizeof(Identity) );
775      return GL_FALSE;
776   }
777}
778
779/*@}*/
780
781
782/**********************************************************************/
783/** \name Matrix generation */
784/*@{*/
785
786/**
787 * Generate a 4x4 transformation matrix from glRotate parameters, and
788 * post-multiply the input matrix by it.
789 *
790 * \author
791 * This function was contributed by Erich Boleyn (erich@uruk.org).
792 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
793 */
794void
795_math_matrix_rotate( GLmatrix *mat,
796		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
797{
798   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
799   GLfloat m[16];
800   GLboolean optimized;
801
802   s = (GLfloat) sin( angle * DEG2RAD );
803   c = (GLfloat) cos( angle * DEG2RAD );
804
805   memcpy(m, Identity, sizeof(GLfloat)*16);
806   optimized = GL_FALSE;
807
808#define M(row,col)  m[col*4+row]
809
810   if (x == 0.0F) {
811      if (y == 0.0F) {
812         if (z != 0.0F) {
813            optimized = GL_TRUE;
814            /* rotate only around z-axis */
815            M(0,0) = c;
816            M(1,1) = c;
817            if (z < 0.0F) {
818               M(0,1) = s;
819               M(1,0) = -s;
820            }
821            else {
822               M(0,1) = -s;
823               M(1,0) = s;
824            }
825         }
826      }
827      else if (z == 0.0F) {
828         optimized = GL_TRUE;
829         /* rotate only around y-axis */
830         M(0,0) = c;
831         M(2,2) = c;
832         if (y < 0.0F) {
833            M(0,2) = -s;
834            M(2,0) = s;
835         }
836         else {
837            M(0,2) = s;
838            M(2,0) = -s;
839         }
840      }
841   }
842   else if (y == 0.0F) {
843      if (z == 0.0F) {
844         optimized = GL_TRUE;
845         /* rotate only around x-axis */
846         M(1,1) = c;
847         M(2,2) = c;
848         if (x < 0.0F) {
849            M(1,2) = s;
850            M(2,1) = -s;
851         }
852         else {
853            M(1,2) = -s;
854            M(2,1) = s;
855         }
856      }
857   }
858
859   if (!optimized) {
860      const GLfloat mag = SQRTF(x * x + y * y + z * z);
861
862      if (mag <= 1.0e-4) {
863         /* no rotation, leave mat as-is */
864         return;
865      }
866
867      x /= mag;
868      y /= mag;
869      z /= mag;
870
871
872      /*
873       *     Arbitrary axis rotation matrix.
874       *
875       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
876       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
877       *  (which is about the X-axis), and the two composite transforms
878       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
879       *  from the arbitrary axis to the X-axis then back.  They are
880       *  all elementary rotations.
881       *
882       *  Rz' is a rotation about the Z-axis, to bring the axis vector
883       *  into the x-z plane.  Then Ry' is applied, rotating about the
884       *  Y-axis to bring the axis vector parallel with the X-axis.  The
885       *  rotation about the X-axis is then performed.  Ry and Rz are
886       *  simply the respective inverse transforms to bring the arbitrary
887       *  axis back to its original orientation.  The first transforms
888       *  Rz' and Ry' are considered inverses, since the data from the
889       *  arbitrary axis gives you info on how to get to it, not how
890       *  to get away from it, and an inverse must be applied.
891       *
892       *  The basic calculation used is to recognize that the arbitrary
893       *  axis vector (x, y, z), since it is of unit length, actually
894       *  represents the sines and cosines of the angles to rotate the
895       *  X-axis to the same orientation, with theta being the angle about
896       *  Z and phi the angle about Y (in the order described above)
897       *  as follows:
898       *
899       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
900       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
901       *
902       *  cos ( phi ) = sqrt ( 1 - z^2 )
903       *  sin ( phi ) = z
904       *
905       *  Note that cos ( phi ) can further be inserted to the above
906       *  formulas:
907       *
908       *  cos ( theta ) = x / cos ( phi )
909       *  sin ( theta ) = y / sin ( phi )
910       *
911       *  ...etc.  Because of those relations and the standard trigonometric
912       *  relations, it is pssible to reduce the transforms down to what
913       *  is used below.  It may be that any primary axis chosen will give the
914       *  same results (modulo a sign convention) using thie method.
915       *
916       *  Particularly nice is to notice that all divisions that might
917       *  have caused trouble when parallel to certain planes or
918       *  axis go away with care paid to reducing the expressions.
919       *  After checking, it does perform correctly under all cases, since
920       *  in all the cases of division where the denominator would have
921       *  been zero, the numerator would have been zero as well, giving
922       *  the expected result.
923       */
924
925      xx = x * x;
926      yy = y * y;
927      zz = z * z;
928      xy = x * y;
929      yz = y * z;
930      zx = z * x;
931      xs = x * s;
932      ys = y * s;
933      zs = z * s;
934      one_c = 1.0F - c;
935
936      /* We already hold the identity-matrix so we can skip some statements */
937      M(0,0) = (one_c * xx) + c;
938      M(0,1) = (one_c * xy) - zs;
939      M(0,2) = (one_c * zx) + ys;
940/*    M(0,3) = 0.0F; */
941
942      M(1,0) = (one_c * xy) + zs;
943      M(1,1) = (one_c * yy) + c;
944      M(1,2) = (one_c * yz) - xs;
945/*    M(1,3) = 0.0F; */
946
947      M(2,0) = (one_c * zx) - ys;
948      M(2,1) = (one_c * yz) + xs;
949      M(2,2) = (one_c * zz) + c;
950/*    M(2,3) = 0.0F; */
951
952/*
953      M(3,0) = 0.0F;
954      M(3,1) = 0.0F;
955      M(3,2) = 0.0F;
956      M(3,3) = 1.0F;
957*/
958   }
959#undef M
960
961   matrix_multf( mat, m, MAT_FLAG_ROTATION );
962}
963
964/**
965 * Apply a perspective projection matrix.
966 *
967 * \param mat matrix to apply the projection.
968 * \param left left clipping plane coordinate.
969 * \param right right clipping plane coordinate.
970 * \param bottom bottom clipping plane coordinate.
971 * \param top top clipping plane coordinate.
972 * \param nearval distance to the near clipping plane.
973 * \param farval distance to the far clipping plane.
974 *
975 * Creates the projection matrix and multiplies it with \p mat, marking the
976 * MAT_FLAG_PERSPECTIVE flag.
977 */
978void
979_math_matrix_frustum( GLmatrix *mat,
980		      GLfloat left, GLfloat right,
981		      GLfloat bottom, GLfloat top,
982		      GLfloat nearval, GLfloat farval )
983{
984   GLfloat x, y, a, b, c, d;
985   GLfloat m[16];
986
987   x = (2.0F*nearval) / (right-left);
988   y = (2.0F*nearval) / (top-bottom);
989   a = (right+left) / (right-left);
990   b = (top+bottom) / (top-bottom);
991   c = -(farval+nearval) / ( farval-nearval);
992   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
993
994#define M(row,col)  m[col*4+row]
995   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
996   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
997   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
998   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
999#undef M
1000
1001   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1002}
1003
1004/**
1005 * Apply an orthographic projection matrix.
1006 *
1007 * \param mat matrix to apply the projection.
1008 * \param left left clipping plane coordinate.
1009 * \param right right clipping plane coordinate.
1010 * \param bottom bottom clipping plane coordinate.
1011 * \param top top clipping plane coordinate.
1012 * \param nearval distance to the near clipping plane.
1013 * \param farval distance to the far clipping plane.
1014 *
1015 * Creates the projection matrix and multiplies it with \p mat, marking the
1016 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1017 */
1018void
1019_math_matrix_ortho( GLmatrix *mat,
1020		    GLfloat left, GLfloat right,
1021		    GLfloat bottom, GLfloat top,
1022		    GLfloat nearval, GLfloat farval )
1023{
1024   GLfloat m[16];
1025
1026#define M(row,col)  m[col*4+row]
1027   M(0,0) = 2.0F / (right-left);
1028   M(0,1) = 0.0F;
1029   M(0,2) = 0.0F;
1030   M(0,3) = -(right+left) / (right-left);
1031
1032   M(1,0) = 0.0F;
1033   M(1,1) = 2.0F / (top-bottom);
1034   M(1,2) = 0.0F;
1035   M(1,3) = -(top+bottom) / (top-bottom);
1036
1037   M(2,0) = 0.0F;
1038   M(2,1) = 0.0F;
1039   M(2,2) = -2.0F / (farval-nearval);
1040   M(2,3) = -(farval+nearval) / (farval-nearval);
1041
1042   M(3,0) = 0.0F;
1043   M(3,1) = 0.0F;
1044   M(3,2) = 0.0F;
1045   M(3,3) = 1.0F;
1046#undef M
1047
1048   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1049}
1050
1051/**
1052 * Multiply a matrix with a general scaling matrix.
1053 *
1054 * \param mat matrix.
1055 * \param x x axis scale factor.
1056 * \param y y axis scale factor.
1057 * \param z z axis scale factor.
1058 *
1059 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1060 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1061 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1062 * MAT_DIRTY_INVERSE dirty flags.
1063 */
1064void
1065_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1066{
1067   GLfloat *m = mat->m;
1068   m[0] *= x;   m[4] *= y;   m[8]  *= z;
1069   m[1] *= x;   m[5] *= y;   m[9]  *= z;
1070   m[2] *= x;   m[6] *= y;   m[10] *= z;
1071   m[3] *= x;   m[7] *= y;   m[11] *= z;
1072
1073   if (FABSF(x - y) < 1e-8 && FABSF(x - z) < 1e-8)
1074      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1075   else
1076      mat->flags |= MAT_FLAG_GENERAL_SCALE;
1077
1078   mat->flags |= (MAT_DIRTY_TYPE |
1079		  MAT_DIRTY_INVERSE);
1080}
1081
1082/**
1083 * Multiply a matrix with a translation matrix.
1084 *
1085 * \param mat matrix.
1086 * \param x translation vector x coordinate.
1087 * \param y translation vector y coordinate.
1088 * \param z translation vector z coordinate.
1089 *
1090 * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1091 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1092 * dirty flags.
1093 */
1094void
1095_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1096{
1097   GLfloat *m = mat->m;
1098   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1099   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1100   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1101   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1102
1103   mat->flags |= (MAT_FLAG_TRANSLATION |
1104		  MAT_DIRTY_TYPE |
1105		  MAT_DIRTY_INVERSE);
1106}
1107
1108
1109/**
1110 * Set matrix to do viewport and depthrange mapping.
1111 * Transforms Normalized Device Coords to window/Z values.
1112 */
1113void
1114_math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height,
1115                      GLfloat zNear, GLfloat zFar, GLfloat depthMax)
1116{
1117   m->m[MAT_SX] = (GLfloat) width / 2.0F;
1118   m->m[MAT_TX] = m->m[MAT_SX] + x;
1119   m->m[MAT_SY] = (GLfloat) height / 2.0F;
1120   m->m[MAT_TY] = m->m[MAT_SY] + y;
1121   m->m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0F);
1122   m->m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0F + zNear);
1123   m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1124   m->type = MATRIX_3D_NO_ROT;
1125}
1126
1127
1128/**
1129 * Set a matrix to the identity matrix.
1130 *
1131 * \param mat matrix.
1132 *
1133 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1134 * Sets the matrix type to identity, and clear the dirty flags.
1135 */
1136void
1137_math_matrix_set_identity( GLmatrix *mat )
1138{
1139   memcpy( mat->m, Identity, 16*sizeof(GLfloat) );
1140   memcpy( mat->inv, Identity, 16*sizeof(GLfloat) );
1141
1142   mat->type = MATRIX_IDENTITY;
1143   mat->flags &= ~(MAT_DIRTY_FLAGS|
1144		   MAT_DIRTY_TYPE|
1145		   MAT_DIRTY_INVERSE);
1146}
1147
1148/*@}*/
1149
1150
1151/**********************************************************************/
1152/** \name Matrix analysis */
1153/*@{*/
1154
1155#define ZERO(x) (1<<x)
1156#define ONE(x)  (1<<(x+16))
1157
1158#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1159#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1160
1161#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1162			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1163			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1164			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1165
1166#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1167			  ZERO(1)  |            ZERO(9)  |           \
1168			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1169			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1170
1171#define MASK_2D          (                      ZERO(8)  |           \
1172			                        ZERO(9)  |           \
1173			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1174			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1175
1176
1177#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1178			  ZERO(1)  |            ZERO(9)  |           \
1179			  ZERO(2)  | ZERO(6)  |                      \
1180			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1181
1182#define MASK_3D          (                                           \
1183			                                             \
1184			                                             \
1185			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1186
1187
1188#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1189			  ZERO(1)  |                       ZERO(13) |\
1190			  ZERO(2)  | ZERO(6)  |                      \
1191			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1192
1193#define SQ(x) ((x)*(x))
1194
1195/**
1196 * Determine type and flags from scratch.
1197 *
1198 * \param mat matrix.
1199 *
1200 * This is expensive enough to only want to do it once.
1201 */
1202static void analyse_from_scratch( GLmatrix *mat )
1203{
1204   const GLfloat *m = mat->m;
1205   GLuint mask = 0;
1206   GLuint i;
1207
1208   for (i = 0 ; i < 16 ; i++) {
1209      if (m[i] == 0.0) mask |= (1<<i);
1210   }
1211
1212   if (m[0] == 1.0F) mask |= (1<<16);
1213   if (m[5] == 1.0F) mask |= (1<<21);
1214   if (m[10] == 1.0F) mask |= (1<<26);
1215   if (m[15] == 1.0F) mask |= (1<<31);
1216
1217   mat->flags &= ~MAT_FLAGS_GEOMETRY;
1218
1219   /* Check for translation - no-one really cares
1220    */
1221   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1222      mat->flags |= MAT_FLAG_TRANSLATION;
1223
1224   /* Do the real work
1225    */
1226   if (mask == (GLuint) MASK_IDENTITY) {
1227      mat->type = MATRIX_IDENTITY;
1228   }
1229   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1230      mat->type = MATRIX_2D_NO_ROT;
1231
1232      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1233	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1234   }
1235   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1236      GLfloat mm = DOT2(m, m);
1237      GLfloat m4m4 = DOT2(m+4,m+4);
1238      GLfloat mm4 = DOT2(m,m+4);
1239
1240      mat->type = MATRIX_2D;
1241
1242      /* Check for scale */
1243      if (SQ(mm-1) > SQ(1e-6) ||
1244	  SQ(m4m4-1) > SQ(1e-6))
1245	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1246
1247      /* Check for rotation */
1248      if (SQ(mm4) > SQ(1e-6))
1249	 mat->flags |= MAT_FLAG_GENERAL_3D;
1250      else
1251	 mat->flags |= MAT_FLAG_ROTATION;
1252
1253   }
1254   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1255      mat->type = MATRIX_3D_NO_ROT;
1256
1257      /* Check for scale */
1258      if (SQ(m[0]-m[5]) < SQ(1e-6) &&
1259	  SQ(m[0]-m[10]) < SQ(1e-6)) {
1260	 if (SQ(m[0]-1.0) > SQ(1e-6)) {
1261	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1262         }
1263      }
1264      else {
1265	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1266      }
1267   }
1268   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1269      GLfloat c1 = DOT3(m,m);
1270      GLfloat c2 = DOT3(m+4,m+4);
1271      GLfloat c3 = DOT3(m+8,m+8);
1272      GLfloat d1 = DOT3(m, m+4);
1273      GLfloat cp[3];
1274
1275      mat->type = MATRIX_3D;
1276
1277      /* Check for scale */
1278      if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
1279	 if (SQ(c1-1.0) > SQ(1e-6))
1280	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1281	 /* else no scale at all */
1282      }
1283      else {
1284	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1285      }
1286
1287      /* Check for rotation */
1288      if (SQ(d1) < SQ(1e-6)) {
1289	 CROSS3( cp, m, m+4 );
1290	 SUB_3V( cp, cp, (m+8) );
1291	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
1292	    mat->flags |= MAT_FLAG_ROTATION;
1293	 else
1294	    mat->flags |= MAT_FLAG_GENERAL_3D;
1295      }
1296      else {
1297	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1298      }
1299   }
1300   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1301      mat->type = MATRIX_PERSPECTIVE;
1302      mat->flags |= MAT_FLAG_GENERAL;
1303   }
1304   else {
1305      mat->type = MATRIX_GENERAL;
1306      mat->flags |= MAT_FLAG_GENERAL;
1307   }
1308}
1309
1310/**
1311 * Analyze a matrix given that its flags are accurate.
1312 *
1313 * This is the more common operation, hopefully.
1314 */
1315static void analyse_from_flags( GLmatrix *mat )
1316{
1317   const GLfloat *m = mat->m;
1318
1319   if (TEST_MAT_FLAGS(mat, 0)) {
1320      mat->type = MATRIX_IDENTITY;
1321   }
1322   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1323				 MAT_FLAG_UNIFORM_SCALE |
1324				 MAT_FLAG_GENERAL_SCALE))) {
1325      if ( m[10]==1.0F && m[14]==0.0F ) {
1326	 mat->type = MATRIX_2D_NO_ROT;
1327      }
1328      else {
1329	 mat->type = MATRIX_3D_NO_ROT;
1330      }
1331   }
1332   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1333      if (                                 m[ 8]==0.0F
1334            &&                             m[ 9]==0.0F
1335            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1336	 mat->type = MATRIX_2D;
1337      }
1338      else {
1339	 mat->type = MATRIX_3D;
1340      }
1341   }
1342   else if (                 m[4]==0.0F                 && m[12]==0.0F
1343            && m[1]==0.0F                               && m[13]==0.0F
1344            && m[2]==0.0F && m[6]==0.0F
1345            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1346      mat->type = MATRIX_PERSPECTIVE;
1347   }
1348   else {
1349      mat->type = MATRIX_GENERAL;
1350   }
1351}
1352
1353/**
1354 * Analyze and update a matrix.
1355 *
1356 * \param mat matrix.
1357 *
1358 * If the matrix type is dirty then calls either analyse_from_scratch() or
1359 * analyse_from_flags() to determine its type, according to whether the flags
1360 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1361 * then calls matrix_invert(). Finally clears the dirty flags.
1362 */
1363void
1364_math_matrix_analyse( GLmatrix *mat )
1365{
1366   if (mat->flags & MAT_DIRTY_TYPE) {
1367      if (mat->flags & MAT_DIRTY_FLAGS)
1368	 analyse_from_scratch( mat );
1369      else
1370	 analyse_from_flags( mat );
1371   }
1372
1373   if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1374      matrix_invert( mat );
1375      mat->flags &= ~MAT_DIRTY_INVERSE;
1376   }
1377
1378   mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1379}
1380
1381/*@}*/
1382
1383
1384/**
1385 * Test if the given matrix preserves vector lengths.
1386 */
1387GLboolean
1388_math_matrix_is_length_preserving( const GLmatrix *m )
1389{
1390   return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1391}
1392
1393
1394/**
1395 * Test if the given matrix does any rotation.
1396 * (or perhaps if the upper-left 3x3 is non-identity)
1397 */
1398GLboolean
1399_math_matrix_has_rotation( const GLmatrix *m )
1400{
1401   if (m->flags & (MAT_FLAG_GENERAL |
1402                   MAT_FLAG_ROTATION |
1403                   MAT_FLAG_GENERAL_3D |
1404                   MAT_FLAG_PERSPECTIVE))
1405      return GL_TRUE;
1406   else
1407      return GL_FALSE;
1408}
1409
1410
1411GLboolean
1412_math_matrix_is_general_scale( const GLmatrix *m )
1413{
1414   return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1415}
1416
1417
1418GLboolean
1419_math_matrix_is_dirty( const GLmatrix *m )
1420{
1421   return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1422}
1423
1424
1425/**********************************************************************/
1426/** \name Matrix setup */
1427/*@{*/
1428
1429/**
1430 * Copy a matrix.
1431 *
1432 * \param to destination matrix.
1433 * \param from source matrix.
1434 *
1435 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1436 */
1437void
1438_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1439{
1440   memcpy( to->m, from->m, sizeof(Identity) );
1441   memcpy(to->inv, from->inv, sizeof(from->inv));
1442   to->flags = from->flags;
1443   to->type = from->type;
1444}
1445
1446/**
1447 * Loads a matrix array into GLmatrix.
1448 *
1449 * \param m matrix array.
1450 * \param mat matrix.
1451 *
1452 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1453 * flags.
1454 */
1455void
1456_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1457{
1458   memcpy( mat->m, m, 16*sizeof(GLfloat) );
1459   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1460}
1461
1462/**
1463 * Matrix constructor.
1464 *
1465 * \param m matrix.
1466 *
1467 * Initialize the GLmatrix fields.
1468 */
1469void
1470_math_matrix_ctr( GLmatrix *m )
1471{
1472   m->m = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1473   if (m->m)
1474      memcpy( m->m, Identity, sizeof(Identity) );
1475   m->inv = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1476   if (m->inv)
1477      memcpy( m->inv, Identity, sizeof(Identity) );
1478   m->type = MATRIX_IDENTITY;
1479   m->flags = 0;
1480}
1481
1482/**
1483 * Matrix destructor.
1484 *
1485 * \param m matrix.
1486 *
1487 * Frees the data in a GLmatrix.
1488 */
1489void
1490_math_matrix_dtr( GLmatrix *m )
1491{
1492   if (m->m) {
1493      _mesa_align_free( m->m );
1494      m->m = NULL;
1495   }
1496   if (m->inv) {
1497      _mesa_align_free( m->inv );
1498      m->inv = NULL;
1499   }
1500}
1501
1502/*@}*/
1503
1504
1505/**********************************************************************/
1506/** \name Matrix transpose */
1507/*@{*/
1508
1509/**
1510 * Transpose a GLfloat matrix.
1511 *
1512 * \param to destination array.
1513 * \param from source array.
1514 */
1515void
1516_math_transposef( GLfloat to[16], const GLfloat from[16] )
1517{
1518   to[0] = from[0];
1519   to[1] = from[4];
1520   to[2] = from[8];
1521   to[3] = from[12];
1522   to[4] = from[1];
1523   to[5] = from[5];
1524   to[6] = from[9];
1525   to[7] = from[13];
1526   to[8] = from[2];
1527   to[9] = from[6];
1528   to[10] = from[10];
1529   to[11] = from[14];
1530   to[12] = from[3];
1531   to[13] = from[7];
1532   to[14] = from[11];
1533   to[15] = from[15];
1534}
1535
1536/**
1537 * Transpose a GLdouble matrix.
1538 *
1539 * \param to destination array.
1540 * \param from source array.
1541 */
1542void
1543_math_transposed( GLdouble to[16], const GLdouble from[16] )
1544{
1545   to[0] = from[0];
1546   to[1] = from[4];
1547   to[2] = from[8];
1548   to[3] = from[12];
1549   to[4] = from[1];
1550   to[5] = from[5];
1551   to[6] = from[9];
1552   to[7] = from[13];
1553   to[8] = from[2];
1554   to[9] = from[6];
1555   to[10] = from[10];
1556   to[11] = from[14];
1557   to[12] = from[3];
1558   to[13] = from[7];
1559   to[14] = from[11];
1560   to[15] = from[15];
1561}
1562
1563/**
1564 * Transpose a GLdouble matrix and convert to GLfloat.
1565 *
1566 * \param to destination array.
1567 * \param from source array.
1568 */
1569void
1570_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1571{
1572   to[0] = (GLfloat) from[0];
1573   to[1] = (GLfloat) from[4];
1574   to[2] = (GLfloat) from[8];
1575   to[3] = (GLfloat) from[12];
1576   to[4] = (GLfloat) from[1];
1577   to[5] = (GLfloat) from[5];
1578   to[6] = (GLfloat) from[9];
1579   to[7] = (GLfloat) from[13];
1580   to[8] = (GLfloat) from[2];
1581   to[9] = (GLfloat) from[6];
1582   to[10] = (GLfloat) from[10];
1583   to[11] = (GLfloat) from[14];
1584   to[12] = (GLfloat) from[3];
1585   to[13] = (GLfloat) from[7];
1586   to[14] = (GLfloat) from[11];
1587   to[15] = (GLfloat) from[15];
1588}
1589
1590/*@}*/
1591
1592
1593/**
1594 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1595 * function is used for transforming clipping plane equations and spotlight
1596 * directions.
1597 * Mathematically,  u = v * m.
1598 * Input:  v - input vector
1599 *         m - transformation matrix
1600 * Output:  u - transformed vector
1601 */
1602void
1603_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1604{
1605   const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1606#define M(row,col)  m[row + col*4]
1607   u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1608   u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1609   u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1610   u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1611#undef M
1612}
1613