ir_to_mesa.cpp revision 7cfd42cefe1949af51ecced9891f415eca2c0e66
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32#include <stdio.h>
33#include "main/compiler.h"
34#include "ir.h"
35#include "ir_visitor.h"
36#include "ir_print_visitor.h"
37#include "ir_expression_flattening.h"
38#include "ir_uniform.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44#include "linker.h"
45
46#include "main/mtypes.h"
47#include "main/shaderobj.h"
48#include "program/hash_table.h"
49
50extern "C" {
51#include "main/shaderapi.h"
52#include "main/uniforms.h"
53#include "program/prog_instruction.h"
54#include "program/prog_optimize.h"
55#include "program/prog_print.h"
56#include "program/program.h"
57#include "program/prog_parameter.h"
58#include "program/sampler.h"
59}
60
61class src_reg;
62class dst_reg;
63
64static int swizzle_for_size(int size);
65
66/**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70class src_reg {
71public:
72   src_reg(gl_register_file file, int index, const glsl_type *type)
73   {
74      this->file = file;
75      this->index = index;
76      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77	 this->swizzle = swizzle_for_size(type->vector_elements);
78      else
79	 this->swizzle = SWIZZLE_XYZW;
80      this->negate = 0;
81      this->reladdr = NULL;
82   }
83
84   src_reg()
85   {
86      this->file = PROGRAM_UNDEFINED;
87      this->index = 0;
88      this->swizzle = 0;
89      this->negate = 0;
90      this->reladdr = NULL;
91   }
92
93   explicit src_reg(dst_reg reg);
94
95   gl_register_file file; /**< PROGRAM_* from Mesa */
96   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
97   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98   int negate; /**< NEGATE_XYZW mask from mesa */
99   /** Register index should be offset by the integer in this reg. */
100   src_reg *reladdr;
101};
102
103class dst_reg {
104public:
105   dst_reg(gl_register_file file, int writemask)
106   {
107      this->file = file;
108      this->index = 0;
109      this->writemask = writemask;
110      this->cond_mask = COND_TR;
111      this->reladdr = NULL;
112   }
113
114   dst_reg()
115   {
116      this->file = PROGRAM_UNDEFINED;
117      this->index = 0;
118      this->writemask = 0;
119      this->cond_mask = COND_TR;
120      this->reladdr = NULL;
121   }
122
123   explicit dst_reg(src_reg reg);
124
125   gl_register_file file; /**< PROGRAM_* from Mesa */
126   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
127   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128   GLuint cond_mask:4;
129   /** Register index should be offset by the integer in this reg. */
130   src_reg *reladdr;
131};
132
133src_reg::src_reg(dst_reg reg)
134{
135   this->file = reg.file;
136   this->index = reg.index;
137   this->swizzle = SWIZZLE_XYZW;
138   this->negate = 0;
139   this->reladdr = reg.reladdr;
140}
141
142dst_reg::dst_reg(src_reg reg)
143{
144   this->file = reg.file;
145   this->index = reg.index;
146   this->writemask = WRITEMASK_XYZW;
147   this->cond_mask = COND_TR;
148   this->reladdr = reg.reladdr;
149}
150
151class ir_to_mesa_instruction : public exec_node {
152public:
153   /* Callers of this ralloc-based new need not call delete. It's
154    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
155   static void* operator new(size_t size, void *ctx)
156   {
157      void *node;
158
159      node = rzalloc_size(ctx, size);
160      assert(node != NULL);
161
162      return node;
163   }
164
165   enum prog_opcode op;
166   dst_reg dst;
167   src_reg src[3];
168   /** Pointer to the ir source this tree came from for debugging */
169   ir_instruction *ir;
170   GLboolean cond_update;
171   bool saturate;
172   int sampler; /**< sampler index */
173   int tex_target; /**< One of TEXTURE_*_INDEX */
174   GLboolean tex_shadow;
175};
176
177class variable_storage : public exec_node {
178public:
179   variable_storage(ir_variable *var, gl_register_file file, int index)
180      : file(file), index(index), var(var)
181   {
182      /* empty */
183   }
184
185   gl_register_file file;
186   int index;
187   ir_variable *var; /* variable that maps to this, if any */
188};
189
190class function_entry : public exec_node {
191public:
192   ir_function_signature *sig;
193
194   /**
195    * identifier of this function signature used by the program.
196    *
197    * At the point that Mesa instructions for function calls are
198    * generated, we don't know the address of the first instruction of
199    * the function body.  So we make the BranchTarget that is called a
200    * small integer and rewrite them during set_branchtargets().
201    */
202   int sig_id;
203
204   /**
205    * Pointer to first instruction of the function body.
206    *
207    * Set during function body emits after main() is processed.
208    */
209   ir_to_mesa_instruction *bgn_inst;
210
211   /**
212    * Index of the first instruction of the function body in actual
213    * Mesa IR.
214    *
215    * Set after convertion from ir_to_mesa_instruction to prog_instruction.
216    */
217   int inst;
218
219   /** Storage for the return value. */
220   src_reg return_reg;
221};
222
223class ir_to_mesa_visitor : public ir_visitor {
224public:
225   ir_to_mesa_visitor();
226   ~ir_to_mesa_visitor();
227
228   function_entry *current_function;
229
230   struct gl_context *ctx;
231   struct gl_program *prog;
232   struct gl_shader_program *shader_program;
233   struct gl_shader_compiler_options *options;
234
235   int next_temp;
236
237   variable_storage *find_variable_storage(ir_variable *var);
238
239   src_reg get_temp(const glsl_type *type);
240   void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
241
242   src_reg src_reg_for_float(float val);
243
244   /**
245    * \name Visit methods
246    *
247    * As typical for the visitor pattern, there must be one \c visit method for
248    * each concrete subclass of \c ir_instruction.  Virtual base classes within
249    * the hierarchy should not have \c visit methods.
250    */
251   /*@{*/
252   virtual void visit(ir_variable *);
253   virtual void visit(ir_loop *);
254   virtual void visit(ir_loop_jump *);
255   virtual void visit(ir_function_signature *);
256   virtual void visit(ir_function *);
257   virtual void visit(ir_expression *);
258   virtual void visit(ir_swizzle *);
259   virtual void visit(ir_dereference_variable  *);
260   virtual void visit(ir_dereference_array *);
261   virtual void visit(ir_dereference_record *);
262   virtual void visit(ir_assignment *);
263   virtual void visit(ir_constant *);
264   virtual void visit(ir_call *);
265   virtual void visit(ir_return *);
266   virtual void visit(ir_discard *);
267   virtual void visit(ir_texture *);
268   virtual void visit(ir_if *);
269   /*@}*/
270
271   src_reg result;
272
273   /** List of variable_storage */
274   exec_list variables;
275
276   /** List of function_entry */
277   exec_list function_signatures;
278   int next_signature_id;
279
280   /** List of ir_to_mesa_instruction */
281   exec_list instructions;
282
283   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
284
285   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286			        dst_reg dst, src_reg src0);
287
288   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289			        dst_reg dst, src_reg src0, src_reg src1);
290
291   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
292			        dst_reg dst,
293			        src_reg src0, src_reg src1, src_reg src2);
294
295   /**
296    * Emit the correct dot-product instruction for the type of arguments
297    */
298   ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
299				    dst_reg dst,
300				    src_reg src0,
301				    src_reg src1,
302				    unsigned elements);
303
304   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305		    dst_reg dst, src_reg src0);
306
307   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
308		    dst_reg dst, src_reg src0, src_reg src1);
309
310   void emit_scs(ir_instruction *ir, enum prog_opcode op,
311		 dst_reg dst, const src_reg &src);
312
313   bool try_emit_mad(ir_expression *ir,
314			  int mul_operand);
315   bool try_emit_mad_for_and_not(ir_expression *ir,
316				 int mul_operand);
317   bool try_emit_sat(ir_expression *ir);
318
319   void emit_swz(ir_expression *ir);
320
321   bool process_move_condition(ir_rvalue *ir);
322
323   void copy_propagate(void);
324
325   void *mem_ctx;
326};
327
328src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
329
330dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
331
332dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
333
334static int
335swizzle_for_size(int size)
336{
337   static const int size_swizzles[4] = {
338      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
339      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
340      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
341      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
342   };
343
344   assert((size >= 1) && (size <= 4));
345   return size_swizzles[size - 1];
346}
347
348ir_to_mesa_instruction *
349ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
350			 dst_reg dst,
351			 src_reg src0, src_reg src1, src_reg src2)
352{
353   ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
354   int num_reladdr = 0;
355
356   /* If we have to do relative addressing, we want to load the ARL
357    * reg directly for one of the regs, and preload the other reladdr
358    * sources into temps.
359    */
360   num_reladdr += dst.reladdr != NULL;
361   num_reladdr += src0.reladdr != NULL;
362   num_reladdr += src1.reladdr != NULL;
363   num_reladdr += src2.reladdr != NULL;
364
365   reladdr_to_temp(ir, &src2, &num_reladdr);
366   reladdr_to_temp(ir, &src1, &num_reladdr);
367   reladdr_to_temp(ir, &src0, &num_reladdr);
368
369   if (dst.reladdr) {
370      emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
371      num_reladdr--;
372   }
373   assert(num_reladdr == 0);
374
375   inst->op = op;
376   inst->dst = dst;
377   inst->src[0] = src0;
378   inst->src[1] = src1;
379   inst->src[2] = src2;
380   inst->ir = ir;
381
382   this->instructions.push_tail(inst);
383
384   return inst;
385}
386
387
388ir_to_mesa_instruction *
389ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390			 dst_reg dst, src_reg src0, src_reg src1)
391{
392   return emit(ir, op, dst, src0, src1, undef_src);
393}
394
395ir_to_mesa_instruction *
396ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
397			 dst_reg dst, src_reg src0)
398{
399   assert(dst.writemask != 0);
400   return emit(ir, op, dst, src0, undef_src, undef_src);
401}
402
403ir_to_mesa_instruction *
404ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
405{
406   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
407}
408
409ir_to_mesa_instruction *
410ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
411			    dst_reg dst, src_reg src0, src_reg src1,
412			    unsigned elements)
413{
414   static const gl_inst_opcode dot_opcodes[] = {
415      OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
416   };
417
418   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
419}
420
421/**
422 * Emits Mesa scalar opcodes to produce unique answers across channels.
423 *
424 * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
425 * channel determines the result across all channels.  So to do a vec4
426 * of this operation, we want to emit a scalar per source channel used
427 * to produce dest channels.
428 */
429void
430ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
431			        dst_reg dst,
432				src_reg orig_src0, src_reg orig_src1)
433{
434   int i, j;
435   int done_mask = ~dst.writemask;
436
437   /* Mesa RCP is a scalar operation splatting results to all channels,
438    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
439    * dst channels.
440    */
441   for (i = 0; i < 4; i++) {
442      GLuint this_mask = (1 << i);
443      ir_to_mesa_instruction *inst;
444      src_reg src0 = orig_src0;
445      src_reg src1 = orig_src1;
446
447      if (done_mask & this_mask)
448	 continue;
449
450      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
451      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
452      for (j = i + 1; j < 4; j++) {
453	 /* If there is another enabled component in the destination that is
454	  * derived from the same inputs, generate its value on this pass as
455	  * well.
456	  */
457	 if (!(done_mask & (1 << j)) &&
458	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
459	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
460	    this_mask |= (1 << j);
461	 }
462      }
463      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
464				   src0_swiz, src0_swiz);
465      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
466				  src1_swiz, src1_swiz);
467
468      inst = emit(ir, op, dst, src0, src1);
469      inst->dst.writemask = this_mask;
470      done_mask |= this_mask;
471   }
472}
473
474void
475ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
476			        dst_reg dst, src_reg src0)
477{
478   src_reg undef = undef_src;
479
480   undef.swizzle = SWIZZLE_XXXX;
481
482   emit_scalar(ir, op, dst, src0, undef);
483}
484
485/**
486 * Emit an OPCODE_SCS instruction
487 *
488 * The \c SCS opcode functions a bit differently than the other Mesa (or
489 * ARB_fragment_program) opcodes.  Instead of splatting its result across all
490 * four components of the destination, it writes one value to the \c x
491 * component and another value to the \c y component.
492 *
493 * \param ir        IR instruction being processed
494 * \param op        Either \c OPCODE_SIN or \c OPCODE_COS depending on which
495 *                  value is desired.
496 * \param dst       Destination register
497 * \param src       Source register
498 */
499void
500ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
501			     dst_reg dst,
502			     const src_reg &src)
503{
504   /* Vertex programs cannot use the SCS opcode.
505    */
506   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
507      emit_scalar(ir, op, dst, src);
508      return;
509   }
510
511   const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
512   const unsigned scs_mask = (1U << component);
513   int done_mask = ~dst.writemask;
514   src_reg tmp;
515
516   assert(op == OPCODE_SIN || op == OPCODE_COS);
517
518   /* If there are compnents in the destination that differ from the component
519    * that will be written by the SCS instrution, we'll need a temporary.
520    */
521   if (scs_mask != unsigned(dst.writemask)) {
522      tmp = get_temp(glsl_type::vec4_type);
523   }
524
525   for (unsigned i = 0; i < 4; i++) {
526      unsigned this_mask = (1U << i);
527      src_reg src0 = src;
528
529      if ((done_mask & this_mask) != 0)
530	 continue;
531
532      /* The source swizzle specified which component of the source generates
533       * sine / cosine for the current component in the destination.  The SCS
534       * instruction requires that this value be swizzle to the X component.
535       * Replace the current swizzle with a swizzle that puts the source in
536       * the X component.
537       */
538      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
539
540      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
541				   src0_swiz, src0_swiz);
542      for (unsigned j = i + 1; j < 4; j++) {
543	 /* If there is another enabled component in the destination that is
544	  * derived from the same inputs, generate its value on this pass as
545	  * well.
546	  */
547	 if (!(done_mask & (1 << j)) &&
548	     GET_SWZ(src0.swizzle, j) == src0_swiz) {
549	    this_mask |= (1 << j);
550	 }
551      }
552
553      if (this_mask != scs_mask) {
554	 ir_to_mesa_instruction *inst;
555	 dst_reg tmp_dst = dst_reg(tmp);
556
557	 /* Emit the SCS instruction.
558	  */
559	 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
560	 inst->dst.writemask = scs_mask;
561
562	 /* Move the result of the SCS instruction to the desired location in
563	  * the destination.
564	  */
565	 tmp.swizzle = MAKE_SWIZZLE4(component, component,
566				     component, component);
567	 inst = emit(ir, OPCODE_SCS, dst, tmp);
568	 inst->dst.writemask = this_mask;
569      } else {
570	 /* Emit the SCS instruction to write directly to the destination.
571	  */
572	 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
573	 inst->dst.writemask = scs_mask;
574      }
575
576      done_mask |= this_mask;
577   }
578}
579
580src_reg
581ir_to_mesa_visitor::src_reg_for_float(float val)
582{
583   src_reg src(PROGRAM_CONSTANT, -1, NULL);
584
585   src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
586					  (const gl_constant_value *)&val, 1, &src.swizzle);
587
588   return src;
589}
590
591static int
592type_size(const struct glsl_type *type)
593{
594   unsigned int i;
595   int size;
596
597   switch (type->base_type) {
598   case GLSL_TYPE_UINT:
599   case GLSL_TYPE_INT:
600   case GLSL_TYPE_FLOAT:
601   case GLSL_TYPE_BOOL:
602      if (type->is_matrix()) {
603	 return type->matrix_columns;
604      } else {
605	 /* Regardless of size of vector, it gets a vec4. This is bad
606	  * packing for things like floats, but otherwise arrays become a
607	  * mess.  Hopefully a later pass over the code can pack scalars
608	  * down if appropriate.
609	  */
610	 return 1;
611      }
612   case GLSL_TYPE_ARRAY:
613      assert(type->length > 0);
614      return type_size(type->fields.array) * type->length;
615   case GLSL_TYPE_STRUCT:
616      size = 0;
617      for (i = 0; i < type->length; i++) {
618	 size += type_size(type->fields.structure[i].type);
619      }
620      return size;
621   case GLSL_TYPE_SAMPLER:
622      /* Samplers take up one slot in UNIFORMS[], but they're baked in
623       * at link time.
624       */
625      return 1;
626   default:
627      assert(0);
628      return 0;
629   }
630}
631
632/**
633 * In the initial pass of codegen, we assign temporary numbers to
634 * intermediate results.  (not SSA -- variable assignments will reuse
635 * storage).  Actual register allocation for the Mesa VM occurs in a
636 * pass over the Mesa IR later.
637 */
638src_reg
639ir_to_mesa_visitor::get_temp(const glsl_type *type)
640{
641   src_reg src;
642
643   src.file = PROGRAM_TEMPORARY;
644   src.index = next_temp;
645   src.reladdr = NULL;
646   next_temp += type_size(type);
647
648   if (type->is_array() || type->is_record()) {
649      src.swizzle = SWIZZLE_NOOP;
650   } else {
651      src.swizzle = swizzle_for_size(type->vector_elements);
652   }
653   src.negate = 0;
654
655   return src;
656}
657
658variable_storage *
659ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
660{
661
662   variable_storage *entry;
663
664   foreach_iter(exec_list_iterator, iter, this->variables) {
665      entry = (variable_storage *)iter.get();
666
667      if (entry->var == var)
668	 return entry;
669   }
670
671   return NULL;
672}
673
674void
675ir_to_mesa_visitor::visit(ir_variable *ir)
676{
677   if (strcmp(ir->name, "gl_FragCoord") == 0) {
678      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
679
680      fp->OriginUpperLeft = ir->origin_upper_left;
681      fp->PixelCenterInteger = ir->pixel_center_integer;
682   }
683
684   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
685      unsigned int i;
686      const ir_state_slot *const slots = ir->state_slots;
687      assert(ir->state_slots != NULL);
688
689      /* Check if this statevar's setup in the STATE file exactly
690       * matches how we'll want to reference it as a
691       * struct/array/whatever.  If not, then we need to move it into
692       * temporary storage and hope that it'll get copy-propagated
693       * out.
694       */
695      for (i = 0; i < ir->num_state_slots; i++) {
696	 if (slots[i].swizzle != SWIZZLE_XYZW) {
697	    break;
698	 }
699      }
700
701      variable_storage *storage;
702      dst_reg dst;
703      if (i == ir->num_state_slots) {
704	 /* We'll set the index later. */
705	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
706	 this->variables.push_tail(storage);
707
708	 dst = undef_dst;
709      } else {
710	 /* The variable_storage constructor allocates slots based on the size
711	  * of the type.  However, this had better match the number of state
712	  * elements that we're going to copy into the new temporary.
713	  */
714	 assert((int) ir->num_state_slots == type_size(ir->type));
715
716	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
717						 this->next_temp);
718	 this->variables.push_tail(storage);
719	 this->next_temp += type_size(ir->type);
720
721	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
722      }
723
724
725      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
726	 int index = _mesa_add_state_reference(this->prog->Parameters,
727					       (gl_state_index *)slots[i].tokens);
728
729	 if (storage->file == PROGRAM_STATE_VAR) {
730	    if (storage->index == -1) {
731	       storage->index = index;
732	    } else {
733	       assert(index == storage->index + (int)i);
734	    }
735	 } else {
736	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
737	    src.swizzle = slots[i].swizzle;
738	    emit(ir, OPCODE_MOV, dst, src);
739	    /* even a float takes up a whole vec4 reg in a struct/array. */
740	    dst.index++;
741	 }
742      }
743
744      if (storage->file == PROGRAM_TEMPORARY &&
745	  dst.index != storage->index + (int) ir->num_state_slots) {
746	 linker_error(this->shader_program,
747		      "failed to load builtin uniform `%s' "
748		      "(%d/%d regs loaded)\n",
749		      ir->name, dst.index - storage->index,
750		      type_size(ir->type));
751      }
752   }
753}
754
755void
756ir_to_mesa_visitor::visit(ir_loop *ir)
757{
758   ir_dereference_variable *counter = NULL;
759
760   if (ir->counter != NULL)
761      counter = new(mem_ctx) ir_dereference_variable(ir->counter);
762
763   if (ir->from != NULL) {
764      assert(ir->counter != NULL);
765
766      ir_assignment *a =
767	new(mem_ctx) ir_assignment(counter, ir->from, NULL);
768
769      a->accept(this);
770   }
771
772   emit(NULL, OPCODE_BGNLOOP);
773
774   if (ir->to) {
775      ir_expression *e =
776	 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
777					  counter, ir->to);
778      ir_if *if_stmt =  new(mem_ctx) ir_if(e);
779
780      ir_loop_jump *brk =
781	new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
782
783      if_stmt->then_instructions.push_tail(brk);
784
785      if_stmt->accept(this);
786   }
787
788   visit_exec_list(&ir->body_instructions, this);
789
790   if (ir->increment) {
791      ir_expression *e =
792	 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
793					  counter, ir->increment);
794
795      ir_assignment *a =
796	new(mem_ctx) ir_assignment(counter, e, NULL);
797
798      a->accept(this);
799   }
800
801   emit(NULL, OPCODE_ENDLOOP);
802}
803
804void
805ir_to_mesa_visitor::visit(ir_loop_jump *ir)
806{
807   switch (ir->mode) {
808   case ir_loop_jump::jump_break:
809      emit(NULL, OPCODE_BRK);
810      break;
811   case ir_loop_jump::jump_continue:
812      emit(NULL, OPCODE_CONT);
813      break;
814   }
815}
816
817
818void
819ir_to_mesa_visitor::visit(ir_function_signature *ir)
820{
821   assert(0);
822   (void)ir;
823}
824
825void
826ir_to_mesa_visitor::visit(ir_function *ir)
827{
828   /* Ignore function bodies other than main() -- we shouldn't see calls to
829    * them since they should all be inlined before we get to ir_to_mesa.
830    */
831   if (strcmp(ir->name, "main") == 0) {
832      const ir_function_signature *sig;
833      exec_list empty;
834
835      sig = ir->matching_signature(&empty);
836
837      assert(sig);
838
839      foreach_iter(exec_list_iterator, iter, sig->body) {
840	 ir_instruction *ir = (ir_instruction *)iter.get();
841
842	 ir->accept(this);
843      }
844   }
845}
846
847bool
848ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
849{
850   int nonmul_operand = 1 - mul_operand;
851   src_reg a, b, c;
852
853   ir_expression *expr = ir->operands[mul_operand]->as_expression();
854   if (!expr || expr->operation != ir_binop_mul)
855      return false;
856
857   expr->operands[0]->accept(this);
858   a = this->result;
859   expr->operands[1]->accept(this);
860   b = this->result;
861   ir->operands[nonmul_operand]->accept(this);
862   c = this->result;
863
864   this->result = get_temp(ir->type);
865   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
866
867   return true;
868}
869
870/**
871 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
872 *
873 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
874 * implemented using multiplication, and logical-or is implemented using
875 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
876 * As result, the logical expression (a & !b) can be rewritten as:
877 *
878 *     - a * !b
879 *     - a * (1 - b)
880 *     - (a * 1) - (a * b)
881 *     - a + -(a * b)
882 *     - a + (a * -b)
883 *
884 * This final expression can be implemented as a single MAD(a, -b, a)
885 * instruction.
886 */
887bool
888ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
889{
890   const int other_operand = 1 - try_operand;
891   src_reg a, b;
892
893   ir_expression *expr = ir->operands[try_operand]->as_expression();
894   if (!expr || expr->operation != ir_unop_logic_not)
895      return false;
896
897   ir->operands[other_operand]->accept(this);
898   a = this->result;
899   expr->operands[0]->accept(this);
900   b = this->result;
901
902   b.negate = ~b.negate;
903
904   this->result = get_temp(ir->type);
905   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
906
907   return true;
908}
909
910bool
911ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
912{
913   /* Saturates were only introduced to vertex programs in
914    * NV_vertex_program3, so don't give them to drivers in the VP.
915    */
916   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
917      return false;
918
919   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
920   if (!sat_src)
921      return false;
922
923   sat_src->accept(this);
924   src_reg src = this->result;
925
926   /* If we generated an expression instruction into a temporary in
927    * processing the saturate's operand, apply the saturate to that
928    * instruction.  Otherwise, generate a MOV to do the saturate.
929    *
930    * Note that we have to be careful to only do this optimization if
931    * the instruction in question was what generated src->result.  For
932    * example, ir_dereference_array might generate a MUL instruction
933    * to create the reladdr, and return us a src reg using that
934    * reladdr.  That MUL result is not the value we're trying to
935    * saturate.
936    */
937   ir_expression *sat_src_expr = sat_src->as_expression();
938   ir_to_mesa_instruction *new_inst;
939   new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
940   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
941			sat_src_expr->operation == ir_binop_add ||
942			sat_src_expr->operation == ir_binop_dot)) {
943      new_inst->saturate = true;
944   } else {
945      this->result = get_temp(ir->type);
946      ir_to_mesa_instruction *inst;
947      inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
948      inst->saturate = true;
949   }
950
951   return true;
952}
953
954void
955ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
956				    src_reg *reg, int *num_reladdr)
957{
958   if (!reg->reladdr)
959      return;
960
961   emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
962
963   if (*num_reladdr != 1) {
964      src_reg temp = get_temp(glsl_type::vec4_type);
965
966      emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
967      *reg = temp;
968   }
969
970   (*num_reladdr)--;
971}
972
973void
974ir_to_mesa_visitor::emit_swz(ir_expression *ir)
975{
976   /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
977    * This means that each of the operands is either an immediate value of -1,
978    * 0, or 1, or is a component from one source register (possibly with
979    * negation).
980    */
981   uint8_t components[4] = { 0 };
982   bool negate[4] = { false };
983   ir_variable *var = NULL;
984
985   for (unsigned i = 0; i < ir->type->vector_elements; i++) {
986      ir_rvalue *op = ir->operands[i];
987
988      assert(op->type->is_scalar());
989
990      while (op != NULL) {
991	 switch (op->ir_type) {
992	 case ir_type_constant: {
993
994	    assert(op->type->is_scalar());
995
996	    const ir_constant *const c = op->as_constant();
997	    if (c->is_one()) {
998	       components[i] = SWIZZLE_ONE;
999	    } else if (c->is_zero()) {
1000	       components[i] = SWIZZLE_ZERO;
1001	    } else if (c->is_negative_one()) {
1002	       components[i] = SWIZZLE_ONE;
1003	       negate[i] = true;
1004	    } else {
1005	       assert(!"SWZ constant must be 0.0 or 1.0.");
1006	    }
1007
1008	    op = NULL;
1009	    break;
1010	 }
1011
1012	 case ir_type_dereference_variable: {
1013	    ir_dereference_variable *const deref =
1014	       (ir_dereference_variable *) op;
1015
1016	    assert((var == NULL) || (deref->var == var));
1017	    components[i] = SWIZZLE_X;
1018	    var = deref->var;
1019	    op = NULL;
1020	    break;
1021	 }
1022
1023	 case ir_type_expression: {
1024	    ir_expression *const expr = (ir_expression *) op;
1025
1026	    assert(expr->operation == ir_unop_neg);
1027	    negate[i] = true;
1028
1029	    op = expr->operands[0];
1030	    break;
1031	 }
1032
1033	 case ir_type_swizzle: {
1034	    ir_swizzle *const swiz = (ir_swizzle *) op;
1035
1036	    components[i] = swiz->mask.x;
1037	    op = swiz->val;
1038	    break;
1039	 }
1040
1041	 default:
1042	    assert(!"Should not get here.");
1043	    return;
1044	 }
1045      }
1046   }
1047
1048   assert(var != NULL);
1049
1050   ir_dereference_variable *const deref =
1051      new(mem_ctx) ir_dereference_variable(var);
1052
1053   this->result.file = PROGRAM_UNDEFINED;
1054   deref->accept(this);
1055   if (this->result.file == PROGRAM_UNDEFINED) {
1056      ir_print_visitor v;
1057      printf("Failed to get tree for expression operand:\n");
1058      deref->accept(&v);
1059      exit(1);
1060   }
1061
1062   src_reg src;
1063
1064   src = this->result;
1065   src.swizzle = MAKE_SWIZZLE4(components[0],
1066			       components[1],
1067			       components[2],
1068			       components[3]);
1069   src.negate = ((unsigned(negate[0]) << 0)
1070		 | (unsigned(negate[1]) << 1)
1071		 | (unsigned(negate[2]) << 2)
1072		 | (unsigned(negate[3]) << 3));
1073
1074   /* Storage for our result.  Ideally for an assignment we'd be using the
1075    * actual storage for the result here, instead.
1076    */
1077   const src_reg result_src = get_temp(ir->type);
1078   dst_reg result_dst = dst_reg(result_src);
1079
1080   /* Limit writes to the channels that will be used by result_src later.
1081    * This does limit this temp's use as a temporary for multi-instruction
1082    * sequences.
1083    */
1084   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1085
1086   emit(ir, OPCODE_SWZ, result_dst, src);
1087   this->result = result_src;
1088}
1089
1090void
1091ir_to_mesa_visitor::visit(ir_expression *ir)
1092{
1093   unsigned int operand;
1094   src_reg op[Elements(ir->operands)];
1095   src_reg result_src;
1096   dst_reg result_dst;
1097
1098   /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1099    */
1100   if (ir->operation == ir_binop_add) {
1101      if (try_emit_mad(ir, 1))
1102	 return;
1103      if (try_emit_mad(ir, 0))
1104	 return;
1105   }
1106
1107   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1108    */
1109   if (ir->operation == ir_binop_logic_and) {
1110      if (try_emit_mad_for_and_not(ir, 1))
1111	 return;
1112      if (try_emit_mad_for_and_not(ir, 0))
1113	 return;
1114   }
1115
1116   if (try_emit_sat(ir))
1117      return;
1118
1119   if (ir->operation == ir_quadop_vector) {
1120      this->emit_swz(ir);
1121      return;
1122   }
1123
1124   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1125      this->result.file = PROGRAM_UNDEFINED;
1126      ir->operands[operand]->accept(this);
1127      if (this->result.file == PROGRAM_UNDEFINED) {
1128	 ir_print_visitor v;
1129	 printf("Failed to get tree for expression operand:\n");
1130	 ir->operands[operand]->accept(&v);
1131	 exit(1);
1132      }
1133      op[operand] = this->result;
1134
1135      /* Matrix expression operands should have been broken down to vector
1136       * operations already.
1137       */
1138      assert(!ir->operands[operand]->type->is_matrix());
1139   }
1140
1141   int vector_elements = ir->operands[0]->type->vector_elements;
1142   if (ir->operands[1]) {
1143      vector_elements = MAX2(vector_elements,
1144			     ir->operands[1]->type->vector_elements);
1145   }
1146
1147   this->result.file = PROGRAM_UNDEFINED;
1148
1149   /* Storage for our result.  Ideally for an assignment we'd be using
1150    * the actual storage for the result here, instead.
1151    */
1152   result_src = get_temp(ir->type);
1153   /* convenience for the emit functions below. */
1154   result_dst = dst_reg(result_src);
1155   /* Limit writes to the channels that will be used by result_src later.
1156    * This does limit this temp's use as a temporary for multi-instruction
1157    * sequences.
1158    */
1159   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1160
1161   switch (ir->operation) {
1162   case ir_unop_logic_not:
1163      /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1164       * older GPUs implement SEQ using multiple instructions (i915 uses two
1165       * SGE instructions and a MUL instruction).  Since our logic values are
1166       * 0.0 and 1.0, 1-x also implements !x.
1167       */
1168      op[0].negate = ~op[0].negate;
1169      emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1170      break;
1171   case ir_unop_neg:
1172      op[0].negate = ~op[0].negate;
1173      result_src = op[0];
1174      break;
1175   case ir_unop_abs:
1176      emit(ir, OPCODE_ABS, result_dst, op[0]);
1177      break;
1178   case ir_unop_sign:
1179      emit(ir, OPCODE_SSG, result_dst, op[0]);
1180      break;
1181   case ir_unop_rcp:
1182      emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1183      break;
1184
1185   case ir_unop_exp2:
1186      emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1187      break;
1188   case ir_unop_exp:
1189   case ir_unop_log:
1190      assert(!"not reached: should be handled by ir_explog_to_explog2");
1191      break;
1192   case ir_unop_log2:
1193      emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1194      break;
1195   case ir_unop_sin:
1196      emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1197      break;
1198   case ir_unop_cos:
1199      emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1200      break;
1201   case ir_unop_sin_reduced:
1202      emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1203      break;
1204   case ir_unop_cos_reduced:
1205      emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1206      break;
1207
1208   case ir_unop_dFdx:
1209      emit(ir, OPCODE_DDX, result_dst, op[0]);
1210      break;
1211   case ir_unop_dFdy:
1212      emit(ir, OPCODE_DDY, result_dst, op[0]);
1213      break;
1214
1215   case ir_unop_noise: {
1216      const enum prog_opcode opcode =
1217	 prog_opcode(OPCODE_NOISE1
1218		     + (ir->operands[0]->type->vector_elements) - 1);
1219      assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1220
1221      emit(ir, opcode, result_dst, op[0]);
1222      break;
1223   }
1224
1225   case ir_binop_add:
1226      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1227      break;
1228   case ir_binop_sub:
1229      emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1230      break;
1231
1232   case ir_binop_mul:
1233      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1234      break;
1235   case ir_binop_div:
1236      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1237      break;
1238   case ir_binop_mod:
1239      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1240      assert(ir->type->is_integer());
1241      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1242      break;
1243
1244   case ir_binop_less:
1245      emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1246      break;
1247   case ir_binop_greater:
1248      emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1249      break;
1250   case ir_binop_lequal:
1251      emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1252      break;
1253   case ir_binop_gequal:
1254      emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1255      break;
1256   case ir_binop_equal:
1257      emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1258      break;
1259   case ir_binop_nequal:
1260      emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1261      break;
1262   case ir_binop_all_equal:
1263      /* "==" operator producing a scalar boolean. */
1264      if (ir->operands[0]->type->is_vector() ||
1265	  ir->operands[1]->type->is_vector()) {
1266	 src_reg temp = get_temp(glsl_type::vec4_type);
1267	 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1268
1269	 /* After the dot-product, the value will be an integer on the
1270	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
1271	  */
1272	 emit_dp(ir, result_dst, temp, temp, vector_elements);
1273
1274	 /* Negating the result of the dot-product gives values on the range
1275	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
1276	  * achieved using SGE.
1277	  */
1278	 src_reg sge_src = result_src;
1279	 sge_src.negate = ~sge_src.negate;
1280	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1281      } else {
1282	 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1283      }
1284      break;
1285   case ir_binop_any_nequal:
1286      /* "!=" operator producing a scalar boolean. */
1287      if (ir->operands[0]->type->is_vector() ||
1288	  ir->operands[1]->type->is_vector()) {
1289	 src_reg temp = get_temp(glsl_type::vec4_type);
1290	 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1291
1292	 /* After the dot-product, the value will be an integer on the
1293	  * range [0,4].  Zero stays zero, and positive values become 1.0.
1294	  */
1295	 ir_to_mesa_instruction *const dp =
1296	    emit_dp(ir, result_dst, temp, temp, vector_elements);
1297	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1298	    /* The clamping to [0,1] can be done for free in the fragment
1299	     * shader with a saturate.
1300	     */
1301	    dp->saturate = true;
1302	 } else {
1303	    /* Negating the result of the dot-product gives values on the range
1304	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1305	     * achieved using SLT.
1306	     */
1307	    src_reg slt_src = result_src;
1308	    slt_src.negate = ~slt_src.negate;
1309	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1310	 }
1311      } else {
1312	 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1313      }
1314      break;
1315
1316   case ir_unop_any: {
1317      assert(ir->operands[0]->type->is_vector());
1318
1319      /* After the dot-product, the value will be an integer on the
1320       * range [0,4].  Zero stays zero, and positive values become 1.0.
1321       */
1322      ir_to_mesa_instruction *const dp =
1323	 emit_dp(ir, result_dst, op[0], op[0],
1324		 ir->operands[0]->type->vector_elements);
1325      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1326	 /* The clamping to [0,1] can be done for free in the fragment
1327	  * shader with a saturate.
1328	  */
1329	 dp->saturate = true;
1330      } else {
1331	 /* Negating the result of the dot-product gives values on the range
1332	  * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1333	  * is achieved using SLT.
1334	  */
1335	 src_reg slt_src = result_src;
1336	 slt_src.negate = ~slt_src.negate;
1337	 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1338      }
1339      break;
1340   }
1341
1342   case ir_binop_logic_xor:
1343      emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1344      break;
1345
1346   case ir_binop_logic_or: {
1347      /* After the addition, the value will be an integer on the
1348       * range [0,2].  Zero stays zero, and positive values become 1.0.
1349       */
1350      ir_to_mesa_instruction *add =
1351	 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1352      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1353	 /* The clamping to [0,1] can be done for free in the fragment
1354	  * shader with a saturate.
1355	  */
1356	 add->saturate = true;
1357      } else {
1358	 /* Negating the result of the addition gives values on the range
1359	  * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1360	  * is achieved using SLT.
1361	  */
1362	 src_reg slt_src = result_src;
1363	 slt_src.negate = ~slt_src.negate;
1364	 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1365      }
1366      break;
1367   }
1368
1369   case ir_binop_logic_and:
1370      /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1371      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1372      break;
1373
1374   case ir_binop_dot:
1375      assert(ir->operands[0]->type->is_vector());
1376      assert(ir->operands[0]->type == ir->operands[1]->type);
1377      emit_dp(ir, result_dst, op[0], op[1],
1378	      ir->operands[0]->type->vector_elements);
1379      break;
1380
1381   case ir_unop_sqrt:
1382      /* sqrt(x) = x * rsq(x). */
1383      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1384      emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1385      /* For incoming channels <= 0, set the result to 0. */
1386      op[0].negate = ~op[0].negate;
1387      emit(ir, OPCODE_CMP, result_dst,
1388			  op[0], result_src, src_reg_for_float(0.0));
1389      break;
1390   case ir_unop_rsq:
1391      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1392      break;
1393   case ir_unop_i2f:
1394   case ir_unop_u2f:
1395   case ir_unop_b2f:
1396   case ir_unop_b2i:
1397   case ir_unop_i2u:
1398   case ir_unop_u2i:
1399      /* Mesa IR lacks types, ints are stored as truncated floats. */
1400      result_src = op[0];
1401      break;
1402   case ir_unop_f2i:
1403   case ir_unop_f2u:
1404      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1405      break;
1406   case ir_unop_f2b:
1407   case ir_unop_i2b:
1408      emit(ir, OPCODE_SNE, result_dst,
1409			  op[0], src_reg_for_float(0.0));
1410      break;
1411   case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1412   case ir_unop_bitcast_f2u:
1413   case ir_unop_bitcast_i2f:
1414   case ir_unop_bitcast_u2f:
1415      break;
1416   case ir_unop_trunc:
1417      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1418      break;
1419   case ir_unop_ceil:
1420      op[0].negate = ~op[0].negate;
1421      emit(ir, OPCODE_FLR, result_dst, op[0]);
1422      result_src.negate = ~result_src.negate;
1423      break;
1424   case ir_unop_floor:
1425      emit(ir, OPCODE_FLR, result_dst, op[0]);
1426      break;
1427   case ir_unop_fract:
1428      emit(ir, OPCODE_FRC, result_dst, op[0]);
1429      break;
1430
1431   case ir_binop_min:
1432      emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1433      break;
1434   case ir_binop_max:
1435      emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1436      break;
1437   case ir_binop_pow:
1438      emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1439      break;
1440
1441      /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1442       * hardware backends have no way to avoid Mesa IR generation
1443       * even if they don't use it, we need to emit "something" and
1444       * continue.
1445       */
1446   case ir_binop_lshift:
1447   case ir_binop_rshift:
1448   case ir_binop_bit_and:
1449   case ir_binop_bit_xor:
1450   case ir_binop_bit_or:
1451      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1452      break;
1453
1454   case ir_unop_bit_not:
1455   case ir_unop_round_even:
1456      emit(ir, OPCODE_MOV, result_dst, op[0]);
1457      break;
1458
1459   case ir_binop_ubo_load:
1460      assert(!"not supported");
1461      break;
1462
1463   case ir_quadop_vector:
1464      /* This operation should have already been handled.
1465       */
1466      assert(!"Should not get here.");
1467      break;
1468   }
1469
1470   this->result = result_src;
1471}
1472
1473
1474void
1475ir_to_mesa_visitor::visit(ir_swizzle *ir)
1476{
1477   src_reg src;
1478   int i;
1479   int swizzle[4];
1480
1481   /* Note that this is only swizzles in expressions, not those on the left
1482    * hand side of an assignment, which do write masking.  See ir_assignment
1483    * for that.
1484    */
1485
1486   ir->val->accept(this);
1487   src = this->result;
1488   assert(src.file != PROGRAM_UNDEFINED);
1489
1490   for (i = 0; i < 4; i++) {
1491      if (i < ir->type->vector_elements) {
1492	 switch (i) {
1493	 case 0:
1494	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1495	    break;
1496	 case 1:
1497	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1498	    break;
1499	 case 2:
1500	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1501	    break;
1502	 case 3:
1503	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1504	    break;
1505	 }
1506      } else {
1507	 /* If the type is smaller than a vec4, replicate the last
1508	  * channel out.
1509	  */
1510	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1511      }
1512   }
1513
1514   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1515
1516   this->result = src;
1517}
1518
1519void
1520ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1521{
1522   variable_storage *entry = find_variable_storage(ir->var);
1523   ir_variable *var = ir->var;
1524
1525   if (!entry) {
1526      switch (var->mode) {
1527      case ir_var_uniform:
1528	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1529					       var->location);
1530	 this->variables.push_tail(entry);
1531	 break;
1532      case ir_var_in:
1533      case ir_var_inout:
1534	 /* The linker assigns locations for varyings and attributes,
1535	  * including deprecated builtins (like gl_Color),
1536	  * user-assigned generic attributes (glBindVertexLocation),
1537	  * and user-defined varyings.
1538	  *
1539	  * FINISHME: We would hit this path for function arguments.  Fix!
1540	  */
1541	 assert(var->location != -1);
1542         entry = new(mem_ctx) variable_storage(var,
1543                                               PROGRAM_INPUT,
1544                                               var->location);
1545         break;
1546      case ir_var_out:
1547	 assert(var->location != -1);
1548         entry = new(mem_ctx) variable_storage(var,
1549                                               PROGRAM_OUTPUT,
1550                                               var->location);
1551	 break;
1552      case ir_var_system_value:
1553         entry = new(mem_ctx) variable_storage(var,
1554                                               PROGRAM_SYSTEM_VALUE,
1555                                               var->location);
1556         break;
1557      case ir_var_auto:
1558      case ir_var_temporary:
1559	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1560					       this->next_temp);
1561	 this->variables.push_tail(entry);
1562
1563	 next_temp += type_size(var->type);
1564	 break;
1565      }
1566
1567      if (!entry) {
1568	 printf("Failed to make storage for %s\n", var->name);
1569	 exit(1);
1570      }
1571   }
1572
1573   this->result = src_reg(entry->file, entry->index, var->type);
1574}
1575
1576void
1577ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1578{
1579   ir_constant *index;
1580   src_reg src;
1581   int element_size = type_size(ir->type);
1582
1583   index = ir->array_index->constant_expression_value();
1584
1585   ir->array->accept(this);
1586   src = this->result;
1587
1588   if (index) {
1589      src.index += index->value.i[0] * element_size;
1590   } else {
1591      /* Variable index array dereference.  It eats the "vec4" of the
1592       * base of the array and an index that offsets the Mesa register
1593       * index.
1594       */
1595      ir->array_index->accept(this);
1596
1597      src_reg index_reg;
1598
1599      if (element_size == 1) {
1600	 index_reg = this->result;
1601      } else {
1602	 index_reg = get_temp(glsl_type::float_type);
1603
1604	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1605	      this->result, src_reg_for_float(element_size));
1606      }
1607
1608      /* If there was already a relative address register involved, add the
1609       * new and the old together to get the new offset.
1610       */
1611      if (src.reladdr != NULL)  {
1612	 src_reg accum_reg = get_temp(glsl_type::float_type);
1613
1614	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1615	      index_reg, *src.reladdr);
1616
1617	 index_reg = accum_reg;
1618      }
1619
1620      src.reladdr = ralloc(mem_ctx, src_reg);
1621      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1622   }
1623
1624   /* If the type is smaller than a vec4, replicate the last channel out. */
1625   if (ir->type->is_scalar() || ir->type->is_vector())
1626      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1627   else
1628      src.swizzle = SWIZZLE_NOOP;
1629
1630   this->result = src;
1631}
1632
1633void
1634ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1635{
1636   unsigned int i;
1637   const glsl_type *struct_type = ir->record->type;
1638   int offset = 0;
1639
1640   ir->record->accept(this);
1641
1642   for (i = 0; i < struct_type->length; i++) {
1643      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1644	 break;
1645      offset += type_size(struct_type->fields.structure[i].type);
1646   }
1647
1648   /* If the type is smaller than a vec4, replicate the last channel out. */
1649   if (ir->type->is_scalar() || ir->type->is_vector())
1650      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1651   else
1652      this->result.swizzle = SWIZZLE_NOOP;
1653
1654   this->result.index += offset;
1655}
1656
1657/**
1658 * We want to be careful in assignment setup to hit the actual storage
1659 * instead of potentially using a temporary like we might with the
1660 * ir_dereference handler.
1661 */
1662static dst_reg
1663get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1664{
1665   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1666    * access of a vector, it must be separated into a series conditional moves
1667    * before reaching this point (see ir_vec_index_to_cond_assign).
1668    */
1669   assert(ir->as_dereference());
1670   ir_dereference_array *deref_array = ir->as_dereference_array();
1671   if (deref_array) {
1672      assert(!deref_array->array->type->is_vector());
1673   }
1674
1675   /* Use the rvalue deref handler for the most part.  We'll ignore
1676    * swizzles in it and write swizzles using writemask, though.
1677    */
1678   ir->accept(v);
1679   return dst_reg(v->result);
1680}
1681
1682/**
1683 * Process the condition of a conditional assignment
1684 *
1685 * Examines the condition of a conditional assignment to generate the optimal
1686 * first operand of a \c CMP instruction.  If the condition is a relational
1687 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1688 * used as the source for the \c CMP instruction.  Otherwise the comparison
1689 * is processed to a boolean result, and the boolean result is used as the
1690 * operand to the CMP instruction.
1691 */
1692bool
1693ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1694{
1695   ir_rvalue *src_ir = ir;
1696   bool negate = true;
1697   bool switch_order = false;
1698
1699   ir_expression *const expr = ir->as_expression();
1700   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1701      bool zero_on_left = false;
1702
1703      if (expr->operands[0]->is_zero()) {
1704	 src_ir = expr->operands[1];
1705	 zero_on_left = true;
1706      } else if (expr->operands[1]->is_zero()) {
1707	 src_ir = expr->operands[0];
1708	 zero_on_left = false;
1709      }
1710
1711      /*      a is -  0  +            -  0  +
1712       * (a <  0)  T  F  F  ( a < 0)  T  F  F
1713       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
1714       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1715       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1716       * (a >  0)  F  F  T  (-a < 0)  F  F  T
1717       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
1718       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1719       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1720       *
1721       * Note that exchanging the order of 0 and 'a' in the comparison simply
1722       * means that the value of 'a' should be negated.
1723       */
1724      if (src_ir != ir) {
1725	 switch (expr->operation) {
1726	 case ir_binop_less:
1727	    switch_order = false;
1728	    negate = zero_on_left;
1729	    break;
1730
1731	 case ir_binop_greater:
1732	    switch_order = false;
1733	    negate = !zero_on_left;
1734	    break;
1735
1736	 case ir_binop_lequal:
1737	    switch_order = true;
1738	    negate = !zero_on_left;
1739	    break;
1740
1741	 case ir_binop_gequal:
1742	    switch_order = true;
1743	    negate = zero_on_left;
1744	    break;
1745
1746	 default:
1747	    /* This isn't the right kind of comparison afterall, so make sure
1748	     * the whole condition is visited.
1749	     */
1750	    src_ir = ir;
1751	    break;
1752	 }
1753      }
1754   }
1755
1756   src_ir->accept(this);
1757
1758   /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1759    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
1760    * choose which value OPCODE_CMP produces without an extra instruction
1761    * computing the condition.
1762    */
1763   if (negate)
1764      this->result.negate = ~this->result.negate;
1765
1766   return switch_order;
1767}
1768
1769void
1770ir_to_mesa_visitor::visit(ir_assignment *ir)
1771{
1772   dst_reg l;
1773   src_reg r;
1774   int i;
1775
1776   ir->rhs->accept(this);
1777   r = this->result;
1778
1779   l = get_assignment_lhs(ir->lhs, this);
1780
1781   /* FINISHME: This should really set to the correct maximal writemask for each
1782    * FINISHME: component written (in the loops below).  This case can only
1783    * FINISHME: occur for matrices, arrays, and structures.
1784    */
1785   if (ir->write_mask == 0) {
1786      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1787      l.writemask = WRITEMASK_XYZW;
1788   } else if (ir->lhs->type->is_scalar()) {
1789      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1790       * FINISHME: W component of fragment shader output zero, work correctly.
1791       */
1792      l.writemask = WRITEMASK_XYZW;
1793   } else {
1794      int swizzles[4];
1795      int first_enabled_chan = 0;
1796      int rhs_chan = 0;
1797
1798      assert(ir->lhs->type->is_vector());
1799      l.writemask = ir->write_mask;
1800
1801      for (int i = 0; i < 4; i++) {
1802	 if (l.writemask & (1 << i)) {
1803	    first_enabled_chan = GET_SWZ(r.swizzle, i);
1804	    break;
1805	 }
1806      }
1807
1808      /* Swizzle a small RHS vector into the channels being written.
1809       *
1810       * glsl ir treats write_mask as dictating how many channels are
1811       * present on the RHS while Mesa IR treats write_mask as just
1812       * showing which channels of the vec4 RHS get written.
1813       */
1814      for (int i = 0; i < 4; i++) {
1815	 if (l.writemask & (1 << i))
1816	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1817	 else
1818	    swizzles[i] = first_enabled_chan;
1819      }
1820      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1821				swizzles[2], swizzles[3]);
1822   }
1823
1824   assert(l.file != PROGRAM_UNDEFINED);
1825   assert(r.file != PROGRAM_UNDEFINED);
1826
1827   if (ir->condition) {
1828      const bool switch_order = this->process_move_condition(ir->condition);
1829      src_reg condition = this->result;
1830
1831      for (i = 0; i < type_size(ir->lhs->type); i++) {
1832	 if (switch_order) {
1833	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1834	 } else {
1835	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1836	 }
1837
1838	 l.index++;
1839	 r.index++;
1840      }
1841   } else {
1842      for (i = 0; i < type_size(ir->lhs->type); i++) {
1843	 emit(ir, OPCODE_MOV, l, r);
1844	 l.index++;
1845	 r.index++;
1846      }
1847   }
1848}
1849
1850
1851void
1852ir_to_mesa_visitor::visit(ir_constant *ir)
1853{
1854   src_reg src;
1855   GLfloat stack_vals[4] = { 0 };
1856   GLfloat *values = stack_vals;
1857   unsigned int i;
1858
1859   /* Unfortunately, 4 floats is all we can get into
1860    * _mesa_add_unnamed_constant.  So, make a temp to store an
1861    * aggregate constant and move each constant value into it.  If we
1862    * get lucky, copy propagation will eliminate the extra moves.
1863    */
1864
1865   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1866      src_reg temp_base = get_temp(ir->type);
1867      dst_reg temp = dst_reg(temp_base);
1868
1869      foreach_iter(exec_list_iterator, iter, ir->components) {
1870	 ir_constant *field_value = (ir_constant *)iter.get();
1871	 int size = type_size(field_value->type);
1872
1873	 assert(size > 0);
1874
1875	 field_value->accept(this);
1876	 src = this->result;
1877
1878	 for (i = 0; i < (unsigned int)size; i++) {
1879	    emit(ir, OPCODE_MOV, temp, src);
1880
1881	    src.index++;
1882	    temp.index++;
1883	 }
1884      }
1885      this->result = temp_base;
1886      return;
1887   }
1888
1889   if (ir->type->is_array()) {
1890      src_reg temp_base = get_temp(ir->type);
1891      dst_reg temp = dst_reg(temp_base);
1892      int size = type_size(ir->type->fields.array);
1893
1894      assert(size > 0);
1895
1896      for (i = 0; i < ir->type->length; i++) {
1897	 ir->array_elements[i]->accept(this);
1898	 src = this->result;
1899	 for (int j = 0; j < size; j++) {
1900	    emit(ir, OPCODE_MOV, temp, src);
1901
1902	    src.index++;
1903	    temp.index++;
1904	 }
1905      }
1906      this->result = temp_base;
1907      return;
1908   }
1909
1910   if (ir->type->is_matrix()) {
1911      src_reg mat = get_temp(ir->type);
1912      dst_reg mat_column = dst_reg(mat);
1913
1914      for (i = 0; i < ir->type->matrix_columns; i++) {
1915	 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1916	 values = &ir->value.f[i * ir->type->vector_elements];
1917
1918	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1919	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1920						(gl_constant_value *) values,
1921						ir->type->vector_elements,
1922						&src.swizzle);
1923	 emit(ir, OPCODE_MOV, mat_column, src);
1924
1925	 mat_column.index++;
1926      }
1927
1928      this->result = mat;
1929      return;
1930   }
1931
1932   src.file = PROGRAM_CONSTANT;
1933   switch (ir->type->base_type) {
1934   case GLSL_TYPE_FLOAT:
1935      values = &ir->value.f[0];
1936      break;
1937   case GLSL_TYPE_UINT:
1938      for (i = 0; i < ir->type->vector_elements; i++) {
1939	 values[i] = ir->value.u[i];
1940      }
1941      break;
1942   case GLSL_TYPE_INT:
1943      for (i = 0; i < ir->type->vector_elements; i++) {
1944	 values[i] = ir->value.i[i];
1945      }
1946      break;
1947   case GLSL_TYPE_BOOL:
1948      for (i = 0; i < ir->type->vector_elements; i++) {
1949	 values[i] = ir->value.b[i];
1950      }
1951      break;
1952   default:
1953      assert(!"Non-float/uint/int/bool constant");
1954   }
1955
1956   this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1957   this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1958						   (gl_constant_value *) values,
1959						   ir->type->vector_elements,
1960						   &this->result.swizzle);
1961}
1962
1963void
1964ir_to_mesa_visitor::visit(ir_call *ir)
1965{
1966   assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1967}
1968
1969void
1970ir_to_mesa_visitor::visit(ir_texture *ir)
1971{
1972   src_reg result_src, coord, lod_info, projector, dx, dy;
1973   dst_reg result_dst, coord_dst;
1974   ir_to_mesa_instruction *inst = NULL;
1975   prog_opcode opcode = OPCODE_NOP;
1976
1977   if (ir->op == ir_txs)
1978      this->result = src_reg_for_float(0.0);
1979   else
1980      ir->coordinate->accept(this);
1981
1982   /* Put our coords in a temp.  We'll need to modify them for shadow,
1983    * projection, or LOD, so the only case we'd use it as is is if
1984    * we're doing plain old texturing.  Mesa IR optimization should
1985    * handle cleaning up our mess in that case.
1986    */
1987   coord = get_temp(glsl_type::vec4_type);
1988   coord_dst = dst_reg(coord);
1989   emit(ir, OPCODE_MOV, coord_dst, this->result);
1990
1991   if (ir->projector) {
1992      ir->projector->accept(this);
1993      projector = this->result;
1994   }
1995
1996   /* Storage for our result.  Ideally for an assignment we'd be using
1997    * the actual storage for the result here, instead.
1998    */
1999   result_src = get_temp(glsl_type::vec4_type);
2000   result_dst = dst_reg(result_src);
2001
2002   switch (ir->op) {
2003   case ir_tex:
2004   case ir_txs:
2005      opcode = OPCODE_TEX;
2006      break;
2007   case ir_txb:
2008      opcode = OPCODE_TXB;
2009      ir->lod_info.bias->accept(this);
2010      lod_info = this->result;
2011      break;
2012   case ir_txf:
2013      /* Pretend to be TXL so the sampler, coordinate, lod are available */
2014   case ir_txl:
2015      opcode = OPCODE_TXL;
2016      ir->lod_info.lod->accept(this);
2017      lod_info = this->result;
2018      break;
2019   case ir_txd:
2020      opcode = OPCODE_TXD;
2021      ir->lod_info.grad.dPdx->accept(this);
2022      dx = this->result;
2023      ir->lod_info.grad.dPdy->accept(this);
2024      dy = this->result;
2025      break;
2026   }
2027
2028   const glsl_type *sampler_type = ir->sampler->type;
2029
2030   if (ir->projector) {
2031      if (opcode == OPCODE_TEX) {
2032	 /* Slot the projector in as the last component of the coord. */
2033	 coord_dst.writemask = WRITEMASK_W;
2034	 emit(ir, OPCODE_MOV, coord_dst, projector);
2035	 coord_dst.writemask = WRITEMASK_XYZW;
2036	 opcode = OPCODE_TXP;
2037      } else {
2038	 src_reg coord_w = coord;
2039	 coord_w.swizzle = SWIZZLE_WWWW;
2040
2041	 /* For the other TEX opcodes there's no projective version
2042	  * since the last slot is taken up by lod info.  Do the
2043	  * projective divide now.
2044	  */
2045	 coord_dst.writemask = WRITEMASK_W;
2046	 emit(ir, OPCODE_RCP, coord_dst, projector);
2047
2048	 /* In the case where we have to project the coordinates "by hand,"
2049	  * the shadow comparitor value must also be projected.
2050	  */
2051	 src_reg tmp_src = coord;
2052	 if (ir->shadow_comparitor) {
2053	    /* Slot the shadow value in as the second to last component of the
2054	     * coord.
2055	     */
2056	    ir->shadow_comparitor->accept(this);
2057
2058	    tmp_src = get_temp(glsl_type::vec4_type);
2059	    dst_reg tmp_dst = dst_reg(tmp_src);
2060
2061	    /* Projective division not allowed for array samplers. */
2062	    assert(!sampler_type->sampler_array);
2063
2064	    tmp_dst.writemask = WRITEMASK_Z;
2065	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
2066
2067	    tmp_dst.writemask = WRITEMASK_XY;
2068	    emit(ir, OPCODE_MOV, tmp_dst, coord);
2069	 }
2070
2071	 coord_dst.writemask = WRITEMASK_XYZ;
2072	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2073
2074	 coord_dst.writemask = WRITEMASK_XYZW;
2075	 coord.swizzle = SWIZZLE_XYZW;
2076      }
2077   }
2078
2079   /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2080    * comparitor was put in the correct place (and projected) by the code,
2081    * above, that handles by-hand projection.
2082    */
2083   if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2084      /* Slot the shadow value in as the second to last component of the
2085       * coord.
2086       */
2087      ir->shadow_comparitor->accept(this);
2088
2089      /* XXX This will need to be updated for cubemap array samplers. */
2090      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2091          sampler_type->sampler_array) {
2092         coord_dst.writemask = WRITEMASK_W;
2093      } else {
2094         coord_dst.writemask = WRITEMASK_Z;
2095      }
2096
2097      emit(ir, OPCODE_MOV, coord_dst, this->result);
2098      coord_dst.writemask = WRITEMASK_XYZW;
2099   }
2100
2101   if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2102      /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2103      coord_dst.writemask = WRITEMASK_W;
2104      emit(ir, OPCODE_MOV, coord_dst, lod_info);
2105      coord_dst.writemask = WRITEMASK_XYZW;
2106   }
2107
2108   if (opcode == OPCODE_TXD)
2109      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2110   else
2111      inst = emit(ir, opcode, result_dst, coord);
2112
2113   if (ir->shadow_comparitor)
2114      inst->tex_shadow = GL_TRUE;
2115
2116   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2117						   this->shader_program,
2118						   this->prog);
2119
2120   switch (sampler_type->sampler_dimensionality) {
2121   case GLSL_SAMPLER_DIM_1D:
2122      inst->tex_target = (sampler_type->sampler_array)
2123	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2124      break;
2125   case GLSL_SAMPLER_DIM_2D:
2126      inst->tex_target = (sampler_type->sampler_array)
2127	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2128      break;
2129   case GLSL_SAMPLER_DIM_3D:
2130      inst->tex_target = TEXTURE_3D_INDEX;
2131      break;
2132   case GLSL_SAMPLER_DIM_CUBE:
2133      inst->tex_target = TEXTURE_CUBE_INDEX;
2134      break;
2135   case GLSL_SAMPLER_DIM_RECT:
2136      inst->tex_target = TEXTURE_RECT_INDEX;
2137      break;
2138   case GLSL_SAMPLER_DIM_BUF:
2139      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2140      break;
2141   case GLSL_SAMPLER_DIM_EXTERNAL:
2142      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2143      break;
2144   default:
2145      assert(!"Should not get here.");
2146   }
2147
2148   this->result = result_src;
2149}
2150
2151void
2152ir_to_mesa_visitor::visit(ir_return *ir)
2153{
2154   /* Non-void functions should have been inlined.  We may still emit RETs
2155    * from main() unless the EmitNoMainReturn option is set.
2156    */
2157   assert(!ir->get_value());
2158   emit(ir, OPCODE_RET);
2159}
2160
2161void
2162ir_to_mesa_visitor::visit(ir_discard *ir)
2163{
2164   if (ir->condition) {
2165      ir->condition->accept(this);
2166      this->result.negate = ~this->result.negate;
2167      emit(ir, OPCODE_KIL, undef_dst, this->result);
2168   } else {
2169      emit(ir, OPCODE_KIL_NV);
2170   }
2171}
2172
2173void
2174ir_to_mesa_visitor::visit(ir_if *ir)
2175{
2176   ir_to_mesa_instruction *cond_inst, *if_inst;
2177   ir_to_mesa_instruction *prev_inst;
2178
2179   prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2180
2181   ir->condition->accept(this);
2182   assert(this->result.file != PROGRAM_UNDEFINED);
2183
2184   if (this->options->EmitCondCodes) {
2185      cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2186
2187      /* See if we actually generated any instruction for generating
2188       * the condition.  If not, then cook up a move to a temp so we
2189       * have something to set cond_update on.
2190       */
2191      if (cond_inst == prev_inst) {
2192	 src_reg temp = get_temp(glsl_type::bool_type);
2193	 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2194      }
2195      cond_inst->cond_update = GL_TRUE;
2196
2197      if_inst = emit(ir->condition, OPCODE_IF);
2198      if_inst->dst.cond_mask = COND_NE;
2199   } else {
2200      if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2201   }
2202
2203   this->instructions.push_tail(if_inst);
2204
2205   visit_exec_list(&ir->then_instructions, this);
2206
2207   if (!ir->else_instructions.is_empty()) {
2208      emit(ir->condition, OPCODE_ELSE);
2209      visit_exec_list(&ir->else_instructions, this);
2210   }
2211
2212   if_inst = emit(ir->condition, OPCODE_ENDIF);
2213}
2214
2215ir_to_mesa_visitor::ir_to_mesa_visitor()
2216{
2217   result.file = PROGRAM_UNDEFINED;
2218   next_temp = 1;
2219   next_signature_id = 1;
2220   current_function = NULL;
2221   mem_ctx = ralloc_context(NULL);
2222}
2223
2224ir_to_mesa_visitor::~ir_to_mesa_visitor()
2225{
2226   ralloc_free(mem_ctx);
2227}
2228
2229static struct prog_src_register
2230mesa_src_reg_from_ir_src_reg(src_reg reg)
2231{
2232   struct prog_src_register mesa_reg;
2233
2234   mesa_reg.File = reg.file;
2235   assert(reg.index < (1 << INST_INDEX_BITS));
2236   mesa_reg.Index = reg.index;
2237   mesa_reg.Swizzle = reg.swizzle;
2238   mesa_reg.RelAddr = reg.reladdr != NULL;
2239   mesa_reg.Negate = reg.negate;
2240   mesa_reg.Abs = 0;
2241   mesa_reg.HasIndex2 = GL_FALSE;
2242   mesa_reg.RelAddr2 = 0;
2243   mesa_reg.Index2 = 0;
2244
2245   return mesa_reg;
2246}
2247
2248static void
2249set_branchtargets(ir_to_mesa_visitor *v,
2250		  struct prog_instruction *mesa_instructions,
2251		  int num_instructions)
2252{
2253   int if_count = 0, loop_count = 0;
2254   int *if_stack, *loop_stack;
2255   int if_stack_pos = 0, loop_stack_pos = 0;
2256   int i, j;
2257
2258   for (i = 0; i < num_instructions; i++) {
2259      switch (mesa_instructions[i].Opcode) {
2260      case OPCODE_IF:
2261	 if_count++;
2262	 break;
2263      case OPCODE_BGNLOOP:
2264	 loop_count++;
2265	 break;
2266      case OPCODE_BRK:
2267      case OPCODE_CONT:
2268	 mesa_instructions[i].BranchTarget = -1;
2269	 break;
2270      default:
2271	 break;
2272      }
2273   }
2274
2275   if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2276   loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2277
2278   for (i = 0; i < num_instructions; i++) {
2279      switch (mesa_instructions[i].Opcode) {
2280      case OPCODE_IF:
2281	 if_stack[if_stack_pos] = i;
2282	 if_stack_pos++;
2283	 break;
2284      case OPCODE_ELSE:
2285	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2286	 if_stack[if_stack_pos - 1] = i;
2287	 break;
2288      case OPCODE_ENDIF:
2289	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2290	 if_stack_pos--;
2291	 break;
2292      case OPCODE_BGNLOOP:
2293	 loop_stack[loop_stack_pos] = i;
2294	 loop_stack_pos++;
2295	 break;
2296      case OPCODE_ENDLOOP:
2297	 loop_stack_pos--;
2298	 /* Rewrite any breaks/conts at this nesting level (haven't
2299	  * already had a BranchTarget assigned) to point to the end
2300	  * of the loop.
2301	  */
2302	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2303	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2304		mesa_instructions[j].Opcode == OPCODE_CONT) {
2305	       if (mesa_instructions[j].BranchTarget == -1) {
2306		  mesa_instructions[j].BranchTarget = i;
2307	       }
2308	    }
2309	 }
2310	 /* The loop ends point at each other. */
2311	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2312	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2313	 break;
2314      case OPCODE_CAL:
2315	 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2316	    function_entry *entry = (function_entry *)iter.get();
2317
2318	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2319	       mesa_instructions[i].BranchTarget = entry->inst;
2320	       break;
2321	    }
2322	 }
2323	 break;
2324      default:
2325	 break;
2326      }
2327   }
2328}
2329
2330static void
2331print_program(struct prog_instruction *mesa_instructions,
2332	      ir_instruction **mesa_instruction_annotation,
2333	      int num_instructions)
2334{
2335   ir_instruction *last_ir = NULL;
2336   int i;
2337   int indent = 0;
2338
2339   for (i = 0; i < num_instructions; i++) {
2340      struct prog_instruction *mesa_inst = mesa_instructions + i;
2341      ir_instruction *ir = mesa_instruction_annotation[i];
2342
2343      fprintf(stdout, "%3d: ", i);
2344
2345      if (last_ir != ir && ir) {
2346	 int j;
2347
2348	 for (j = 0; j < indent; j++) {
2349	    fprintf(stdout, " ");
2350	 }
2351	 ir->print();
2352	 printf("\n");
2353	 last_ir = ir;
2354
2355	 fprintf(stdout, "     "); /* line number spacing. */
2356      }
2357
2358      indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2359					    PROG_PRINT_DEBUG, NULL);
2360   }
2361}
2362
2363class add_uniform_to_shader : public uniform_field_visitor {
2364public:
2365   add_uniform_to_shader(struct gl_shader_program *shader_program,
2366			 struct gl_program_parameter_list *params)
2367      : shader_program(shader_program), params(params), idx(-1)
2368   {
2369      /* empty */
2370   }
2371
2372   void process(ir_variable *var)
2373   {
2374      this->idx = -1;
2375      this->uniform_field_visitor::process(var);
2376
2377      var->location = this->idx;
2378   }
2379
2380private:
2381   virtual void visit_field(const glsl_type *type, const char *name);
2382
2383   struct gl_shader_program *shader_program;
2384   struct gl_program_parameter_list *params;
2385   int idx;
2386};
2387
2388void
2389add_uniform_to_shader::visit_field(const glsl_type *type, const char *name)
2390{
2391   unsigned int size;
2392
2393   if (type->is_vector() || type->is_scalar()) {
2394      size = type->vector_elements;
2395   } else {
2396      size = type_size(type) * 4;
2397   }
2398
2399   gl_register_file file;
2400   if (type->is_sampler() ||
2401       (type->is_array() && type->fields.array->is_sampler())) {
2402      file = PROGRAM_SAMPLER;
2403   } else {
2404      file = PROGRAM_UNIFORM;
2405   }
2406
2407   int index = _mesa_lookup_parameter_index(params, -1, name);
2408   if (index < 0) {
2409      index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2410				  NULL, NULL, 0x0);
2411
2412      /* Sampler uniform values are stored in prog->SamplerUnits,
2413       * and the entry in that array is selected by this index we
2414       * store in ParameterValues[].
2415       */
2416      if (file == PROGRAM_SAMPLER) {
2417	 unsigned location;
2418	 const bool found =
2419	    this->shader_program->UniformHash->get(location,
2420						   params->Parameters[index].Name);
2421	 assert(found);
2422
2423	 if (!found)
2424	    return;
2425
2426	 struct gl_uniform_storage *storage =
2427	    &this->shader_program->UniformStorage[location];
2428
2429	 for (unsigned int j = 0; j < size / 4; j++)
2430	    params->ParameterValues[index + j][0].f = storage->sampler + j;
2431      }
2432   }
2433
2434   /* The first part of the uniform that's processed determines the base
2435    * location of the whole uniform (for structures).
2436    */
2437   if (this->idx < 0)
2438      this->idx = index;
2439}
2440
2441/**
2442 * Generate the program parameters list for the user uniforms in a shader
2443 *
2444 * \param shader_program Linked shader program.  This is only used to
2445 *                       emit possible link errors to the info log.
2446 * \param sh             Shader whose uniforms are to be processed.
2447 * \param params         Parameter list to be filled in.
2448 */
2449void
2450_mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2451					    *shader_program,
2452					    struct gl_shader *sh,
2453					    struct gl_program_parameter_list
2454					    *params)
2455{
2456   add_uniform_to_shader add(shader_program, params);
2457
2458   foreach_list(node, sh->ir) {
2459      ir_variable *var = ((ir_instruction *) node)->as_variable();
2460
2461      if ((var == NULL) || (var->mode != ir_var_uniform)
2462	  || var->uniform_block != -1 || (strncmp(var->name, "gl_", 3) == 0))
2463	 continue;
2464
2465      add.process(var);
2466   }
2467}
2468
2469void
2470_mesa_associate_uniform_storage(struct gl_context *ctx,
2471				struct gl_shader_program *shader_program,
2472				struct gl_program_parameter_list *params)
2473{
2474   /* After adding each uniform to the parameter list, connect the storage for
2475    * the parameter with the tracking structure used by the API for the
2476    * uniform.
2477    */
2478   unsigned last_location = unsigned(~0);
2479   for (unsigned i = 0; i < params->NumParameters; i++) {
2480      if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2481	 continue;
2482
2483      unsigned location;
2484      const bool found =
2485	 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2486      assert(found);
2487
2488      if (!found)
2489	 continue;
2490
2491      if (location != last_location) {
2492	 struct gl_uniform_storage *storage =
2493	    &shader_program->UniformStorage[location];
2494	 enum gl_uniform_driver_format format = uniform_native;
2495
2496	 unsigned columns = 0;
2497	 switch (storage->type->base_type) {
2498	 case GLSL_TYPE_UINT:
2499	    assert(ctx->Const.NativeIntegers);
2500	    format = uniform_native;
2501	    columns = 1;
2502	    break;
2503	 case GLSL_TYPE_INT:
2504	    format =
2505	       (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2506	    columns = 1;
2507	    break;
2508	 case GLSL_TYPE_FLOAT:
2509	    format = uniform_native;
2510	    columns = storage->type->matrix_columns;
2511	    break;
2512	 case GLSL_TYPE_BOOL:
2513	    if (ctx->Const.NativeIntegers) {
2514	       format = (ctx->Const.UniformBooleanTrue == 1)
2515		  ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2516	    } else {
2517	       format = uniform_bool_float;
2518	    }
2519	    columns = 1;
2520	    break;
2521	 case GLSL_TYPE_SAMPLER:
2522	    format = uniform_native;
2523	    columns = 1;
2524	    break;
2525	 default:
2526	    assert(!"Should not get here.");
2527	    break;
2528	 }
2529
2530	 _mesa_uniform_attach_driver_storage(storage,
2531					     4 * sizeof(float) * columns,
2532					     4 * sizeof(float),
2533					     format,
2534					     &params->ParameterValues[i]);
2535
2536	 /* After attaching the driver's storage to the uniform, propagate any
2537	  * data from the linker's backing store.  This will cause values from
2538	  * initializers in the source code to be copied over.
2539	  */
2540	 _mesa_propagate_uniforms_to_driver_storage(storage,
2541						    0,
2542						    MAX2(1, storage->array_elements));
2543
2544	 last_location = location;
2545      }
2546   }
2547}
2548
2549/*
2550 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2551 * channels for copy propagation and updates following instructions to
2552 * use the original versions.
2553 *
2554 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2555 * will occur.  As an example, a TXP production before this pass:
2556 *
2557 * 0: MOV TEMP[1], INPUT[4].xyyy;
2558 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2559 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2560 *
2561 * and after:
2562 *
2563 * 0: MOV TEMP[1], INPUT[4].xyyy;
2564 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2565 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2566 *
2567 * which allows for dead code elimination on TEMP[1]'s writes.
2568 */
2569void
2570ir_to_mesa_visitor::copy_propagate(void)
2571{
2572   ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2573						    ir_to_mesa_instruction *,
2574						    this->next_temp * 4);
2575   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2576   int level = 0;
2577
2578   foreach_iter(exec_list_iterator, iter, this->instructions) {
2579      ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2580
2581      assert(inst->dst.file != PROGRAM_TEMPORARY
2582	     || inst->dst.index < this->next_temp);
2583
2584      /* First, do any copy propagation possible into the src regs. */
2585      for (int r = 0; r < 3; r++) {
2586	 ir_to_mesa_instruction *first = NULL;
2587	 bool good = true;
2588	 int acp_base = inst->src[r].index * 4;
2589
2590	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2591	     inst->src[r].reladdr)
2592	    continue;
2593
2594	 /* See if we can find entries in the ACP consisting of MOVs
2595	  * from the same src register for all the swizzled channels
2596	  * of this src register reference.
2597	  */
2598	 for (int i = 0; i < 4; i++) {
2599	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2600	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2601
2602	    if (!copy_chan) {
2603	       good = false;
2604	       break;
2605	    }
2606
2607	    assert(acp_level[acp_base + src_chan] <= level);
2608
2609	    if (!first) {
2610	       first = copy_chan;
2611	    } else {
2612	       if (first->src[0].file != copy_chan->src[0].file ||
2613		   first->src[0].index != copy_chan->src[0].index) {
2614		  good = false;
2615		  break;
2616	       }
2617	    }
2618	 }
2619
2620	 if (good) {
2621	    /* We've now validated that we can copy-propagate to
2622	     * replace this src register reference.  Do it.
2623	     */
2624	    inst->src[r].file = first->src[0].file;
2625	    inst->src[r].index = first->src[0].index;
2626
2627	    int swizzle = 0;
2628	    for (int i = 0; i < 4; i++) {
2629	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2630	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2631	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2632			   (3 * i));
2633	    }
2634	    inst->src[r].swizzle = swizzle;
2635	 }
2636      }
2637
2638      switch (inst->op) {
2639      case OPCODE_BGNLOOP:
2640      case OPCODE_ENDLOOP:
2641	 /* End of a basic block, clear the ACP entirely. */
2642	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2643	 break;
2644
2645      case OPCODE_IF:
2646	 ++level;
2647	 break;
2648
2649      case OPCODE_ENDIF:
2650      case OPCODE_ELSE:
2651	 /* Clear all channels written inside the block from the ACP, but
2652	  * leaving those that were not touched.
2653	  */
2654	 for (int r = 0; r < this->next_temp; r++) {
2655	    for (int c = 0; c < 4; c++) {
2656	       if (!acp[4 * r + c])
2657		  continue;
2658
2659	       if (acp_level[4 * r + c] >= level)
2660		  acp[4 * r + c] = NULL;
2661	    }
2662	 }
2663	 if (inst->op == OPCODE_ENDIF)
2664	    --level;
2665	 break;
2666
2667      default:
2668	 /* Continuing the block, clear any written channels from
2669	  * the ACP.
2670	  */
2671	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2672	    /* Any temporary might be written, so no copy propagation
2673	     * across this instruction.
2674	     */
2675	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2676	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2677		    inst->dst.reladdr) {
2678	    /* Any output might be written, so no copy propagation
2679	     * from outputs across this instruction.
2680	     */
2681	    for (int r = 0; r < this->next_temp; r++) {
2682	       for (int c = 0; c < 4; c++) {
2683		  if (!acp[4 * r + c])
2684		     continue;
2685
2686		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2687		     acp[4 * r + c] = NULL;
2688	       }
2689	    }
2690	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2691		    inst->dst.file == PROGRAM_OUTPUT) {
2692	    /* Clear where it's used as dst. */
2693	    if (inst->dst.file == PROGRAM_TEMPORARY) {
2694	       for (int c = 0; c < 4; c++) {
2695		  if (inst->dst.writemask & (1 << c)) {
2696		     acp[4 * inst->dst.index + c] = NULL;
2697		  }
2698	       }
2699	    }
2700
2701	    /* Clear where it's used as src. */
2702	    for (int r = 0; r < this->next_temp; r++) {
2703	       for (int c = 0; c < 4; c++) {
2704		  if (!acp[4 * r + c])
2705		     continue;
2706
2707		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2708
2709		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2710		      acp[4 * r + c]->src[0].index == inst->dst.index &&
2711		      inst->dst.writemask & (1 << src_chan))
2712		  {
2713		     acp[4 * r + c] = NULL;
2714		  }
2715	       }
2716	    }
2717	 }
2718	 break;
2719      }
2720
2721      /* If this is a copy, add it to the ACP. */
2722      if (inst->op == OPCODE_MOV &&
2723	  inst->dst.file == PROGRAM_TEMPORARY &&
2724	  !inst->dst.reladdr &&
2725	  !inst->saturate &&
2726	  !inst->src[0].reladdr &&
2727	  !inst->src[0].negate) {
2728	 for (int i = 0; i < 4; i++) {
2729	    if (inst->dst.writemask & (1 << i)) {
2730	       acp[4 * inst->dst.index + i] = inst;
2731	       acp_level[4 * inst->dst.index + i] = level;
2732	    }
2733	 }
2734      }
2735   }
2736
2737   ralloc_free(acp_level);
2738   ralloc_free(acp);
2739}
2740
2741
2742/**
2743 * Convert a shader's GLSL IR into a Mesa gl_program.
2744 */
2745static struct gl_program *
2746get_mesa_program(struct gl_context *ctx,
2747                 struct gl_shader_program *shader_program,
2748		 struct gl_shader *shader)
2749{
2750   ir_to_mesa_visitor v;
2751   struct prog_instruction *mesa_instructions, *mesa_inst;
2752   ir_instruction **mesa_instruction_annotation;
2753   int i;
2754   struct gl_program *prog;
2755   GLenum target;
2756   const char *target_string;
2757   struct gl_shader_compiler_options *options =
2758         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2759
2760   switch (shader->Type) {
2761   case GL_VERTEX_SHADER:
2762      target = GL_VERTEX_PROGRAM_ARB;
2763      target_string = "vertex";
2764      break;
2765   case GL_FRAGMENT_SHADER:
2766      target = GL_FRAGMENT_PROGRAM_ARB;
2767      target_string = "fragment";
2768      break;
2769   case GL_GEOMETRY_SHADER:
2770      target = GL_GEOMETRY_PROGRAM_NV;
2771      target_string = "geometry";
2772      break;
2773   default:
2774      assert(!"should not be reached");
2775      return NULL;
2776   }
2777
2778   validate_ir_tree(shader->ir);
2779
2780   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2781   if (!prog)
2782      return NULL;
2783   prog->Parameters = _mesa_new_parameter_list();
2784   v.ctx = ctx;
2785   v.prog = prog;
2786   v.shader_program = shader_program;
2787   v.options = options;
2788
2789   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2790					       prog->Parameters);
2791
2792   /* Emit Mesa IR for main(). */
2793   visit_exec_list(shader->ir, &v);
2794   v.emit(NULL, OPCODE_END);
2795
2796   prog->NumTemporaries = v.next_temp;
2797
2798   int num_instructions = 0;
2799   foreach_iter(exec_list_iterator, iter, v.instructions) {
2800      num_instructions++;
2801   }
2802
2803   mesa_instructions =
2804      (struct prog_instruction *)calloc(num_instructions,
2805					sizeof(*mesa_instructions));
2806   mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2807					      num_instructions);
2808
2809   v.copy_propagate();
2810
2811   /* Convert ir_mesa_instructions into prog_instructions.
2812    */
2813   mesa_inst = mesa_instructions;
2814   i = 0;
2815   foreach_iter(exec_list_iterator, iter, v.instructions) {
2816      const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2817
2818      mesa_inst->Opcode = inst->op;
2819      mesa_inst->CondUpdate = inst->cond_update;
2820      if (inst->saturate)
2821	 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2822      mesa_inst->DstReg.File = inst->dst.file;
2823      mesa_inst->DstReg.Index = inst->dst.index;
2824      mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2825      mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2826      mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2827      mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2828      mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2829      mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2830      mesa_inst->TexSrcUnit = inst->sampler;
2831      mesa_inst->TexSrcTarget = inst->tex_target;
2832      mesa_inst->TexShadow = inst->tex_shadow;
2833      mesa_instruction_annotation[i] = inst->ir;
2834
2835      /* Set IndirectRegisterFiles. */
2836      if (mesa_inst->DstReg.RelAddr)
2837         prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2838
2839      /* Update program's bitmask of indirectly accessed register files */
2840      for (unsigned src = 0; src < 3; src++)
2841         if (mesa_inst->SrcReg[src].RelAddr)
2842            prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2843
2844      switch (mesa_inst->Opcode) {
2845      case OPCODE_IF:
2846	 if (options->MaxIfDepth == 0) {
2847	    linker_warning(shader_program,
2848			   "Couldn't flatten if-statement.  "
2849			   "This will likely result in software "
2850			   "rasterization.\n");
2851	 }
2852	 break;
2853      case OPCODE_BGNLOOP:
2854	 if (options->EmitNoLoops) {
2855	    linker_warning(shader_program,
2856			   "Couldn't unroll loop.  "
2857			   "This will likely result in software "
2858			   "rasterization.\n");
2859	 }
2860	 break;
2861      case OPCODE_CONT:
2862	 if (options->EmitNoCont) {
2863	    linker_warning(shader_program,
2864			   "Couldn't lower continue-statement.  "
2865			   "This will likely result in software "
2866			   "rasterization.\n");
2867	 }
2868	 break;
2869      case OPCODE_ARL:
2870	 prog->NumAddressRegs = 1;
2871	 break;
2872      default:
2873	 break;
2874      }
2875
2876      mesa_inst++;
2877      i++;
2878
2879      if (!shader_program->LinkStatus)
2880         break;
2881   }
2882
2883   if (!shader_program->LinkStatus) {
2884      goto fail_exit;
2885   }
2886
2887   set_branchtargets(&v, mesa_instructions, num_instructions);
2888
2889   if (ctx->Shader.Flags & GLSL_DUMP) {
2890      printf("\n");
2891      printf("GLSL IR for linked %s program %d:\n", target_string,
2892	     shader_program->Name);
2893      _mesa_print_ir(shader->ir, NULL);
2894      printf("\n");
2895      printf("\n");
2896      printf("Mesa IR for linked %s program %d:\n", target_string,
2897	     shader_program->Name);
2898      print_program(mesa_instructions, mesa_instruction_annotation,
2899		    num_instructions);
2900   }
2901
2902   prog->Instructions = mesa_instructions;
2903   prog->NumInstructions = num_instructions;
2904
2905   /* Setting this to NULL prevents a possible double free in the fail_exit
2906    * path (far below).
2907    */
2908   mesa_instructions = NULL;
2909
2910   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
2911
2912   prog->SamplersUsed = shader->active_samplers;
2913   prog->ShadowSamplers = shader->shadow_samplers;
2914   _mesa_update_shader_textures_used(shader_program, prog);
2915
2916   /* Set the gl_FragDepth layout. */
2917   if (target == GL_FRAGMENT_PROGRAM_ARB) {
2918      struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2919      fp->FragDepthLayout = shader_program->FragDepthLayout;
2920   }
2921
2922   _mesa_reference_program(ctx, &shader->Program, prog);
2923
2924   if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
2925      _mesa_optimize_program(ctx, prog);
2926   }
2927
2928   /* This has to be done last.  Any operation that can cause
2929    * prog->ParameterValues to get reallocated (e.g., anything that adds a
2930    * program constant) has to happen before creating this linkage.
2931    */
2932   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2933   if (!shader_program->LinkStatus) {
2934      goto fail_exit;
2935   }
2936
2937   return prog;
2938
2939fail_exit:
2940   free(mesa_instructions);
2941   _mesa_reference_program(ctx, &shader->Program, NULL);
2942   return NULL;
2943}
2944
2945extern "C" {
2946
2947/**
2948 * Link a shader.
2949 * Called via ctx->Driver.LinkShader()
2950 * This actually involves converting GLSL IR into Mesa gl_programs with
2951 * code lowering and other optimizations.
2952 */
2953GLboolean
2954_mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2955{
2956   assert(prog->LinkStatus);
2957
2958   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2959      if (prog->_LinkedShaders[i] == NULL)
2960	 continue;
2961
2962      bool progress;
2963      exec_list *ir = prog->_LinkedShaders[i]->ir;
2964      const struct gl_shader_compiler_options *options =
2965            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
2966
2967      do {
2968	 progress = false;
2969
2970	 /* Lowering */
2971	 do_mat_op_to_vec(ir);
2972	 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
2973				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2974				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2975
2976	 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2977
2978	 progress = do_common_optimization(ir, true, true,
2979					   options->MaxUnrollIterations)
2980	   || progress;
2981
2982	 progress = lower_quadop_vector(ir, true) || progress;
2983
2984	 if (options->MaxIfDepth == 0)
2985	    progress = lower_discard(ir) || progress;
2986
2987	 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2988
2989	 if (options->EmitNoNoise)
2990	    progress = lower_noise(ir) || progress;
2991
2992	 /* If there are forms of indirect addressing that the driver
2993	  * cannot handle, perform the lowering pass.
2994	  */
2995	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2996	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2997	   progress =
2998	     lower_variable_index_to_cond_assign(ir,
2999						 options->EmitNoIndirectInput,
3000						 options->EmitNoIndirectOutput,
3001						 options->EmitNoIndirectTemp,
3002						 options->EmitNoIndirectUniform)
3003	     || progress;
3004
3005	 progress = do_vec_index_to_cond_assign(ir) || progress;
3006      } while (progress);
3007
3008      validate_ir_tree(ir);
3009   }
3010
3011   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3012      struct gl_program *linked_prog;
3013
3014      if (prog->_LinkedShaders[i] == NULL)
3015	 continue;
3016
3017      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3018
3019      if (linked_prog) {
3020	 static const GLenum targets[] = {
3021	    GL_VERTEX_PROGRAM_ARB,
3022	    GL_FRAGMENT_PROGRAM_ARB,
3023	    GL_GEOMETRY_PROGRAM_NV
3024	 };
3025
3026	 if (i == MESA_SHADER_VERTEX) {
3027            ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3028               = prog->Vert.UsesClipDistance;
3029	 }
3030
3031	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3032				 linked_prog);
3033         if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
3034            return GL_FALSE;
3035         }
3036      }
3037
3038      _mesa_reference_program(ctx, &linked_prog, NULL);
3039   }
3040
3041   return prog->LinkStatus;
3042}
3043
3044
3045/**
3046 * Compile a GLSL shader.  Called via glCompileShader().
3047 */
3048void
3049_mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3050{
3051   struct _mesa_glsl_parse_state *state =
3052      new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3053
3054   const char *source = shader->Source;
3055   /* Check if the user called glCompileShader without first calling
3056    * glShaderSource.  This should fail to compile, but not raise a GL_ERROR.
3057    */
3058   if (source == NULL) {
3059      shader->CompileStatus = GL_FALSE;
3060      return;
3061   }
3062
3063   state->error = glcpp_preprocess(state, &source, &state->info_log,
3064			     &ctx->Extensions, ctx->API);
3065
3066   if (ctx->Shader.Flags & GLSL_DUMP) {
3067      printf("GLSL source for %s shader %d:\n",
3068	     _mesa_glsl_shader_target_name(state->target), shader->Name);
3069      printf("%s\n", shader->Source);
3070   }
3071
3072   if (!state->error) {
3073     _mesa_glsl_lexer_ctor(state, source);
3074     _mesa_glsl_parse(state);
3075     _mesa_glsl_lexer_dtor(state);
3076   }
3077
3078   ralloc_free(shader->ir);
3079   shader->ir = new(shader) exec_list;
3080   if (!state->error && !state->translation_unit.is_empty())
3081      _mesa_ast_to_hir(shader->ir, state);
3082
3083   if (!state->error && !shader->ir->is_empty()) {
3084      validate_ir_tree(shader->ir);
3085
3086      /* Do some optimization at compile time to reduce shader IR size
3087       * and reduce later work if the same shader is linked multiple times
3088       */
3089      while (do_common_optimization(shader->ir, false, false, 32))
3090	 ;
3091
3092      validate_ir_tree(shader->ir);
3093   }
3094
3095   shader->symbols = state->symbols;
3096
3097   shader->CompileStatus = !state->error;
3098   shader->InfoLog = state->info_log;
3099   shader->Version = state->language_version;
3100   memcpy(shader->builtins_to_link, state->builtins_to_link,
3101	  sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3102   shader->num_builtins_to_link = state->num_builtins_to_link;
3103
3104   if (ctx->Shader.Flags & GLSL_LOG) {
3105      _mesa_write_shader_to_file(shader);
3106   }
3107
3108   if (ctx->Shader.Flags & GLSL_DUMP) {
3109      if (shader->CompileStatus) {
3110	 printf("GLSL IR for shader %d:\n", shader->Name);
3111	 _mesa_print_ir(shader->ir, NULL);
3112	 printf("\n\n");
3113      } else {
3114	 printf("GLSL shader %d failed to compile.\n", shader->Name);
3115      }
3116      if (shader->InfoLog && shader->InfoLog[0] != 0) {
3117	 printf("GLSL shader %d info log:\n", shader->Name);
3118	 printf("%s\n", shader->InfoLog);
3119      }
3120   }
3121
3122   if (shader->UniformBlocks)
3123      ralloc_free(shader->UniformBlocks);
3124   shader->NumUniformBlocks = state->num_uniform_blocks;
3125   shader->UniformBlocks = state->uniform_blocks;
3126   ralloc_steal(shader, shader->UniformBlocks);
3127
3128   /* Retain any live IR, but trash the rest. */
3129   reparent_ir(shader->ir, shader->ir);
3130
3131   ralloc_free(state);
3132}
3133
3134
3135/**
3136 * Link a GLSL shader program.  Called via glLinkProgram().
3137 */
3138void
3139_mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3140{
3141   unsigned int i;
3142
3143   _mesa_clear_shader_program_data(ctx, prog);
3144
3145   prog->LinkStatus = GL_TRUE;
3146
3147   for (i = 0; i < prog->NumShaders; i++) {
3148      if (!prog->Shaders[i]->CompileStatus) {
3149	 linker_error(prog, "linking with uncompiled shader");
3150	 prog->LinkStatus = GL_FALSE;
3151      }
3152   }
3153
3154   if (prog->LinkStatus) {
3155      link_shaders(ctx, prog);
3156   }
3157
3158   if (prog->LinkStatus) {
3159      if (!ctx->Driver.LinkShader(ctx, prog)) {
3160	 prog->LinkStatus = GL_FALSE;
3161      }
3162   }
3163
3164   if (ctx->Shader.Flags & GLSL_DUMP) {
3165      if (!prog->LinkStatus) {
3166	 printf("GLSL shader program %d failed to link\n", prog->Name);
3167      }
3168
3169      if (prog->InfoLog && prog->InfoLog[0] != 0) {
3170	 printf("GLSL shader program %d info log:\n", prog->Name);
3171	 printf("%s\n", prog->InfoLog);
3172      }
3173   }
3174}
3175
3176} /* extern "C" */
3177