st_glsl_to_tgsi.cpp revision 3788b4b5c942b2346bf122486b687c632ab7eac4
1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27/**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33#include <stdio.h>
34#include "main/compiler.h"
35#include "ir.h"
36#include "ir_visitor.h"
37#include "ir_print_visitor.h"
38#include "ir_expression_flattening.h"
39#include "glsl_types.h"
40#include "glsl_parser_extras.h"
41#include "../glsl/program.h"
42#include "ir_optimization.h"
43#include "ast.h"
44
45#include "main/mtypes.h"
46#include "main/shaderobj.h"
47#include "program/hash_table.h"
48
49extern "C" {
50#include "main/shaderapi.h"
51#include "main/uniforms.h"
52#include "program/prog_instruction.h"
53#include "program/prog_optimize.h"
54#include "program/prog_print.h"
55#include "program/program.h"
56#include "program/prog_parameter.h"
57#include "program/sampler.h"
58
59#include "pipe/p_compiler.h"
60#include "pipe/p_context.h"
61#include "pipe/p_screen.h"
62#include "pipe/p_shader_tokens.h"
63#include "pipe/p_state.h"
64#include "util/u_math.h"
65#include "tgsi/tgsi_ureg.h"
66#include "tgsi/tgsi_info.h"
67#include "st_context.h"
68#include "st_program.h"
69#include "st_glsl_to_tgsi.h"
70#include "st_mesa_to_tgsi.h"
71}
72
73#define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
75                           (1 << PROGRAM_ENV_PARAM) |    \
76                           (1 << PROGRAM_STATE_VAR) |    \
77                           (1 << PROGRAM_NAMED_PARAM) |  \
78                           (1 << PROGRAM_CONSTANT) |     \
79                           (1 << PROGRAM_UNIFORM))
80
81/**
82 * Maximum number of temporary registers.
83 *
84 * It is too big for stack allocated arrays -- it will cause stack overflow on
85 * Windows and likely Mac OS X.
86 */
87#define MAX_TEMPS         4096
88
89/* will be 4 for GLSL 4.00 */
90#define MAX_GLSL_TEXTURE_OFFSET 1
91
92class st_src_reg;
93class st_dst_reg;
94
95static int swizzle_for_size(int size);
96
97/**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100class st_src_reg {
101public:
102   st_src_reg(gl_register_file file, int index, const glsl_type *type)
103   {
104      this->file = file;
105      this->index = index;
106      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107         this->swizzle = swizzle_for_size(type->vector_elements);
108      else
109         this->swizzle = SWIZZLE_XYZW;
110      this->negate = 0;
111      this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112      this->reladdr = NULL;
113   }
114
115   st_src_reg(gl_register_file file, int index, int type)
116   {
117      this->type = type;
118      this->file = file;
119      this->index = index;
120      this->swizzle = SWIZZLE_XYZW;
121      this->negate = 0;
122      this->reladdr = NULL;
123   }
124
125   st_src_reg()
126   {
127      this->type = GLSL_TYPE_ERROR;
128      this->file = PROGRAM_UNDEFINED;
129      this->index = 0;
130      this->swizzle = 0;
131      this->negate = 0;
132      this->reladdr = NULL;
133   }
134
135   explicit st_src_reg(st_dst_reg reg);
136
137   gl_register_file file; /**< PROGRAM_* from Mesa */
138   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
139   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
140   int negate; /**< NEGATE_XYZW mask from mesa */
141   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
142   /** Register index should be offset by the integer in this reg. */
143   st_src_reg *reladdr;
144};
145
146class st_dst_reg {
147public:
148   st_dst_reg(gl_register_file file, int writemask, int type)
149   {
150      this->file = file;
151      this->index = 0;
152      this->writemask = writemask;
153      this->cond_mask = COND_TR;
154      this->reladdr = NULL;
155      this->type = type;
156   }
157
158   st_dst_reg()
159   {
160      this->type = GLSL_TYPE_ERROR;
161      this->file = PROGRAM_UNDEFINED;
162      this->index = 0;
163      this->writemask = 0;
164      this->cond_mask = COND_TR;
165      this->reladdr = NULL;
166   }
167
168   explicit st_dst_reg(st_src_reg reg);
169
170   gl_register_file file; /**< PROGRAM_* from Mesa */
171   int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
172   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
173   GLuint cond_mask:4;
174   int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
175   /** Register index should be offset by the integer in this reg. */
176   st_src_reg *reladdr;
177};
178
179st_src_reg::st_src_reg(st_dst_reg reg)
180{
181   this->type = reg.type;
182   this->file = reg.file;
183   this->index = reg.index;
184   this->swizzle = SWIZZLE_XYZW;
185   this->negate = 0;
186   this->reladdr = reg.reladdr;
187}
188
189st_dst_reg::st_dst_reg(st_src_reg reg)
190{
191   this->type = reg.type;
192   this->file = reg.file;
193   this->index = reg.index;
194   this->writemask = WRITEMASK_XYZW;
195   this->cond_mask = COND_TR;
196   this->reladdr = reg.reladdr;
197}
198
199class glsl_to_tgsi_instruction : public exec_node {
200public:
201   /* Callers of this ralloc-based new need not call delete. It's
202    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
203   static void* operator new(size_t size, void *ctx)
204   {
205      void *node;
206
207      node = rzalloc_size(ctx, size);
208      assert(node != NULL);
209
210      return node;
211   }
212
213   unsigned op;
214   st_dst_reg dst;
215   st_src_reg src[3];
216   /** Pointer to the ir source this tree came from for debugging */
217   ir_instruction *ir;
218   GLboolean cond_update;
219   bool saturate;
220   int sampler; /**< sampler index */
221   int tex_target; /**< One of TEXTURE_*_INDEX */
222   GLboolean tex_shadow;
223   struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
224   unsigned tex_offset_num_offset;
225   int dead_mask; /**< Used in dead code elimination */
226
227   class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
228};
229
230class variable_storage : public exec_node {
231public:
232   variable_storage(ir_variable *var, gl_register_file file, int index)
233      : file(file), index(index), var(var)
234   {
235      /* empty */
236   }
237
238   gl_register_file file;
239   int index;
240   ir_variable *var; /* variable that maps to this, if any */
241};
242
243class immediate_storage : public exec_node {
244public:
245   immediate_storage(gl_constant_value *values, int size, int type)
246   {
247      memcpy(this->values, values, size * sizeof(gl_constant_value));
248      this->size = size;
249      this->type = type;
250   }
251
252   gl_constant_value values[4];
253   int size; /**< Number of components (1-4) */
254   int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
255};
256
257class function_entry : public exec_node {
258public:
259   ir_function_signature *sig;
260
261   /**
262    * identifier of this function signature used by the program.
263    *
264    * At the point that TGSI instructions for function calls are
265    * generated, we don't know the address of the first instruction of
266    * the function body.  So we make the BranchTarget that is called a
267    * small integer and rewrite them during set_branchtargets().
268    */
269   int sig_id;
270
271   /**
272    * Pointer to first instruction of the function body.
273    *
274    * Set during function body emits after main() is processed.
275    */
276   glsl_to_tgsi_instruction *bgn_inst;
277
278   /**
279    * Index of the first instruction of the function body in actual TGSI.
280    *
281    * Set after conversion from glsl_to_tgsi_instruction to TGSI.
282    */
283   int inst;
284
285   /** Storage for the return value. */
286   st_src_reg return_reg;
287};
288
289class glsl_to_tgsi_visitor : public ir_visitor {
290public:
291   glsl_to_tgsi_visitor();
292   ~glsl_to_tgsi_visitor();
293
294   function_entry *current_function;
295
296   struct gl_context *ctx;
297   struct gl_program *prog;
298   struct gl_shader_program *shader_program;
299   struct gl_shader_compiler_options *options;
300
301   int next_temp;
302
303   int num_address_regs;
304   int samplers_used;
305   bool indirect_addr_temps;
306   bool indirect_addr_consts;
307
308   int glsl_version;
309   bool native_integers;
310
311   variable_storage *find_variable_storage(ir_variable *var);
312
313   int add_constant(gl_register_file file, gl_constant_value values[4],
314                    int size, int datatype, GLuint *swizzle_out);
315
316   function_entry *get_function_signature(ir_function_signature *sig);
317
318   st_src_reg get_temp(const glsl_type *type);
319   void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
320
321   st_src_reg st_src_reg_for_float(float val);
322   st_src_reg st_src_reg_for_int(int val);
323   st_src_reg st_src_reg_for_type(int type, int val);
324
325   /**
326    * \name Visit methods
327    *
328    * As typical for the visitor pattern, there must be one \c visit method for
329    * each concrete subclass of \c ir_instruction.  Virtual base classes within
330    * the hierarchy should not have \c visit methods.
331    */
332   /*@{*/
333   virtual void visit(ir_variable *);
334   virtual void visit(ir_loop *);
335   virtual void visit(ir_loop_jump *);
336   virtual void visit(ir_function_signature *);
337   virtual void visit(ir_function *);
338   virtual void visit(ir_expression *);
339   virtual void visit(ir_swizzle *);
340   virtual void visit(ir_dereference_variable  *);
341   virtual void visit(ir_dereference_array *);
342   virtual void visit(ir_dereference_record *);
343   virtual void visit(ir_assignment *);
344   virtual void visit(ir_constant *);
345   virtual void visit(ir_call *);
346   virtual void visit(ir_return *);
347   virtual void visit(ir_discard *);
348   virtual void visit(ir_texture *);
349   virtual void visit(ir_if *);
350   /*@}*/
351
352   st_src_reg result;
353
354   /** List of variable_storage */
355   exec_list variables;
356
357   /** List of immediate_storage */
358   exec_list immediates;
359   int num_immediates;
360
361   /** List of function_entry */
362   exec_list function_signatures;
363   int next_signature_id;
364
365   /** List of glsl_to_tgsi_instruction */
366   exec_list instructions;
367
368   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
369
370   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
371        		        st_dst_reg dst, st_src_reg src0);
372
373   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
374        		        st_dst_reg dst, st_src_reg src0, st_src_reg src1);
375
376   glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
377        		        st_dst_reg dst,
378        		        st_src_reg src0, st_src_reg src1, st_src_reg src2);
379
380   unsigned get_opcode(ir_instruction *ir, unsigned op,
381                    st_dst_reg dst,
382                    st_src_reg src0, st_src_reg src1);
383
384   /**
385    * Emit the correct dot-product instruction for the type of arguments
386    */
387   glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
388                                     st_dst_reg dst,
389                                     st_src_reg src0,
390                                     st_src_reg src1,
391                                     unsigned elements);
392
393   void emit_scalar(ir_instruction *ir, unsigned op,
394        	    st_dst_reg dst, st_src_reg src0);
395
396   void emit_scalar(ir_instruction *ir, unsigned op,
397        	    st_dst_reg dst, st_src_reg src0, st_src_reg src1);
398
399   void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
400
401   void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
402
403   void emit_scs(ir_instruction *ir, unsigned op,
404        	 st_dst_reg dst, const st_src_reg &src);
405
406   bool try_emit_mad(ir_expression *ir,
407              int mul_operand);
408   bool try_emit_mad_for_and_not(ir_expression *ir,
409              int mul_operand);
410   bool try_emit_sat(ir_expression *ir);
411
412   void emit_swz(ir_expression *ir);
413
414   bool process_move_condition(ir_rvalue *ir);
415
416   void remove_output_reads(gl_register_file type);
417   void simplify_cmp(void);
418
419   void rename_temp_register(int index, int new_index);
420   int get_first_temp_read(int index);
421   int get_first_temp_write(int index);
422   int get_last_temp_read(int index);
423   int get_last_temp_write(int index);
424
425   void copy_propagate(void);
426   void eliminate_dead_code(void);
427   int eliminate_dead_code_advanced(void);
428   void merge_registers(void);
429   void renumber_registers(void);
430
431   void *mem_ctx;
432};
433
434static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
435
436static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
437
438static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
439
440static void
441fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
442
443static void
444fail_link(struct gl_shader_program *prog, const char *fmt, ...)
445{
446   va_list args;
447   va_start(args, fmt);
448   ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
449   va_end(args);
450
451   prog->LinkStatus = GL_FALSE;
452}
453
454static int
455swizzle_for_size(int size)
456{
457   int size_swizzles[4] = {
458      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
459      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
460      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
461      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
462   };
463
464   assert((size >= 1) && (size <= 4));
465   return size_swizzles[size - 1];
466}
467
468static bool
469is_tex_instruction(unsigned opcode)
470{
471   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
472   return info->is_tex;
473}
474
475static unsigned
476num_inst_dst_regs(unsigned opcode)
477{
478   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
479   return info->num_dst;
480}
481
482static unsigned
483num_inst_src_regs(unsigned opcode)
484{
485   const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
486   return info->is_tex ? info->num_src - 1 : info->num_src;
487}
488
489glsl_to_tgsi_instruction *
490glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
491        		 st_dst_reg dst,
492        		 st_src_reg src0, st_src_reg src1, st_src_reg src2)
493{
494   glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
495   int num_reladdr = 0, i;
496
497   op = get_opcode(ir, op, dst, src0, src1);
498
499   /* If we have to do relative addressing, we want to load the ARL
500    * reg directly for one of the regs, and preload the other reladdr
501    * sources into temps.
502    */
503   num_reladdr += dst.reladdr != NULL;
504   num_reladdr += src0.reladdr != NULL;
505   num_reladdr += src1.reladdr != NULL;
506   num_reladdr += src2.reladdr != NULL;
507
508   reladdr_to_temp(ir, &src2, &num_reladdr);
509   reladdr_to_temp(ir, &src1, &num_reladdr);
510   reladdr_to_temp(ir, &src0, &num_reladdr);
511
512   if (dst.reladdr) {
513      emit_arl(ir, address_reg, *dst.reladdr);
514      num_reladdr--;
515   }
516   assert(num_reladdr == 0);
517
518   inst->op = op;
519   inst->dst = dst;
520   inst->src[0] = src0;
521   inst->src[1] = src1;
522   inst->src[2] = src2;
523   inst->ir = ir;
524   inst->dead_mask = 0;
525
526   inst->function = NULL;
527
528   if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
529      this->num_address_regs = 1;
530
531   /* Update indirect addressing status used by TGSI */
532   if (dst.reladdr) {
533      switch(dst.file) {
534      case PROGRAM_TEMPORARY:
535         this->indirect_addr_temps = true;
536         break;
537      case PROGRAM_LOCAL_PARAM:
538      case PROGRAM_ENV_PARAM:
539      case PROGRAM_STATE_VAR:
540      case PROGRAM_NAMED_PARAM:
541      case PROGRAM_CONSTANT:
542      case PROGRAM_UNIFORM:
543         this->indirect_addr_consts = true;
544         break;
545      case PROGRAM_IMMEDIATE:
546         assert(!"immediates should not have indirect addressing");
547         break;
548      default:
549         break;
550      }
551   }
552   else {
553      for (i=0; i<3; i++) {
554         if(inst->src[i].reladdr) {
555            switch(inst->src[i].file) {
556            case PROGRAM_TEMPORARY:
557               this->indirect_addr_temps = true;
558               break;
559            case PROGRAM_LOCAL_PARAM:
560            case PROGRAM_ENV_PARAM:
561            case PROGRAM_STATE_VAR:
562            case PROGRAM_NAMED_PARAM:
563            case PROGRAM_CONSTANT:
564            case PROGRAM_UNIFORM:
565               this->indirect_addr_consts = true;
566               break;
567            case PROGRAM_IMMEDIATE:
568               assert(!"immediates should not have indirect addressing");
569               break;
570            default:
571               break;
572            }
573         }
574      }
575   }
576
577   this->instructions.push_tail(inst);
578
579   if (native_integers)
580      try_emit_float_set(ir, op, dst);
581
582   return inst;
583}
584
585
586glsl_to_tgsi_instruction *
587glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
588        		 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
589{
590   return emit(ir, op, dst, src0, src1, undef_src);
591}
592
593glsl_to_tgsi_instruction *
594glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
595        		 st_dst_reg dst, st_src_reg src0)
596{
597   assert(dst.writemask != 0);
598   return emit(ir, op, dst, src0, undef_src, undef_src);
599}
600
601glsl_to_tgsi_instruction *
602glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
603{
604   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
605}
606
607 /**
608 * Emits the code to convert the result of float SET instructions to integers.
609 */
610void
611glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
612        		 st_dst_reg dst)
613{
614   if ((op == TGSI_OPCODE_SEQ ||
615        op == TGSI_OPCODE_SNE ||
616        op == TGSI_OPCODE_SGE ||
617        op == TGSI_OPCODE_SLT))
618   {
619      st_src_reg src = st_src_reg(dst);
620      src.negate = ~src.negate;
621      dst.type = GLSL_TYPE_FLOAT;
622      emit(ir, TGSI_OPCODE_F2I, dst, src);
623   }
624}
625
626/**
627 * Determines whether to use an integer, unsigned integer, or float opcode
628 * based on the operands and input opcode, then emits the result.
629 */
630unsigned
631glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
632        		 st_dst_reg dst,
633        		 st_src_reg src0, st_src_reg src1)
634{
635   int type = GLSL_TYPE_FLOAT;
636
637   if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
638      type = GLSL_TYPE_FLOAT;
639   else if (native_integers)
640      type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
641
642#define case4(c, f, i, u) \
643   case TGSI_OPCODE_##c: \
644      if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
645      else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
646      else op = TGSI_OPCODE_##f; \
647      break;
648#define case3(f, i, u)  case4(f, f, i, u)
649#define case2fi(f, i)   case4(f, f, i, i)
650#define case2iu(i, u)   case4(i, LAST, i, u)
651
652   switch(op) {
653      case2fi(ADD, UADD);
654      case2fi(MUL, UMUL);
655      case2fi(MAD, UMAD);
656      case3(DIV, IDIV, UDIV);
657      case3(MAX, IMAX, UMAX);
658      case3(MIN, IMIN, UMIN);
659      case2iu(MOD, UMOD);
660
661      case2fi(SEQ, USEQ);
662      case2fi(SNE, USNE);
663      case3(SGE, ISGE, USGE);
664      case3(SLT, ISLT, USLT);
665
666      case2iu(ISHR, USHR);
667
668      default: break;
669   }
670
671   assert(op != TGSI_OPCODE_LAST);
672   return op;
673}
674
675glsl_to_tgsi_instruction *
676glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
677        		    st_dst_reg dst, st_src_reg src0, st_src_reg src1,
678        		    unsigned elements)
679{
680   static const unsigned dot_opcodes[] = {
681      TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
682   };
683
684   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
685}
686
687/**
688 * Emits TGSI scalar opcodes to produce unique answers across channels.
689 *
690 * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
691 * channel determines the result across all channels.  So to do a vec4
692 * of this operation, we want to emit a scalar per source channel used
693 * to produce dest channels.
694 */
695void
696glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
697        		        st_dst_reg dst,
698        			st_src_reg orig_src0, st_src_reg orig_src1)
699{
700   int i, j;
701   int done_mask = ~dst.writemask;
702
703   /* TGSI RCP is a scalar operation splatting results to all channels,
704    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
705    * dst channels.
706    */
707   for (i = 0; i < 4; i++) {
708      GLuint this_mask = (1 << i);
709      glsl_to_tgsi_instruction *inst;
710      st_src_reg src0 = orig_src0;
711      st_src_reg src1 = orig_src1;
712
713      if (done_mask & this_mask)
714         continue;
715
716      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
717      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
718      for (j = i + 1; j < 4; j++) {
719         /* If there is another enabled component in the destination that is
720          * derived from the same inputs, generate its value on this pass as
721          * well.
722          */
723         if (!(done_mask & (1 << j)) &&
724             GET_SWZ(src0.swizzle, j) == src0_swiz &&
725             GET_SWZ(src1.swizzle, j) == src1_swiz) {
726            this_mask |= (1 << j);
727         }
728      }
729      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
730        			   src0_swiz, src0_swiz);
731      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
732        			  src1_swiz, src1_swiz);
733
734      inst = emit(ir, op, dst, src0, src1);
735      inst->dst.writemask = this_mask;
736      done_mask |= this_mask;
737   }
738}
739
740void
741glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
742        		        st_dst_reg dst, st_src_reg src0)
743{
744   st_src_reg undef = undef_src;
745
746   undef.swizzle = SWIZZLE_XXXX;
747
748   emit_scalar(ir, op, dst, src0, undef);
749}
750
751void
752glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
753        		        st_dst_reg dst, st_src_reg src0)
754{
755   int op = TGSI_OPCODE_ARL;
756
757   if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
758      op = TGSI_OPCODE_UARL;
759
760   emit(NULL, op, dst, src0);
761}
762
763/**
764 * Emit an TGSI_OPCODE_SCS instruction
765 *
766 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
767 * Instead of splatting its result across all four components of the
768 * destination, it writes one value to the \c x component and another value to
769 * the \c y component.
770 *
771 * \param ir        IR instruction being processed
772 * \param op        Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
773 *                  on which value is desired.
774 * \param dst       Destination register
775 * \param src       Source register
776 */
777void
778glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
779        		     st_dst_reg dst,
780        		     const st_src_reg &src)
781{
782   /* Vertex programs cannot use the SCS opcode.
783    */
784   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
785      emit_scalar(ir, op, dst, src);
786      return;
787   }
788
789   const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
790   const unsigned scs_mask = (1U << component);
791   int done_mask = ~dst.writemask;
792   st_src_reg tmp;
793
794   assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
795
796   /* If there are compnents in the destination that differ from the component
797    * that will be written by the SCS instrution, we'll need a temporary.
798    */
799   if (scs_mask != unsigned(dst.writemask)) {
800      tmp = get_temp(glsl_type::vec4_type);
801   }
802
803   for (unsigned i = 0; i < 4; i++) {
804      unsigned this_mask = (1U << i);
805      st_src_reg src0 = src;
806
807      if ((done_mask & this_mask) != 0)
808         continue;
809
810      /* The source swizzle specified which component of the source generates
811       * sine / cosine for the current component in the destination.  The SCS
812       * instruction requires that this value be swizzle to the X component.
813       * Replace the current swizzle with a swizzle that puts the source in
814       * the X component.
815       */
816      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
817
818      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
819        			   src0_swiz, src0_swiz);
820      for (unsigned j = i + 1; j < 4; j++) {
821         /* If there is another enabled component in the destination that is
822          * derived from the same inputs, generate its value on this pass as
823          * well.
824          */
825         if (!(done_mask & (1 << j)) &&
826             GET_SWZ(src0.swizzle, j) == src0_swiz) {
827            this_mask |= (1 << j);
828         }
829      }
830
831      if (this_mask != scs_mask) {
832         glsl_to_tgsi_instruction *inst;
833         st_dst_reg tmp_dst = st_dst_reg(tmp);
834
835         /* Emit the SCS instruction.
836          */
837         inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
838         inst->dst.writemask = scs_mask;
839
840         /* Move the result of the SCS instruction to the desired location in
841          * the destination.
842          */
843         tmp.swizzle = MAKE_SWIZZLE4(component, component,
844        			     component, component);
845         inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
846         inst->dst.writemask = this_mask;
847      } else {
848         /* Emit the SCS instruction to write directly to the destination.
849          */
850         glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
851         inst->dst.writemask = scs_mask;
852      }
853
854      done_mask |= this_mask;
855   }
856}
857
858int
859glsl_to_tgsi_visitor::add_constant(gl_register_file file,
860        		     gl_constant_value values[4], int size, int datatype,
861        		     GLuint *swizzle_out)
862{
863   if (file == PROGRAM_CONSTANT) {
864      return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
865                                              size, datatype, swizzle_out);
866   } else {
867      int index = 0;
868      immediate_storage *entry;
869      assert(file == PROGRAM_IMMEDIATE);
870
871      /* Search immediate storage to see if we already have an identical
872       * immediate that we can use instead of adding a duplicate entry.
873       */
874      foreach_iter(exec_list_iterator, iter, this->immediates) {
875         entry = (immediate_storage *)iter.get();
876
877         if (entry->size == size &&
878             entry->type == datatype &&
879             !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
880             return index;
881         }
882         index++;
883      }
884
885      /* Add this immediate to the list. */
886      entry = new(mem_ctx) immediate_storage(values, size, datatype);
887      this->immediates.push_tail(entry);
888      this->num_immediates++;
889      return index;
890   }
891}
892
893st_src_reg
894glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
895{
896   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
897   union gl_constant_value uval;
898
899   uval.f = val;
900   src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
901
902   return src;
903}
904
905st_src_reg
906glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
907{
908   st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
909   union gl_constant_value uval;
910
911   assert(native_integers);
912
913   uval.i = val;
914   src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
915
916   return src;
917}
918
919st_src_reg
920glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
921{
922   if (native_integers)
923      return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
924                                       st_src_reg_for_int(val);
925   else
926      return st_src_reg_for_float(val);
927}
928
929static int
930type_size(const struct glsl_type *type)
931{
932   unsigned int i;
933   int size;
934
935   switch (type->base_type) {
936   case GLSL_TYPE_UINT:
937   case GLSL_TYPE_INT:
938   case GLSL_TYPE_FLOAT:
939   case GLSL_TYPE_BOOL:
940      if (type->is_matrix()) {
941         return type->matrix_columns;
942      } else {
943         /* Regardless of size of vector, it gets a vec4. This is bad
944          * packing for things like floats, but otherwise arrays become a
945          * mess.  Hopefully a later pass over the code can pack scalars
946          * down if appropriate.
947          */
948         return 1;
949      }
950   case GLSL_TYPE_ARRAY:
951      assert(type->length > 0);
952      return type_size(type->fields.array) * type->length;
953   case GLSL_TYPE_STRUCT:
954      size = 0;
955      for (i = 0; i < type->length; i++) {
956         size += type_size(type->fields.structure[i].type);
957      }
958      return size;
959   case GLSL_TYPE_SAMPLER:
960      /* Samplers take up one slot in UNIFORMS[], but they're baked in
961       * at link time.
962       */
963      return 1;
964   default:
965      assert(0);
966      return 0;
967   }
968}
969
970/**
971 * In the initial pass of codegen, we assign temporary numbers to
972 * intermediate results.  (not SSA -- variable assignments will reuse
973 * storage).
974 */
975st_src_reg
976glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
977{
978   st_src_reg src;
979
980   src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
981   src.file = PROGRAM_TEMPORARY;
982   src.index = next_temp;
983   src.reladdr = NULL;
984   next_temp += type_size(type);
985
986   if (type->is_array() || type->is_record()) {
987      src.swizzle = SWIZZLE_NOOP;
988   } else {
989      src.swizzle = swizzle_for_size(type->vector_elements);
990   }
991   src.negate = 0;
992
993   return src;
994}
995
996variable_storage *
997glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
998{
999
1000   variable_storage *entry;
1001
1002   foreach_iter(exec_list_iterator, iter, this->variables) {
1003      entry = (variable_storage *)iter.get();
1004
1005      if (entry->var == var)
1006         return entry;
1007   }
1008
1009   return NULL;
1010}
1011
1012void
1013glsl_to_tgsi_visitor::visit(ir_variable *ir)
1014{
1015   if (strcmp(ir->name, "gl_FragCoord") == 0) {
1016      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1017
1018      fp->OriginUpperLeft = ir->origin_upper_left;
1019      fp->PixelCenterInteger = ir->pixel_center_integer;
1020   }
1021
1022   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1023      unsigned int i;
1024      const ir_state_slot *const slots = ir->state_slots;
1025      assert(ir->state_slots != NULL);
1026
1027      /* Check if this statevar's setup in the STATE file exactly
1028       * matches how we'll want to reference it as a
1029       * struct/array/whatever.  If not, then we need to move it into
1030       * temporary storage and hope that it'll get copy-propagated
1031       * out.
1032       */
1033      for (i = 0; i < ir->num_state_slots; i++) {
1034         if (slots[i].swizzle != SWIZZLE_XYZW) {
1035            break;
1036         }
1037      }
1038
1039      variable_storage *storage;
1040      st_dst_reg dst;
1041      if (i == ir->num_state_slots) {
1042         /* We'll set the index later. */
1043         storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1044         this->variables.push_tail(storage);
1045
1046         dst = undef_dst;
1047      } else {
1048         /* The variable_storage constructor allocates slots based on the size
1049          * of the type.  However, this had better match the number of state
1050          * elements that we're going to copy into the new temporary.
1051          */
1052         assert((int) ir->num_state_slots == type_size(ir->type));
1053
1054         storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1055        					 this->next_temp);
1056         this->variables.push_tail(storage);
1057         this->next_temp += type_size(ir->type);
1058
1059         dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1060               native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1061      }
1062
1063
1064      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1065         int index = _mesa_add_state_reference(this->prog->Parameters,
1066        				       (gl_state_index *)slots[i].tokens);
1067
1068         if (storage->file == PROGRAM_STATE_VAR) {
1069            if (storage->index == -1) {
1070               storage->index = index;
1071            } else {
1072               assert(index == storage->index + (int)i);
1073            }
1074         } else {
1075            st_src_reg src(PROGRAM_STATE_VAR, index,
1076                  native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1077            src.swizzle = slots[i].swizzle;
1078            emit(ir, TGSI_OPCODE_MOV, dst, src);
1079            /* even a float takes up a whole vec4 reg in a struct/array. */
1080            dst.index++;
1081         }
1082      }
1083
1084      if (storage->file == PROGRAM_TEMPORARY &&
1085          dst.index != storage->index + (int) ir->num_state_slots) {
1086         fail_link(this->shader_program,
1087        	   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1088        	   ir->name, dst.index - storage->index,
1089        	   type_size(ir->type));
1090      }
1091   }
1092}
1093
1094void
1095glsl_to_tgsi_visitor::visit(ir_loop *ir)
1096{
1097   ir_dereference_variable *counter = NULL;
1098
1099   if (ir->counter != NULL)
1100      counter = new(ir) ir_dereference_variable(ir->counter);
1101
1102   if (ir->from != NULL) {
1103      assert(ir->counter != NULL);
1104
1105      ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1106
1107      a->accept(this);
1108      delete a;
1109   }
1110
1111   emit(NULL, TGSI_OPCODE_BGNLOOP);
1112
1113   if (ir->to) {
1114      ir_expression *e =
1115         new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1116        		       counter, ir->to);
1117      ir_if *if_stmt =  new(ir) ir_if(e);
1118
1119      ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1120
1121      if_stmt->then_instructions.push_tail(brk);
1122
1123      if_stmt->accept(this);
1124
1125      delete if_stmt;
1126      delete e;
1127      delete brk;
1128   }
1129
1130   visit_exec_list(&ir->body_instructions, this);
1131
1132   if (ir->increment) {
1133      ir_expression *e =
1134         new(ir) ir_expression(ir_binop_add, counter->type,
1135        		       counter, ir->increment);
1136
1137      ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1138
1139      a->accept(this);
1140      delete a;
1141      delete e;
1142   }
1143
1144   emit(NULL, TGSI_OPCODE_ENDLOOP);
1145}
1146
1147void
1148glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1149{
1150   switch (ir->mode) {
1151   case ir_loop_jump::jump_break:
1152      emit(NULL, TGSI_OPCODE_BRK);
1153      break;
1154   case ir_loop_jump::jump_continue:
1155      emit(NULL, TGSI_OPCODE_CONT);
1156      break;
1157   }
1158}
1159
1160
1161void
1162glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1163{
1164   assert(0);
1165   (void)ir;
1166}
1167
1168void
1169glsl_to_tgsi_visitor::visit(ir_function *ir)
1170{
1171   /* Ignore function bodies other than main() -- we shouldn't see calls to
1172    * them since they should all be inlined before we get to glsl_to_tgsi.
1173    */
1174   if (strcmp(ir->name, "main") == 0) {
1175      const ir_function_signature *sig;
1176      exec_list empty;
1177
1178      sig = ir->matching_signature(&empty);
1179
1180      assert(sig);
1181
1182      foreach_iter(exec_list_iterator, iter, sig->body) {
1183         ir_instruction *ir = (ir_instruction *)iter.get();
1184
1185         ir->accept(this);
1186      }
1187   }
1188}
1189
1190bool
1191glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1192{
1193   int nonmul_operand = 1 - mul_operand;
1194   st_src_reg a, b, c;
1195   st_dst_reg result_dst;
1196
1197   ir_expression *expr = ir->operands[mul_operand]->as_expression();
1198   if (!expr || expr->operation != ir_binop_mul)
1199      return false;
1200
1201   expr->operands[0]->accept(this);
1202   a = this->result;
1203   expr->operands[1]->accept(this);
1204   b = this->result;
1205   ir->operands[nonmul_operand]->accept(this);
1206   c = this->result;
1207
1208   this->result = get_temp(ir->type);
1209   result_dst = st_dst_reg(this->result);
1210   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1211   emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1212
1213   return true;
1214}
1215
1216/**
1217 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1218 *
1219 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1220 * implemented using multiplication, and logical-or is implemented using
1221 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1222 * As result, the logical expression (a & !b) can be rewritten as:
1223 *
1224 *     - a * !b
1225 *     - a * (1 - b)
1226 *     - (a * 1) - (a * b)
1227 *     - a + -(a * b)
1228 *     - a + (a * -b)
1229 *
1230 * This final expression can be implemented as a single MAD(a, -b, a)
1231 * instruction.
1232 */
1233bool
1234glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1235{
1236   const int other_operand = 1 - try_operand;
1237   st_src_reg a, b;
1238
1239   ir_expression *expr = ir->operands[try_operand]->as_expression();
1240   if (!expr || expr->operation != ir_unop_logic_not)
1241      return false;
1242
1243   ir->operands[other_operand]->accept(this);
1244   a = this->result;
1245   expr->operands[0]->accept(this);
1246   b = this->result;
1247
1248   b.negate = ~b.negate;
1249
1250   this->result = get_temp(ir->type);
1251   emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1252
1253   return true;
1254}
1255
1256bool
1257glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1258{
1259   /* Saturates were only introduced to vertex programs in
1260    * NV_vertex_program3, so don't give them to drivers in the VP.
1261    */
1262   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1263      return false;
1264
1265   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1266   if (!sat_src)
1267      return false;
1268
1269   sat_src->accept(this);
1270   st_src_reg src = this->result;
1271
1272   /* If we generated an expression instruction into a temporary in
1273    * processing the saturate's operand, apply the saturate to that
1274    * instruction.  Otherwise, generate a MOV to do the saturate.
1275    *
1276    * Note that we have to be careful to only do this optimization if
1277    * the instruction in question was what generated src->result.  For
1278    * example, ir_dereference_array might generate a MUL instruction
1279    * to create the reladdr, and return us a src reg using that
1280    * reladdr.  That MUL result is not the value we're trying to
1281    * saturate.
1282    */
1283   ir_expression *sat_src_expr = sat_src->as_expression();
1284   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1285			sat_src_expr->operation == ir_binop_add ||
1286			sat_src_expr->operation == ir_binop_dot)) {
1287      glsl_to_tgsi_instruction *new_inst;
1288      new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1289      new_inst->saturate = true;
1290   } else {
1291      this->result = get_temp(ir->type);
1292      st_dst_reg result_dst = st_dst_reg(this->result);
1293      result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1294      glsl_to_tgsi_instruction *inst;
1295      inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1296      inst->saturate = true;
1297   }
1298
1299   return true;
1300}
1301
1302void
1303glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1304        			    st_src_reg *reg, int *num_reladdr)
1305{
1306   if (!reg->reladdr)
1307      return;
1308
1309   emit_arl(ir, address_reg, *reg->reladdr);
1310
1311   if (*num_reladdr != 1) {
1312      st_src_reg temp = get_temp(glsl_type::vec4_type);
1313
1314      emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1315      *reg = temp;
1316   }
1317
1318   (*num_reladdr)--;
1319}
1320
1321void
1322glsl_to_tgsi_visitor::visit(ir_expression *ir)
1323{
1324   unsigned int operand;
1325   st_src_reg op[Elements(ir->operands)];
1326   st_src_reg result_src;
1327   st_dst_reg result_dst;
1328
1329   /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1330    */
1331   if (ir->operation == ir_binop_add) {
1332      if (try_emit_mad(ir, 1))
1333         return;
1334      if (try_emit_mad(ir, 0))
1335         return;
1336   }
1337
1338   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1339    */
1340   if (ir->operation == ir_binop_logic_and) {
1341      if (try_emit_mad_for_and_not(ir, 1))
1342	 return;
1343      if (try_emit_mad_for_and_not(ir, 0))
1344	 return;
1345   }
1346
1347   if (try_emit_sat(ir))
1348      return;
1349
1350   if (ir->operation == ir_quadop_vector)
1351      assert(!"ir_quadop_vector should have been lowered");
1352
1353   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1354      this->result.file = PROGRAM_UNDEFINED;
1355      ir->operands[operand]->accept(this);
1356      if (this->result.file == PROGRAM_UNDEFINED) {
1357         ir_print_visitor v;
1358         printf("Failed to get tree for expression operand:\n");
1359         ir->operands[operand]->accept(&v);
1360         exit(1);
1361      }
1362      op[operand] = this->result;
1363
1364      /* Matrix expression operands should have been broken down to vector
1365       * operations already.
1366       */
1367      assert(!ir->operands[operand]->type->is_matrix());
1368   }
1369
1370   int vector_elements = ir->operands[0]->type->vector_elements;
1371   if (ir->operands[1]) {
1372      vector_elements = MAX2(vector_elements,
1373        		     ir->operands[1]->type->vector_elements);
1374   }
1375
1376   this->result.file = PROGRAM_UNDEFINED;
1377
1378   /* Storage for our result.  Ideally for an assignment we'd be using
1379    * the actual storage for the result here, instead.
1380    */
1381   result_src = get_temp(ir->type);
1382   /* convenience for the emit functions below. */
1383   result_dst = st_dst_reg(result_src);
1384   /* Limit writes to the channels that will be used by result_src later.
1385    * This does limit this temp's use as a temporary for multi-instruction
1386    * sequences.
1387    */
1388   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1389
1390   switch (ir->operation) {
1391   case ir_unop_logic_not:
1392      if (result_dst.type != GLSL_TYPE_FLOAT)
1393         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1394      else {
1395         /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1396          * older GPUs implement SEQ using multiple instructions (i915 uses two
1397          * SGE instructions and a MUL instruction).  Since our logic values are
1398          * 0.0 and 1.0, 1-x also implements !x.
1399          */
1400         op[0].negate = ~op[0].negate;
1401         emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1402      }
1403      break;
1404   case ir_unop_neg:
1405      assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1406      if (result_dst.type == GLSL_TYPE_INT)
1407         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1408      else {
1409         op[0].negate = ~op[0].negate;
1410         result_src = op[0];
1411      }
1412      break;
1413   case ir_unop_abs:
1414      assert(result_dst.type == GLSL_TYPE_FLOAT);
1415      emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1416      break;
1417   case ir_unop_sign:
1418      emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1419      break;
1420   case ir_unop_rcp:
1421      emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1422      break;
1423
1424   case ir_unop_exp2:
1425      emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1426      break;
1427   case ir_unop_exp:
1428   case ir_unop_log:
1429      assert(!"not reached: should be handled by ir_explog_to_explog2");
1430      break;
1431   case ir_unop_log2:
1432      emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1433      break;
1434   case ir_unop_sin:
1435      emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1436      break;
1437   case ir_unop_cos:
1438      emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1439      break;
1440   case ir_unop_sin_reduced:
1441      emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1442      break;
1443   case ir_unop_cos_reduced:
1444      emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1445      break;
1446
1447   case ir_unop_dFdx:
1448      emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1449      break;
1450   case ir_unop_dFdy:
1451      op[0].negate = ~op[0].negate;
1452      emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1453      break;
1454
1455   case ir_unop_noise: {
1456      /* At some point, a motivated person could add a better
1457       * implementation of noise.  Currently not even the nvidia
1458       * binary drivers do anything more than this.  In any case, the
1459       * place to do this is in the GL state tracker, not the poor
1460       * driver.
1461       */
1462      emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1463      break;
1464   }
1465
1466   case ir_binop_add:
1467      emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1468      break;
1469   case ir_binop_sub:
1470      emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1471      break;
1472
1473   case ir_binop_mul:
1474      emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1475      break;
1476   case ir_binop_div:
1477      if (result_dst.type == GLSL_TYPE_FLOAT)
1478         assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1479      else
1480         emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1481      break;
1482   case ir_binop_mod:
1483      if (result_dst.type == GLSL_TYPE_FLOAT)
1484         assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1485      else
1486         emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1487      break;
1488
1489   case ir_binop_less:
1490      emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1491      break;
1492   case ir_binop_greater:
1493      emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1494      break;
1495   case ir_binop_lequal:
1496      emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1497      break;
1498   case ir_binop_gequal:
1499      emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1500      break;
1501   case ir_binop_equal:
1502      emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1503      break;
1504   case ir_binop_nequal:
1505      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1506      break;
1507   case ir_binop_all_equal:
1508      /* "==" operator producing a scalar boolean. */
1509      if (ir->operands[0]->type->is_vector() ||
1510          ir->operands[1]->type->is_vector()) {
1511         st_src_reg temp = get_temp(native_integers ?
1512               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1513               glsl_type::vec4_type);
1514
1515         if (native_integers) {
1516            st_dst_reg temp_dst = st_dst_reg(temp);
1517            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1518
1519            emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1520
1521            /* Emit 1-3 AND operations to combine the SEQ results. */
1522            switch (ir->operands[0]->type->vector_elements) {
1523            case 2:
1524               break;
1525            case 3:
1526               temp_dst.writemask = WRITEMASK_Y;
1527               temp1.swizzle = SWIZZLE_YYYY;
1528               temp2.swizzle = SWIZZLE_ZZZZ;
1529               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1530               break;
1531            case 4:
1532               temp_dst.writemask = WRITEMASK_X;
1533               temp1.swizzle = SWIZZLE_XXXX;
1534               temp2.swizzle = SWIZZLE_YYYY;
1535               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1536               temp_dst.writemask = WRITEMASK_Y;
1537               temp1.swizzle = SWIZZLE_ZZZZ;
1538               temp2.swizzle = SWIZZLE_WWWW;
1539               emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1540            }
1541
1542            temp1.swizzle = SWIZZLE_XXXX;
1543            temp2.swizzle = SWIZZLE_YYYY;
1544            emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1545         } else {
1546            emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1547
1548            /* After the dot-product, the value will be an integer on the
1549             * range [0,4].  Zero becomes 1.0, and positive values become zero.
1550             */
1551            emit_dp(ir, result_dst, temp, temp, vector_elements);
1552
1553            /* Negating the result of the dot-product gives values on the range
1554             * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1555             * This is achieved using SGE.
1556             */
1557            st_src_reg sge_src = result_src;
1558            sge_src.negate = ~sge_src.negate;
1559            emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1560         }
1561      } else {
1562         emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1563      }
1564      break;
1565   case ir_binop_any_nequal:
1566      /* "!=" operator producing a scalar boolean. */
1567      if (ir->operands[0]->type->is_vector() ||
1568          ir->operands[1]->type->is_vector()) {
1569         st_src_reg temp = get_temp(native_integers ?
1570               glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1571               glsl_type::vec4_type);
1572         emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1573
1574         if (native_integers) {
1575            st_dst_reg temp_dst = st_dst_reg(temp);
1576            st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1577
1578            /* Emit 1-3 OR operations to combine the SNE results. */
1579            switch (ir->operands[0]->type->vector_elements) {
1580            case 2:
1581               break;
1582            case 3:
1583               temp_dst.writemask = WRITEMASK_Y;
1584               temp1.swizzle = SWIZZLE_YYYY;
1585               temp2.swizzle = SWIZZLE_ZZZZ;
1586               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1587               break;
1588            case 4:
1589               temp_dst.writemask = WRITEMASK_X;
1590               temp1.swizzle = SWIZZLE_XXXX;
1591               temp2.swizzle = SWIZZLE_YYYY;
1592               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1593               temp_dst.writemask = WRITEMASK_Y;
1594               temp1.swizzle = SWIZZLE_ZZZZ;
1595               temp2.swizzle = SWIZZLE_WWWW;
1596               emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1597            }
1598
1599            temp1.swizzle = SWIZZLE_XXXX;
1600            temp2.swizzle = SWIZZLE_YYYY;
1601            emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1602         } else {
1603            /* After the dot-product, the value will be an integer on the
1604             * range [0,4].  Zero stays zero, and positive values become 1.0.
1605             */
1606            glsl_to_tgsi_instruction *const dp =
1607                  emit_dp(ir, result_dst, temp, temp, vector_elements);
1608            if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1609               /* The clamping to [0,1] can be done for free in the fragment
1610                * shader with a saturate.
1611                */
1612               dp->saturate = true;
1613            } else {
1614               /* Negating the result of the dot-product gives values on the range
1615                * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1616                * achieved using SLT.
1617                */
1618               st_src_reg slt_src = result_src;
1619               slt_src.negate = ~slt_src.negate;
1620               emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1621            }
1622         }
1623      } else {
1624         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1625      }
1626      break;
1627
1628   case ir_unop_any: {
1629      assert(ir->operands[0]->type->is_vector());
1630
1631      /* After the dot-product, the value will be an integer on the
1632       * range [0,4].  Zero stays zero, and positive values become 1.0.
1633       */
1634      glsl_to_tgsi_instruction *const dp =
1635         emit_dp(ir, result_dst, op[0], op[0],
1636                 ir->operands[0]->type->vector_elements);
1637      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1638          result_dst.type == GLSL_TYPE_FLOAT) {
1639	      /* The clamping to [0,1] can be done for free in the fragment
1640	       * shader with a saturate.
1641	       */
1642	      dp->saturate = true;
1643      } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1644	      /* Negating the result of the dot-product gives values on the range
1645	       * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1646	       * is achieved using SLT.
1647	       */
1648	      st_src_reg slt_src = result_src;
1649	      slt_src.negate = ~slt_src.negate;
1650	      emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1651      }
1652      else {
1653         /* Use SNE 0 if integers are being used as boolean values. */
1654         emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1655      }
1656      break;
1657   }
1658
1659   case ir_binop_logic_xor:
1660      if (native_integers)
1661         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1662      else
1663         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1664      break;
1665
1666   case ir_binop_logic_or: {
1667      if (native_integers) {
1668         /* If integers are used as booleans, we can use an actual "or"
1669          * instruction.
1670          */
1671         assert(native_integers);
1672         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1673      } else {
1674         /* After the addition, the value will be an integer on the
1675          * range [0,2].  Zero stays zero, and positive values become 1.0.
1676          */
1677         glsl_to_tgsi_instruction *add =
1678            emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1679         if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1680            /* The clamping to [0,1] can be done for free in the fragment
1681             * shader with a saturate if floats are being used as boolean values.
1682             */
1683            add->saturate = true;
1684         } else {
1685            /* Negating the result of the addition gives values on the range
1686             * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1687             * is achieved using SLT.
1688             */
1689            st_src_reg slt_src = result_src;
1690            slt_src.negate = ~slt_src.negate;
1691            emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1692         }
1693      }
1694      break;
1695   }
1696
1697   case ir_binop_logic_and:
1698      /* If native integers are disabled, the bool args are stored as float 0.0
1699       * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1700       * actual AND opcode.
1701       */
1702      if (native_integers)
1703         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1704      else
1705         emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1706      break;
1707
1708   case ir_binop_dot:
1709      assert(ir->operands[0]->type->is_vector());
1710      assert(ir->operands[0]->type == ir->operands[1]->type);
1711      emit_dp(ir, result_dst, op[0], op[1],
1712              ir->operands[0]->type->vector_elements);
1713      break;
1714
1715   case ir_unop_sqrt:
1716      /* sqrt(x) = x * rsq(x). */
1717      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1718      emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1719      /* For incoming channels <= 0, set the result to 0. */
1720      op[0].negate = ~op[0].negate;
1721      emit(ir, TGSI_OPCODE_CMP, result_dst,
1722        		  op[0], result_src, st_src_reg_for_float(0.0));
1723      break;
1724   case ir_unop_rsq:
1725      emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1726      break;
1727   case ir_unop_i2f:
1728      if (native_integers) {
1729         emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1730         break;
1731      }
1732      /* fallthrough to next case otherwise */
1733   case ir_unop_b2f:
1734      if (native_integers) {
1735         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1736         break;
1737      }
1738      /* fallthrough to next case otherwise */
1739   case ir_unop_i2u:
1740   case ir_unop_u2i:
1741      /* Converting between signed and unsigned integers is a no-op. */
1742      result_src = op[0];
1743      break;
1744   case ir_unop_b2i:
1745      if (native_integers) {
1746         /* Booleans are stored as integers using ~0 for true and 0 for false.
1747          * GLSL requires that int(bool) return 1 for true and 0 for false.
1748          * This conversion is done with AND, but it could be done with NEG.
1749          */
1750         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1751      } else {
1752         /* Booleans and integers are both stored as floats when native
1753          * integers are disabled.
1754          */
1755         result_src = op[0];
1756      }
1757      break;
1758   case ir_unop_f2i:
1759      if (native_integers)
1760         emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1761      else
1762         emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1763      break;
1764   case ir_unop_f2b:
1765      emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1766      break;
1767   case ir_unop_i2b:
1768      if (native_integers)
1769         emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1770      else
1771         emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1772      break;
1773   case ir_unop_trunc:
1774      emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1775      break;
1776   case ir_unop_ceil:
1777      op[0].negate = ~op[0].negate;
1778      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1779      result_src.negate = ~result_src.negate;
1780      break;
1781   case ir_unop_floor:
1782      emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1783      break;
1784   case ir_unop_fract:
1785      emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1786      break;
1787
1788   case ir_binop_min:
1789      emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1790      break;
1791   case ir_binop_max:
1792      emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1793      break;
1794   case ir_binop_pow:
1795      emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1796      break;
1797
1798   case ir_unop_bit_not:
1799      if (native_integers) {
1800         emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1801         break;
1802      }
1803   case ir_unop_u2f:
1804      if (native_integers) {
1805         emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1806         break;
1807      }
1808   case ir_binop_lshift:
1809      if (native_integers) {
1810         emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1811         break;
1812      }
1813   case ir_binop_rshift:
1814      if (native_integers) {
1815         emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1816         break;
1817      }
1818   case ir_binop_bit_and:
1819      if (native_integers) {
1820         emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1821         break;
1822      }
1823   case ir_binop_bit_xor:
1824      if (native_integers) {
1825         emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1826         break;
1827      }
1828   case ir_binop_bit_or:
1829      if (native_integers) {
1830         emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1831         break;
1832      }
1833   case ir_unop_round_even:
1834      assert(!"GLSL 1.30 features unsupported");
1835      break;
1836
1837   case ir_quadop_vector:
1838      /* This operation should have already been handled.
1839       */
1840      assert(!"Should not get here.");
1841      break;
1842   }
1843
1844   this->result = result_src;
1845}
1846
1847
1848void
1849glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1850{
1851   st_src_reg src;
1852   int i;
1853   int swizzle[4];
1854
1855   /* Note that this is only swizzles in expressions, not those on the left
1856    * hand side of an assignment, which do write masking.  See ir_assignment
1857    * for that.
1858    */
1859
1860   ir->val->accept(this);
1861   src = this->result;
1862   assert(src.file != PROGRAM_UNDEFINED);
1863
1864   for (i = 0; i < 4; i++) {
1865      if (i < ir->type->vector_elements) {
1866         switch (i) {
1867         case 0:
1868            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1869            break;
1870         case 1:
1871            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1872            break;
1873         case 2:
1874            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1875            break;
1876         case 3:
1877            swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1878            break;
1879         }
1880      } else {
1881         /* If the type is smaller than a vec4, replicate the last
1882          * channel out.
1883          */
1884         swizzle[i] = swizzle[ir->type->vector_elements - 1];
1885      }
1886   }
1887
1888   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1889
1890   this->result = src;
1891}
1892
1893void
1894glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1895{
1896   variable_storage *entry = find_variable_storage(ir->var);
1897   ir_variable *var = ir->var;
1898
1899   if (!entry) {
1900      switch (var->mode) {
1901      case ir_var_uniform:
1902         entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1903        				       var->location);
1904         this->variables.push_tail(entry);
1905         break;
1906      case ir_var_in:
1907      case ir_var_inout:
1908         /* The linker assigns locations for varyings and attributes,
1909          * including deprecated builtins (like gl_Color), user-assign
1910          * generic attributes (glBindVertexLocation), and
1911          * user-defined varyings.
1912          *
1913          * FINISHME: We would hit this path for function arguments.  Fix!
1914          */
1915         assert(var->location != -1);
1916         entry = new(mem_ctx) variable_storage(var,
1917                                               PROGRAM_INPUT,
1918                                               var->location);
1919         break;
1920      case ir_var_out:
1921         assert(var->location != -1);
1922         entry = new(mem_ctx) variable_storage(var,
1923                                               PROGRAM_OUTPUT,
1924                                               var->location);
1925         break;
1926      case ir_var_system_value:
1927         entry = new(mem_ctx) variable_storage(var,
1928                                               PROGRAM_SYSTEM_VALUE,
1929                                               var->location);
1930         break;
1931      case ir_var_auto:
1932      case ir_var_temporary:
1933         entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1934        				       this->next_temp);
1935         this->variables.push_tail(entry);
1936
1937         next_temp += type_size(var->type);
1938         break;
1939      }
1940
1941      if (!entry) {
1942         printf("Failed to make storage for %s\n", var->name);
1943         exit(1);
1944      }
1945   }
1946
1947   this->result = st_src_reg(entry->file, entry->index, var->type);
1948   if (!native_integers)
1949      this->result.type = GLSL_TYPE_FLOAT;
1950}
1951
1952void
1953glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1954{
1955   ir_constant *index;
1956   st_src_reg src;
1957   int element_size = type_size(ir->type);
1958
1959   index = ir->array_index->constant_expression_value();
1960
1961   ir->array->accept(this);
1962   src = this->result;
1963
1964   if (index) {
1965      src.index += index->value.i[0] * element_size;
1966   } else {
1967      /* Variable index array dereference.  It eats the "vec4" of the
1968       * base of the array and an index that offsets the TGSI register
1969       * index.
1970       */
1971      ir->array_index->accept(this);
1972
1973      st_src_reg index_reg;
1974
1975      if (element_size == 1) {
1976         index_reg = this->result;
1977      } else {
1978         index_reg = get_temp(native_integers ?
1979                              glsl_type::int_type : glsl_type::float_type);
1980
1981         emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1982              this->result, st_src_reg_for_type(index_reg.type, element_size));
1983      }
1984
1985      /* If there was already a relative address register involved, add the
1986       * new and the old together to get the new offset.
1987       */
1988      if (src.reladdr != NULL) {
1989         st_src_reg accum_reg = get_temp(native_integers ?
1990                                glsl_type::int_type : glsl_type::float_type);
1991
1992         emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1993              index_reg, *src.reladdr);
1994
1995         index_reg = accum_reg;
1996      }
1997
1998      src.reladdr = ralloc(mem_ctx, st_src_reg);
1999      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2000   }
2001
2002   /* If the type is smaller than a vec4, replicate the last channel out. */
2003   if (ir->type->is_scalar() || ir->type->is_vector())
2004      src.swizzle = swizzle_for_size(ir->type->vector_elements);
2005   else
2006      src.swizzle = SWIZZLE_NOOP;
2007
2008   this->result = src;
2009}
2010
2011void
2012glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2013{
2014   unsigned int i;
2015   const glsl_type *struct_type = ir->record->type;
2016   int offset = 0;
2017
2018   ir->record->accept(this);
2019
2020   for (i = 0; i < struct_type->length; i++) {
2021      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2022         break;
2023      offset += type_size(struct_type->fields.structure[i].type);
2024   }
2025
2026   /* If the type is smaller than a vec4, replicate the last channel out. */
2027   if (ir->type->is_scalar() || ir->type->is_vector())
2028      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2029   else
2030      this->result.swizzle = SWIZZLE_NOOP;
2031
2032   this->result.index += offset;
2033}
2034
2035/**
2036 * We want to be careful in assignment setup to hit the actual storage
2037 * instead of potentially using a temporary like we might with the
2038 * ir_dereference handler.
2039 */
2040static st_dst_reg
2041get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2042{
2043   /* The LHS must be a dereference.  If the LHS is a variable indexed array
2044    * access of a vector, it must be separated into a series conditional moves
2045    * before reaching this point (see ir_vec_index_to_cond_assign).
2046    */
2047   assert(ir->as_dereference());
2048   ir_dereference_array *deref_array = ir->as_dereference_array();
2049   if (deref_array) {
2050      assert(!deref_array->array->type->is_vector());
2051   }
2052
2053   /* Use the rvalue deref handler for the most part.  We'll ignore
2054    * swizzles in it and write swizzles using writemask, though.
2055    */
2056   ir->accept(v);
2057   return st_dst_reg(v->result);
2058}
2059
2060/**
2061 * Process the condition of a conditional assignment
2062 *
2063 * Examines the condition of a conditional assignment to generate the optimal
2064 * first operand of a \c CMP instruction.  If the condition is a relational
2065 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2066 * used as the source for the \c CMP instruction.  Otherwise the comparison
2067 * is processed to a boolean result, and the boolean result is used as the
2068 * operand to the CMP instruction.
2069 */
2070bool
2071glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2072{
2073   ir_rvalue *src_ir = ir;
2074   bool negate = true;
2075   bool switch_order = false;
2076
2077   ir_expression *const expr = ir->as_expression();
2078   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2079      bool zero_on_left = false;
2080
2081      if (expr->operands[0]->is_zero()) {
2082         src_ir = expr->operands[1];
2083         zero_on_left = true;
2084      } else if (expr->operands[1]->is_zero()) {
2085         src_ir = expr->operands[0];
2086         zero_on_left = false;
2087      }
2088
2089      /*      a is -  0  +            -  0  +
2090       * (a <  0)  T  F  F  ( a < 0)  T  F  F
2091       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2092       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2093       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2094       * (a >  0)  F  F  T  (-a < 0)  F  F  T
2095       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
2096       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2097       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2098       *
2099       * Note that exchanging the order of 0 and 'a' in the comparison simply
2100       * means that the value of 'a' should be negated.
2101       */
2102      if (src_ir != ir) {
2103         switch (expr->operation) {
2104         case ir_binop_less:
2105            switch_order = false;
2106            negate = zero_on_left;
2107            break;
2108
2109         case ir_binop_greater:
2110            switch_order = false;
2111            negate = !zero_on_left;
2112            break;
2113
2114         case ir_binop_lequal:
2115            switch_order = true;
2116            negate = !zero_on_left;
2117            break;
2118
2119         case ir_binop_gequal:
2120            switch_order = true;
2121            negate = zero_on_left;
2122            break;
2123
2124         default:
2125            /* This isn't the right kind of comparison afterall, so make sure
2126             * the whole condition is visited.
2127             */
2128            src_ir = ir;
2129            break;
2130         }
2131      }
2132   }
2133
2134   src_ir->accept(this);
2135
2136   /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2137    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
2138    * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2139    * computing the condition.
2140    */
2141   if (negate)
2142      this->result.negate = ~this->result.negate;
2143
2144   return switch_order;
2145}
2146
2147void
2148glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2149{
2150   st_dst_reg l;
2151   st_src_reg r;
2152   int i;
2153
2154   ir->rhs->accept(this);
2155   r = this->result;
2156
2157   l = get_assignment_lhs(ir->lhs, this);
2158
2159   /* FINISHME: This should really set to the correct maximal writemask for each
2160    * FINISHME: component written (in the loops below).  This case can only
2161    * FINISHME: occur for matrices, arrays, and structures.
2162    */
2163   if (ir->write_mask == 0) {
2164      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2165      l.writemask = WRITEMASK_XYZW;
2166   } else if (ir->lhs->type->is_scalar() &&
2167              ir->lhs->variable_referenced()->mode == ir_var_out) {
2168      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2169       * FINISHME: W component of fragment shader output zero, work correctly.
2170       */
2171      l.writemask = WRITEMASK_XYZW;
2172   } else {
2173      int swizzles[4];
2174      int first_enabled_chan = 0;
2175      int rhs_chan = 0;
2176
2177      l.writemask = ir->write_mask;
2178
2179      for (int i = 0; i < 4; i++) {
2180         if (l.writemask & (1 << i)) {
2181            first_enabled_chan = GET_SWZ(r.swizzle, i);
2182            break;
2183         }
2184      }
2185
2186      /* Swizzle a small RHS vector into the channels being written.
2187       *
2188       * glsl ir treats write_mask as dictating how many channels are
2189       * present on the RHS while TGSI treats write_mask as just
2190       * showing which channels of the vec4 RHS get written.
2191       */
2192      for (int i = 0; i < 4; i++) {
2193         if (l.writemask & (1 << i))
2194            swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2195         else
2196            swizzles[i] = first_enabled_chan;
2197      }
2198      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2199        			swizzles[2], swizzles[3]);
2200   }
2201
2202   assert(l.file != PROGRAM_UNDEFINED);
2203   assert(r.file != PROGRAM_UNDEFINED);
2204
2205   if (ir->condition) {
2206      const bool switch_order = this->process_move_condition(ir->condition);
2207      st_src_reg condition = this->result;
2208
2209      for (i = 0; i < type_size(ir->lhs->type); i++) {
2210         st_src_reg l_src = st_src_reg(l);
2211         st_src_reg condition_temp = condition;
2212         l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2213
2214         if (native_integers) {
2215            /* This is necessary because TGSI's CMP instruction expects the
2216             * condition to be a float, and we store booleans as integers.
2217             * If TGSI had a UCMP instruction or similar, this extra
2218             * instruction would not be necessary.
2219             */
2220            condition_temp = get_temp(glsl_type::vec4_type);
2221            condition.negate = 0;
2222            emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2223            condition_temp.swizzle = condition.swizzle;
2224         }
2225
2226         if (switch_order) {
2227            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2228         } else {
2229            emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2230         }
2231
2232         l.index++;
2233         r.index++;
2234      }
2235   } else if (ir->rhs->as_expression() &&
2236              this->instructions.get_tail() &&
2237              ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2238              type_size(ir->lhs->type) == 1 &&
2239              l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2240      /* To avoid emitting an extra MOV when assigning an expression to a
2241       * variable, emit the last instruction of the expression again, but
2242       * replace the destination register with the target of the assignment.
2243       * Dead code elimination will remove the original instruction.
2244       */
2245      glsl_to_tgsi_instruction *inst, *new_inst;
2246      inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2247      new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2248      new_inst->saturate = inst->saturate;
2249      inst->dead_mask = inst->dst.writemask;
2250   } else {
2251      for (i = 0; i < type_size(ir->lhs->type); i++) {
2252         emit(ir, TGSI_OPCODE_MOV, l, r);
2253         l.index++;
2254         r.index++;
2255      }
2256   }
2257}
2258
2259
2260void
2261glsl_to_tgsi_visitor::visit(ir_constant *ir)
2262{
2263   st_src_reg src;
2264   GLfloat stack_vals[4] = { 0 };
2265   gl_constant_value *values = (gl_constant_value *) stack_vals;
2266   GLenum gl_type = GL_NONE;
2267   unsigned int i;
2268   static int in_array = 0;
2269   gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2270
2271   /* Unfortunately, 4 floats is all we can get into
2272    * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
2273    * aggregate constant and move each constant value into it.  If we
2274    * get lucky, copy propagation will eliminate the extra moves.
2275    */
2276   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2277      st_src_reg temp_base = get_temp(ir->type);
2278      st_dst_reg temp = st_dst_reg(temp_base);
2279
2280      foreach_iter(exec_list_iterator, iter, ir->components) {
2281         ir_constant *field_value = (ir_constant *)iter.get();
2282         int size = type_size(field_value->type);
2283
2284         assert(size > 0);
2285
2286         field_value->accept(this);
2287         src = this->result;
2288
2289         for (i = 0; i < (unsigned int)size; i++) {
2290            emit(ir, TGSI_OPCODE_MOV, temp, src);
2291
2292            src.index++;
2293            temp.index++;
2294         }
2295      }
2296      this->result = temp_base;
2297      return;
2298   }
2299
2300   if (ir->type->is_array()) {
2301      st_src_reg temp_base = get_temp(ir->type);
2302      st_dst_reg temp = st_dst_reg(temp_base);
2303      int size = type_size(ir->type->fields.array);
2304
2305      assert(size > 0);
2306      in_array++;
2307
2308      for (i = 0; i < ir->type->length; i++) {
2309         ir->array_elements[i]->accept(this);
2310         src = this->result;
2311         for (int j = 0; j < size; j++) {
2312            emit(ir, TGSI_OPCODE_MOV, temp, src);
2313
2314            src.index++;
2315            temp.index++;
2316         }
2317      }
2318      this->result = temp_base;
2319      in_array--;
2320      return;
2321   }
2322
2323   if (ir->type->is_matrix()) {
2324      st_src_reg mat = get_temp(ir->type);
2325      st_dst_reg mat_column = st_dst_reg(mat);
2326
2327      for (i = 0; i < ir->type->matrix_columns; i++) {
2328         assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2329         values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2330
2331         src = st_src_reg(file, -1, ir->type->base_type);
2332         src.index = add_constant(file,
2333                                  values,
2334                                  ir->type->vector_elements,
2335                                  GL_FLOAT,
2336                                  &src.swizzle);
2337         emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2338
2339         mat_column.index++;
2340      }
2341
2342      this->result = mat;
2343      return;
2344   }
2345
2346   switch (ir->type->base_type) {
2347   case GLSL_TYPE_FLOAT:
2348      gl_type = GL_FLOAT;
2349      for (i = 0; i < ir->type->vector_elements; i++) {
2350         values[i].f = ir->value.f[i];
2351      }
2352      break;
2353   case GLSL_TYPE_UINT:
2354      gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2355      for (i = 0; i < ir->type->vector_elements; i++) {
2356         if (native_integers)
2357            values[i].u = ir->value.u[i];
2358         else
2359            values[i].f = ir->value.u[i];
2360      }
2361      break;
2362   case GLSL_TYPE_INT:
2363      gl_type = native_integers ? GL_INT : GL_FLOAT;
2364      for (i = 0; i < ir->type->vector_elements; i++) {
2365         if (native_integers)
2366            values[i].i = ir->value.i[i];
2367         else
2368            values[i].f = ir->value.i[i];
2369      }
2370      break;
2371   case GLSL_TYPE_BOOL:
2372      gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2373      for (i = 0; i < ir->type->vector_elements; i++) {
2374         if (native_integers)
2375            values[i].b = ir->value.b[i];
2376         else
2377            values[i].f = ir->value.b[i];
2378      }
2379      break;
2380   default:
2381      assert(!"Non-float/uint/int/bool constant");
2382   }
2383
2384   this->result = st_src_reg(file, -1, ir->type);
2385   this->result.index = add_constant(file,
2386                                     values,
2387                                     ir->type->vector_elements,
2388                                     gl_type,
2389                                     &this->result.swizzle);
2390}
2391
2392function_entry *
2393glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2394{
2395   function_entry *entry;
2396
2397   foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2398      entry = (function_entry *)iter.get();
2399
2400      if (entry->sig == sig)
2401         return entry;
2402   }
2403
2404   entry = ralloc(mem_ctx, function_entry);
2405   entry->sig = sig;
2406   entry->sig_id = this->next_signature_id++;
2407   entry->bgn_inst = NULL;
2408
2409   /* Allocate storage for all the parameters. */
2410   foreach_iter(exec_list_iterator, iter, sig->parameters) {
2411      ir_variable *param = (ir_variable *)iter.get();
2412      variable_storage *storage;
2413
2414      storage = find_variable_storage(param);
2415      assert(!storage);
2416
2417      storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2418        				      this->next_temp);
2419      this->variables.push_tail(storage);
2420
2421      this->next_temp += type_size(param->type);
2422   }
2423
2424   if (!sig->return_type->is_void()) {
2425      entry->return_reg = get_temp(sig->return_type);
2426   } else {
2427      entry->return_reg = undef_src;
2428   }
2429
2430   this->function_signatures.push_tail(entry);
2431   return entry;
2432}
2433
2434void
2435glsl_to_tgsi_visitor::visit(ir_call *ir)
2436{
2437   glsl_to_tgsi_instruction *call_inst;
2438   ir_function_signature *sig = ir->get_callee();
2439   function_entry *entry = get_function_signature(sig);
2440   int i;
2441
2442   /* Process in parameters. */
2443   exec_list_iterator sig_iter = sig->parameters.iterator();
2444   foreach_iter(exec_list_iterator, iter, *ir) {
2445      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2446      ir_variable *param = (ir_variable *)sig_iter.get();
2447
2448      if (param->mode == ir_var_in ||
2449          param->mode == ir_var_inout) {
2450         variable_storage *storage = find_variable_storage(param);
2451         assert(storage);
2452
2453         param_rval->accept(this);
2454         st_src_reg r = this->result;
2455
2456         st_dst_reg l;
2457         l.file = storage->file;
2458         l.index = storage->index;
2459         l.reladdr = NULL;
2460         l.writemask = WRITEMASK_XYZW;
2461         l.cond_mask = COND_TR;
2462
2463         for (i = 0; i < type_size(param->type); i++) {
2464            emit(ir, TGSI_OPCODE_MOV, l, r);
2465            l.index++;
2466            r.index++;
2467         }
2468      }
2469
2470      sig_iter.next();
2471   }
2472   assert(!sig_iter.has_next());
2473
2474   /* Emit call instruction */
2475   call_inst = emit(ir, TGSI_OPCODE_CAL);
2476   call_inst->function = entry;
2477
2478   /* Process out parameters. */
2479   sig_iter = sig->parameters.iterator();
2480   foreach_iter(exec_list_iterator, iter, *ir) {
2481      ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2482      ir_variable *param = (ir_variable *)sig_iter.get();
2483
2484      if (param->mode == ir_var_out ||
2485          param->mode == ir_var_inout) {
2486         variable_storage *storage = find_variable_storage(param);
2487         assert(storage);
2488
2489         st_src_reg r;
2490         r.file = storage->file;
2491         r.index = storage->index;
2492         r.reladdr = NULL;
2493         r.swizzle = SWIZZLE_NOOP;
2494         r.negate = 0;
2495
2496         param_rval->accept(this);
2497         st_dst_reg l = st_dst_reg(this->result);
2498
2499         for (i = 0; i < type_size(param->type); i++) {
2500            emit(ir, TGSI_OPCODE_MOV, l, r);
2501            l.index++;
2502            r.index++;
2503         }
2504      }
2505
2506      sig_iter.next();
2507   }
2508   assert(!sig_iter.has_next());
2509
2510   /* Process return value. */
2511   this->result = entry->return_reg;
2512}
2513
2514void
2515glsl_to_tgsi_visitor::visit(ir_texture *ir)
2516{
2517   st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2518   st_dst_reg result_dst, coord_dst;
2519   glsl_to_tgsi_instruction *inst = NULL;
2520   unsigned opcode = TGSI_OPCODE_NOP;
2521
2522   if (ir->coordinate) {
2523      ir->coordinate->accept(this);
2524
2525      /* Put our coords in a temp.  We'll need to modify them for shadow,
2526       * projection, or LOD, so the only case we'd use it as is is if
2527       * we're doing plain old texturing.  The optimization passes on
2528       * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2529       */
2530      coord = get_temp(glsl_type::vec4_type);
2531      coord_dst = st_dst_reg(coord);
2532      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2533   }
2534
2535   if (ir->projector) {
2536      ir->projector->accept(this);
2537      projector = this->result;
2538   }
2539
2540   /* Storage for our result.  Ideally for an assignment we'd be using
2541    * the actual storage for the result here, instead.
2542    */
2543   result_src = get_temp(glsl_type::vec4_type);
2544   result_dst = st_dst_reg(result_src);
2545
2546   switch (ir->op) {
2547   case ir_tex:
2548      opcode = TGSI_OPCODE_TEX;
2549      break;
2550   case ir_txb:
2551      opcode = TGSI_OPCODE_TXB;
2552      ir->lod_info.bias->accept(this);
2553      lod_info = this->result;
2554      break;
2555   case ir_txl:
2556      opcode = TGSI_OPCODE_TXL;
2557      ir->lod_info.lod->accept(this);
2558      lod_info = this->result;
2559      break;
2560   case ir_txd:
2561      opcode = TGSI_OPCODE_TXD;
2562      ir->lod_info.grad.dPdx->accept(this);
2563      dx = this->result;
2564      ir->lod_info.grad.dPdy->accept(this);
2565      dy = this->result;
2566      break;
2567   case ir_txs:
2568      opcode = TGSI_OPCODE_TXQ;
2569      ir->lod_info.lod->accept(this);
2570      lod_info = this->result;
2571      break;
2572   case ir_txf:
2573      opcode = TGSI_OPCODE_TXF;
2574      ir->lod_info.lod->accept(this);
2575      lod_info = this->result;
2576      if (ir->offset) {
2577	 ir->offset->accept(this);
2578	 offset = this->result;
2579      }
2580      break;
2581   }
2582
2583   const glsl_type *sampler_type = ir->sampler->type;
2584
2585   if (ir->projector) {
2586      if (opcode == TGSI_OPCODE_TEX) {
2587         /* Slot the projector in as the last component of the coord. */
2588         coord_dst.writemask = WRITEMASK_W;
2589         emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2590         coord_dst.writemask = WRITEMASK_XYZW;
2591         opcode = TGSI_OPCODE_TXP;
2592      } else {
2593         st_src_reg coord_w = coord;
2594         coord_w.swizzle = SWIZZLE_WWWW;
2595
2596         /* For the other TEX opcodes there's no projective version
2597          * since the last slot is taken up by LOD info.  Do the
2598          * projective divide now.
2599          */
2600         coord_dst.writemask = WRITEMASK_W;
2601         emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2602
2603         /* In the case where we have to project the coordinates "by hand,"
2604          * the shadow comparator value must also be projected.
2605          */
2606         st_src_reg tmp_src = coord;
2607         if (ir->shadow_comparitor) {
2608            /* Slot the shadow value in as the second to last component of the
2609             * coord.
2610             */
2611            ir->shadow_comparitor->accept(this);
2612
2613            tmp_src = get_temp(glsl_type::vec4_type);
2614            st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2615
2616	    /* Projective division not allowed for array samplers. */
2617	    assert(!sampler_type->sampler_array);
2618
2619            tmp_dst.writemask = WRITEMASK_Z;
2620            emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2621
2622            tmp_dst.writemask = WRITEMASK_XY;
2623            emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2624         }
2625
2626         coord_dst.writemask = WRITEMASK_XYZ;
2627         emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2628
2629         coord_dst.writemask = WRITEMASK_XYZW;
2630         coord.swizzle = SWIZZLE_XYZW;
2631      }
2632   }
2633
2634   /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2635    * comparator was put in the correct place (and projected) by the code,
2636    * above, that handles by-hand projection.
2637    */
2638   if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2639      /* Slot the shadow value in as the second to last component of the
2640       * coord.
2641       */
2642      ir->shadow_comparitor->accept(this);
2643
2644      /* XXX This will need to be updated for cubemap array samplers. */
2645      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2646          sampler_type->sampler_array) {
2647         coord_dst.writemask = WRITEMASK_W;
2648      } else {
2649         coord_dst.writemask = WRITEMASK_Z;
2650      }
2651
2652      emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2653      coord_dst.writemask = WRITEMASK_XYZW;
2654   }
2655
2656   if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2657       opcode == TGSI_OPCODE_TXF) {
2658      /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2659      coord_dst.writemask = WRITEMASK_W;
2660      emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2661      coord_dst.writemask = WRITEMASK_XYZW;
2662   }
2663
2664   if (opcode == TGSI_OPCODE_TXD)
2665      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2666   else if (opcode == TGSI_OPCODE_TXQ)
2667      inst = emit(ir, opcode, result_dst, lod_info);
2668   else if (opcode == TGSI_OPCODE_TXF) {
2669      inst = emit(ir, opcode, result_dst, coord);
2670   } else
2671      inst = emit(ir, opcode, result_dst, coord);
2672
2673   if (ir->shadow_comparitor)
2674      inst->tex_shadow = GL_TRUE;
2675
2676   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2677        					   this->shader_program,
2678        					   this->prog);
2679
2680   if (ir->offset) {
2681       inst->tex_offset_num_offset = 1;
2682       inst->tex_offsets[0].Index = offset.index;
2683       inst->tex_offsets[0].File = offset.file;
2684       inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2685       inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2686       inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2687   }
2688
2689   switch (sampler_type->sampler_dimensionality) {
2690   case GLSL_SAMPLER_DIM_1D:
2691      inst->tex_target = (sampler_type->sampler_array)
2692         ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2693      break;
2694   case GLSL_SAMPLER_DIM_2D:
2695      inst->tex_target = (sampler_type->sampler_array)
2696         ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2697      break;
2698   case GLSL_SAMPLER_DIM_3D:
2699      inst->tex_target = TEXTURE_3D_INDEX;
2700      break;
2701   case GLSL_SAMPLER_DIM_CUBE:
2702      inst->tex_target = TEXTURE_CUBE_INDEX;
2703      break;
2704   case GLSL_SAMPLER_DIM_RECT:
2705      inst->tex_target = TEXTURE_RECT_INDEX;
2706      break;
2707   case GLSL_SAMPLER_DIM_BUF:
2708      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2709      break;
2710   case GLSL_SAMPLER_DIM_EXTERNAL:
2711      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2712      break;
2713   default:
2714      assert(!"Should not get here.");
2715   }
2716
2717   this->result = result_src;
2718}
2719
2720void
2721glsl_to_tgsi_visitor::visit(ir_return *ir)
2722{
2723   if (ir->get_value()) {
2724      st_dst_reg l;
2725      int i;
2726
2727      assert(current_function);
2728
2729      ir->get_value()->accept(this);
2730      st_src_reg r = this->result;
2731
2732      l = st_dst_reg(current_function->return_reg);
2733
2734      for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2735         emit(ir, TGSI_OPCODE_MOV, l, r);
2736         l.index++;
2737         r.index++;
2738      }
2739   }
2740
2741   emit(ir, TGSI_OPCODE_RET);
2742}
2743
2744void
2745glsl_to_tgsi_visitor::visit(ir_discard *ir)
2746{
2747   struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2748
2749   if (ir->condition) {
2750      ir->condition->accept(this);
2751      this->result.negate = ~this->result.negate;
2752      emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2753   } else {
2754      emit(ir, TGSI_OPCODE_KILP);
2755   }
2756
2757   fp->UsesKill = GL_TRUE;
2758}
2759
2760void
2761glsl_to_tgsi_visitor::visit(ir_if *ir)
2762{
2763   glsl_to_tgsi_instruction *cond_inst, *if_inst;
2764   glsl_to_tgsi_instruction *prev_inst;
2765
2766   prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2767
2768   ir->condition->accept(this);
2769   assert(this->result.file != PROGRAM_UNDEFINED);
2770
2771   if (this->options->EmitCondCodes) {
2772      cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2773
2774      /* See if we actually generated any instruction for generating
2775       * the condition.  If not, then cook up a move to a temp so we
2776       * have something to set cond_update on.
2777       */
2778      if (cond_inst == prev_inst) {
2779         st_src_reg temp = get_temp(glsl_type::bool_type);
2780         cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2781      }
2782      cond_inst->cond_update = GL_TRUE;
2783
2784      if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2785      if_inst->dst.cond_mask = COND_NE;
2786   } else {
2787      if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2788   }
2789
2790   this->instructions.push_tail(if_inst);
2791
2792   visit_exec_list(&ir->then_instructions, this);
2793
2794   if (!ir->else_instructions.is_empty()) {
2795      emit(ir->condition, TGSI_OPCODE_ELSE);
2796      visit_exec_list(&ir->else_instructions, this);
2797   }
2798
2799   if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2800}
2801
2802glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2803{
2804   result.file = PROGRAM_UNDEFINED;
2805   next_temp = 1;
2806   next_signature_id = 1;
2807   num_immediates = 0;
2808   current_function = NULL;
2809   num_address_regs = 0;
2810   indirect_addr_temps = false;
2811   indirect_addr_consts = false;
2812   mem_ctx = ralloc_context(NULL);
2813}
2814
2815glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2816{
2817   ralloc_free(mem_ctx);
2818}
2819
2820extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2821{
2822   delete v;
2823}
2824
2825
2826/**
2827 * Count resources used by the given gpu program (number of texture
2828 * samplers, etc).
2829 */
2830static void
2831count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2832{
2833   v->samplers_used = 0;
2834
2835   foreach_iter(exec_list_iterator, iter, v->instructions) {
2836      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2837
2838      if (is_tex_instruction(inst->op)) {
2839         v->samplers_used |= 1 << inst->sampler;
2840
2841         prog->SamplerTargets[inst->sampler] =
2842            (gl_texture_index)inst->tex_target;
2843         if (inst->tex_shadow) {
2844            prog->ShadowSamplers |= 1 << inst->sampler;
2845         }
2846      }
2847   }
2848
2849   prog->SamplersUsed = v->samplers_used;
2850   _mesa_update_shader_textures_used(prog);
2851}
2852
2853static void
2854set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2855        		struct gl_shader_program *shader_program,
2856        		const char *name, const glsl_type *type,
2857        		ir_constant *val)
2858{
2859   if (type->is_record()) {
2860      ir_constant *field_constant;
2861
2862      field_constant = (ir_constant *)val->components.get_head();
2863
2864      for (unsigned int i = 0; i < type->length; i++) {
2865         const glsl_type *field_type = type->fields.structure[i].type;
2866         const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2867        				    type->fields.structure[i].name);
2868         set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2869        			 field_type, field_constant);
2870         field_constant = (ir_constant *)field_constant->next;
2871      }
2872      return;
2873   }
2874
2875   int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2876
2877   if (loc == -1) {
2878      fail_link(shader_program,
2879        	"Couldn't find uniform for initializer %s\n", name);
2880      return;
2881   }
2882
2883   for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2884      ir_constant *element;
2885      const glsl_type *element_type;
2886      if (type->is_array()) {
2887         element = val->array_elements[i];
2888         element_type = type->fields.array;
2889      } else {
2890         element = val;
2891         element_type = type;
2892      }
2893
2894      void *values;
2895
2896      if (element_type->base_type == GLSL_TYPE_BOOL) {
2897         int *conv = ralloc_array(mem_ctx, int, element_type->components());
2898         for (unsigned int j = 0; j < element_type->components(); j++) {
2899            conv[j] = element->value.b[j];
2900         }
2901         values = (void *)conv;
2902         element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2903        					element_type->vector_elements,
2904        					1);
2905      } else {
2906         values = &element->value;
2907      }
2908
2909      if (element_type->is_matrix()) {
2910         _mesa_uniform_matrix(ctx, shader_program,
2911        		      element_type->matrix_columns,
2912        		      element_type->vector_elements,
2913        		      loc, 1, GL_FALSE, (GLfloat *)values);
2914      } else {
2915         _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2916        	       values, element_type->gl_type);
2917      }
2918
2919      loc++;
2920   }
2921}
2922
2923/*
2924 * Scan/rewrite program to remove reads of custom (output) registers.
2925 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2926 * (for vertex shaders).
2927 * In GLSL shaders, varying vars can be read and written.
2928 * On some hardware, trying to read an output register causes trouble.
2929 * So, rewrite the program to use a temporary register in this case.
2930 *
2931 * Based on _mesa_remove_output_reads from programopt.c.
2932 */
2933void
2934glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2935{
2936   GLuint i;
2937   GLint outputMap[VERT_RESULT_MAX];
2938   GLint outputTypes[VERT_RESULT_MAX];
2939   GLuint numVaryingReads = 0;
2940   GLboolean *usedTemps;
2941   GLuint firstTemp = 0;
2942
2943   usedTemps = new GLboolean[MAX_TEMPS];
2944   if (!usedTemps) {
2945      return;
2946   }
2947   _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2948                             usedTemps, MAX_TEMPS);
2949
2950   assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2951   assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2952
2953   for (i = 0; i < VERT_RESULT_MAX; i++)
2954      outputMap[i] = -1;
2955
2956   /* look for instructions which read from varying vars */
2957   foreach_iter(exec_list_iterator, iter, this->instructions) {
2958      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2959      const GLuint numSrc = num_inst_src_regs(inst->op);
2960      GLuint j;
2961      for (j = 0; j < numSrc; j++) {
2962         if (inst->src[j].file == type) {
2963            /* replace the read with a temp reg */
2964            const GLuint var = inst->src[j].index;
2965            if (outputMap[var] == -1) {
2966               numVaryingReads++;
2967               outputMap[var] = _mesa_find_free_register(usedTemps,
2968                                                         MAX_TEMPS,
2969                                                         firstTemp);
2970               outputTypes[var] = inst->src[j].type;
2971               firstTemp = outputMap[var] + 1;
2972            }
2973            inst->src[j].file = PROGRAM_TEMPORARY;
2974            inst->src[j].index = outputMap[var];
2975         }
2976      }
2977   }
2978
2979   delete [] usedTemps;
2980
2981   if (numVaryingReads == 0)
2982      return; /* nothing to be done */
2983
2984   /* look for instructions which write to the varying vars identified above */
2985   foreach_iter(exec_list_iterator, iter, this->instructions) {
2986      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2987      if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2988         /* change inst to write to the temp reg, instead of the varying */
2989         inst->dst.file = PROGRAM_TEMPORARY;
2990         inst->dst.index = outputMap[inst->dst.index];
2991      }
2992   }
2993
2994   /* insert new MOV instructions at the end */
2995   for (i = 0; i < VERT_RESULT_MAX; i++) {
2996      if (outputMap[i] >= 0) {
2997         /* MOV VAR[i], TEMP[tmp]; */
2998         st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2999         st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
3000         dst.index = i;
3001         this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
3002      }
3003   }
3004}
3005
3006/**
3007 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3008 * are read from the given src in this instruction
3009 */
3010static int
3011get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3012{
3013   int read_mask = 0, comp;
3014
3015   /* Now, given the src swizzle and the written channels, find which
3016    * components are actually read
3017    */
3018   for (comp = 0; comp < 4; ++comp) {
3019      const unsigned coord = GET_SWZ(src.swizzle, comp);
3020      ASSERT(coord < 4);
3021      if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3022         read_mask |= 1 << coord;
3023   }
3024
3025   return read_mask;
3026}
3027
3028/**
3029 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3030 * instruction is the first instruction to write to register T0.  There are
3031 * several lowering passes done in GLSL IR (e.g. branches and
3032 * relative addressing) that create a large number of conditional assignments
3033 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3034 *
3035 * Here is why this conversion is safe:
3036 * CMP T0, T1 T2 T0 can be expanded to:
3037 * if (T1 < 0.0)
3038 * 	MOV T0, T2;
3039 * else
3040 * 	MOV T0, T0;
3041 *
3042 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3043 * as the original program.  If (T1 < 0.0) evaluates to false, executing
3044 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3045 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3046 * because any instruction that was going to read from T0 after this was going
3047 * to read a garbage value anyway.
3048 */
3049void
3050glsl_to_tgsi_visitor::simplify_cmp(void)
3051{
3052   unsigned *tempWrites;
3053   unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3054
3055   tempWrites = new unsigned[MAX_TEMPS];
3056   if (!tempWrites) {
3057      return;
3058   }
3059   memset(tempWrites, 0, sizeof(tempWrites));
3060   memset(outputWrites, 0, sizeof(outputWrites));
3061
3062   foreach_iter(exec_list_iterator, iter, this->instructions) {
3063      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3064      unsigned prevWriteMask = 0;
3065
3066      /* Give up if we encounter relative addressing or flow control. */
3067      if (inst->dst.reladdr ||
3068          tgsi_get_opcode_info(inst->op)->is_branch ||
3069          inst->op == TGSI_OPCODE_BGNSUB ||
3070          inst->op == TGSI_OPCODE_CONT ||
3071          inst->op == TGSI_OPCODE_END ||
3072          inst->op == TGSI_OPCODE_ENDSUB ||
3073          inst->op == TGSI_OPCODE_RET) {
3074         break;
3075      }
3076
3077      if (inst->dst.file == PROGRAM_OUTPUT) {
3078         assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3079         prevWriteMask = outputWrites[inst->dst.index];
3080         outputWrites[inst->dst.index] |= inst->dst.writemask;
3081      } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3082         assert(inst->dst.index < MAX_TEMPS);
3083         prevWriteMask = tempWrites[inst->dst.index];
3084         tempWrites[inst->dst.index] |= inst->dst.writemask;
3085      }
3086
3087      /* For a CMP to be considered a conditional write, the destination
3088       * register and source register two must be the same. */
3089      if (inst->op == TGSI_OPCODE_CMP
3090          && !(inst->dst.writemask & prevWriteMask)
3091          && inst->src[2].file == inst->dst.file
3092          && inst->src[2].index == inst->dst.index
3093          && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3094
3095         inst->op = TGSI_OPCODE_MOV;
3096         inst->src[0] = inst->src[1];
3097      }
3098   }
3099
3100   delete [] tempWrites;
3101}
3102
3103/* Replaces all references to a temporary register index with another index. */
3104void
3105glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3106{
3107   foreach_iter(exec_list_iterator, iter, this->instructions) {
3108      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3109      unsigned j;
3110
3111      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3112         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3113             inst->src[j].index == index) {
3114            inst->src[j].index = new_index;
3115         }
3116      }
3117
3118      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3119         inst->dst.index = new_index;
3120      }
3121   }
3122}
3123
3124int
3125glsl_to_tgsi_visitor::get_first_temp_read(int index)
3126{
3127   int depth = 0; /* loop depth */
3128   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3129   unsigned i = 0, j;
3130
3131   foreach_iter(exec_list_iterator, iter, this->instructions) {
3132      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3133
3134      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3135         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3136             inst->src[j].index == index) {
3137            return (depth == 0) ? i : loop_start;
3138         }
3139      }
3140
3141      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3142         if(depth++ == 0)
3143            loop_start = i;
3144      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3145         if (--depth == 0)
3146            loop_start = -1;
3147      }
3148      assert(depth >= 0);
3149
3150      i++;
3151   }
3152
3153   return -1;
3154}
3155
3156int
3157glsl_to_tgsi_visitor::get_first_temp_write(int index)
3158{
3159   int depth = 0; /* loop depth */
3160   int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3161   int i = 0;
3162
3163   foreach_iter(exec_list_iterator, iter, this->instructions) {
3164      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3165
3166      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3167         return (depth == 0) ? i : loop_start;
3168      }
3169
3170      if (inst->op == TGSI_OPCODE_BGNLOOP) {
3171         if(depth++ == 0)
3172            loop_start = i;
3173      } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3174         if (--depth == 0)
3175            loop_start = -1;
3176      }
3177      assert(depth >= 0);
3178
3179      i++;
3180   }
3181
3182   return -1;
3183}
3184
3185int
3186glsl_to_tgsi_visitor::get_last_temp_read(int index)
3187{
3188   int depth = 0; /* loop depth */
3189   int last = -1; /* index of last instruction that reads the temporary */
3190   unsigned i = 0, j;
3191
3192   foreach_iter(exec_list_iterator, iter, this->instructions) {
3193      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3194
3195      for (j=0; j < num_inst_src_regs(inst->op); j++) {
3196         if (inst->src[j].file == PROGRAM_TEMPORARY &&
3197             inst->src[j].index == index) {
3198            last = (depth == 0) ? i : -2;
3199         }
3200      }
3201
3202      if (inst->op == TGSI_OPCODE_BGNLOOP)
3203         depth++;
3204      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3205         if (--depth == 0 && last == -2)
3206            last = i;
3207      assert(depth >= 0);
3208
3209      i++;
3210   }
3211
3212   assert(last >= -1);
3213   return last;
3214}
3215
3216int
3217glsl_to_tgsi_visitor::get_last_temp_write(int index)
3218{
3219   int depth = 0; /* loop depth */
3220   int last = -1; /* index of last instruction that writes to the temporary */
3221   int i = 0;
3222
3223   foreach_iter(exec_list_iterator, iter, this->instructions) {
3224      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3225
3226      if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3227         last = (depth == 0) ? i : -2;
3228
3229      if (inst->op == TGSI_OPCODE_BGNLOOP)
3230         depth++;
3231      else if (inst->op == TGSI_OPCODE_ENDLOOP)
3232         if (--depth == 0 && last == -2)
3233            last = i;
3234      assert(depth >= 0);
3235
3236      i++;
3237   }
3238
3239   assert(last >= -1);
3240   return last;
3241}
3242
3243/*
3244 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3245 * channels for copy propagation and updates following instructions to
3246 * use the original versions.
3247 *
3248 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3249 * will occur.  As an example, a TXP production before this pass:
3250 *
3251 * 0: MOV TEMP[1], INPUT[4].xyyy;
3252 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3253 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3254 *
3255 * and after:
3256 *
3257 * 0: MOV TEMP[1], INPUT[4].xyyy;
3258 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3259 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3260 *
3261 * which allows for dead code elimination on TEMP[1]'s writes.
3262 */
3263void
3264glsl_to_tgsi_visitor::copy_propagate(void)
3265{
3266   glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3267        					    glsl_to_tgsi_instruction *,
3268        					    this->next_temp * 4);
3269   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3270   int level = 0;
3271
3272   foreach_iter(exec_list_iterator, iter, this->instructions) {
3273      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3274
3275      assert(inst->dst.file != PROGRAM_TEMPORARY
3276             || inst->dst.index < this->next_temp);
3277
3278      /* First, do any copy propagation possible into the src regs. */
3279      for (int r = 0; r < 3; r++) {
3280         glsl_to_tgsi_instruction *first = NULL;
3281         bool good = true;
3282         int acp_base = inst->src[r].index * 4;
3283
3284         if (inst->src[r].file != PROGRAM_TEMPORARY ||
3285             inst->src[r].reladdr)
3286            continue;
3287
3288         /* See if we can find entries in the ACP consisting of MOVs
3289          * from the same src register for all the swizzled channels
3290          * of this src register reference.
3291          */
3292         for (int i = 0; i < 4; i++) {
3293            int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3294            glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3295
3296            if (!copy_chan) {
3297               good = false;
3298               break;
3299            }
3300
3301            assert(acp_level[acp_base + src_chan] <= level);
3302
3303            if (!first) {
3304               first = copy_chan;
3305            } else {
3306               if (first->src[0].file != copy_chan->src[0].file ||
3307        	   first->src[0].index != copy_chan->src[0].index) {
3308        	  good = false;
3309        	  break;
3310               }
3311            }
3312         }
3313
3314         if (good) {
3315            /* We've now validated that we can copy-propagate to
3316             * replace this src register reference.  Do it.
3317             */
3318            inst->src[r].file = first->src[0].file;
3319            inst->src[r].index = first->src[0].index;
3320
3321            int swizzle = 0;
3322            for (int i = 0; i < 4; i++) {
3323               int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3324               glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3325               swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3326        		   (3 * i));
3327            }
3328            inst->src[r].swizzle = swizzle;
3329         }
3330      }
3331
3332      switch (inst->op) {
3333      case TGSI_OPCODE_BGNLOOP:
3334      case TGSI_OPCODE_ENDLOOP:
3335         /* End of a basic block, clear the ACP entirely. */
3336         memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3337         break;
3338
3339      case TGSI_OPCODE_IF:
3340         ++level;
3341         break;
3342
3343      case TGSI_OPCODE_ENDIF:
3344      case TGSI_OPCODE_ELSE:
3345         /* Clear all channels written inside the block from the ACP, but
3346          * leaving those that were not touched.
3347          */
3348         for (int r = 0; r < this->next_temp; r++) {
3349            for (int c = 0; c < 4; c++) {
3350               if (!acp[4 * r + c])
3351        	  continue;
3352
3353               if (acp_level[4 * r + c] >= level)
3354        	  acp[4 * r + c] = NULL;
3355            }
3356         }
3357         if (inst->op == TGSI_OPCODE_ENDIF)
3358            --level;
3359         break;
3360
3361      default:
3362         /* Continuing the block, clear any written channels from
3363          * the ACP.
3364          */
3365         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3366            /* Any temporary might be written, so no copy propagation
3367             * across this instruction.
3368             */
3369            memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3370         } else if (inst->dst.file == PROGRAM_OUTPUT &&
3371        	    inst->dst.reladdr) {
3372            /* Any output might be written, so no copy propagation
3373             * from outputs across this instruction.
3374             */
3375            for (int r = 0; r < this->next_temp; r++) {
3376               for (int c = 0; c < 4; c++) {
3377        	  if (!acp[4 * r + c])
3378        	     continue;
3379
3380        	  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3381        	     acp[4 * r + c] = NULL;
3382               }
3383            }
3384         } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3385        	    inst->dst.file == PROGRAM_OUTPUT) {
3386            /* Clear where it's used as dst. */
3387            if (inst->dst.file == PROGRAM_TEMPORARY) {
3388               for (int c = 0; c < 4; c++) {
3389        	  if (inst->dst.writemask & (1 << c)) {
3390        	     acp[4 * inst->dst.index + c] = NULL;
3391        	  }
3392               }
3393            }
3394
3395            /* Clear where it's used as src. */
3396            for (int r = 0; r < this->next_temp; r++) {
3397               for (int c = 0; c < 4; c++) {
3398        	  if (!acp[4 * r + c])
3399        	     continue;
3400
3401        	  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3402
3403        	  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3404        	      acp[4 * r + c]->src[0].index == inst->dst.index &&
3405        	      inst->dst.writemask & (1 << src_chan))
3406        	  {
3407        	     acp[4 * r + c] = NULL;
3408        	  }
3409               }
3410            }
3411         }
3412         break;
3413      }
3414
3415      /* If this is a copy, add it to the ACP. */
3416      if (inst->op == TGSI_OPCODE_MOV &&
3417          inst->dst.file == PROGRAM_TEMPORARY &&
3418          !inst->dst.reladdr &&
3419          !inst->saturate &&
3420          !inst->src[0].reladdr &&
3421          !inst->src[0].negate) {
3422         for (int i = 0; i < 4; i++) {
3423            if (inst->dst.writemask & (1 << i)) {
3424               acp[4 * inst->dst.index + i] = inst;
3425               acp_level[4 * inst->dst.index + i] = level;
3426            }
3427         }
3428      }
3429   }
3430
3431   ralloc_free(acp_level);
3432   ralloc_free(acp);
3433}
3434
3435/*
3436 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3437 *
3438 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3439 * will occur.  As an example, a TXP production after copy propagation but
3440 * before this pass:
3441 *
3442 * 0: MOV TEMP[1], INPUT[4].xyyy;
3443 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3444 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3445 *
3446 * and after this pass:
3447 *
3448 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3449 *
3450 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3451 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3452 */
3453void
3454glsl_to_tgsi_visitor::eliminate_dead_code(void)
3455{
3456   int i;
3457
3458   for (i=0; i < this->next_temp; i++) {
3459      int last_read = get_last_temp_read(i);
3460      int j = 0;
3461
3462      foreach_iter(exec_list_iterator, iter, this->instructions) {
3463         glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3464
3465         if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3466             j > last_read)
3467         {
3468            iter.remove();
3469            delete inst;
3470         }
3471
3472         j++;
3473      }
3474   }
3475}
3476
3477/*
3478 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3479 * code elimination.  This is less primitive than eliminate_dead_code(), as it
3480 * is per-channel and can detect consecutive writes without a read between them
3481 * as dead code.  However, there is some dead code that can be eliminated by
3482 * eliminate_dead_code() but not this function - for example, this function
3483 * cannot eliminate an instruction writing to a register that is never read and
3484 * is the only instruction writing to that register.
3485 *
3486 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3487 * will occur.
3488 */
3489int
3490glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3491{
3492   glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3493                                                     glsl_to_tgsi_instruction *,
3494                                                     this->next_temp * 4);
3495   int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3496   int level = 0;
3497   int removed = 0;
3498
3499   foreach_iter(exec_list_iterator, iter, this->instructions) {
3500      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3501
3502      assert(inst->dst.file != PROGRAM_TEMPORARY
3503             || inst->dst.index < this->next_temp);
3504
3505      switch (inst->op) {
3506      case TGSI_OPCODE_BGNLOOP:
3507      case TGSI_OPCODE_ENDLOOP:
3508         /* End of a basic block, clear the write array entirely.
3509          * FIXME: This keeps us from killing dead code when the writes are
3510          * on either side of a loop, even when the register isn't touched
3511          * inside the loop.
3512          */
3513         memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3514         break;
3515
3516      case TGSI_OPCODE_ENDIF:
3517      case TGSI_OPCODE_ELSE:
3518         /* Promote the recorded level of all channels written inside the
3519          * preceding if or else block to the level above the if/else block.
3520          */
3521         for (int r = 0; r < this->next_temp; r++) {
3522            for (int c = 0; c < 4; c++) {
3523               if (!writes[4 * r + c])
3524        	         continue;
3525
3526               if (write_level[4 * r + c] == level)
3527        	         write_level[4 * r + c] = level-1;
3528            }
3529         }
3530
3531         if(inst->op == TGSI_OPCODE_ENDIF)
3532            --level;
3533
3534         break;
3535
3536      case TGSI_OPCODE_IF:
3537         ++level;
3538         /* fallthrough to default case to mark the condition as read */
3539
3540      default:
3541         /* Continuing the block, clear any channels from the write array that
3542          * are read by this instruction.
3543          */
3544         for (unsigned i = 0; i < Elements(inst->src); i++) {
3545            if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3546               /* Any temporary might be read, so no dead code elimination
3547                * across this instruction.
3548                */
3549               memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3550            } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3551               /* Clear where it's used as src. */
3552               int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3553               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3554               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3555               src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3556
3557               for (int c = 0; c < 4; c++) {
3558              	   if (src_chans & (1 << c)) {
3559              	      writes[4 * inst->src[i].index + c] = NULL;
3560              	   }
3561               }
3562            }
3563         }
3564         break;
3565      }
3566
3567      /* If this instruction writes to a temporary, add it to the write array.
3568       * If there is already an instruction in the write array for one or more
3569       * of the channels, flag that channel write as dead.
3570       */
3571      if (inst->dst.file == PROGRAM_TEMPORARY &&
3572          !inst->dst.reladdr &&
3573          !inst->saturate) {
3574         for (int c = 0; c < 4; c++) {
3575            if (inst->dst.writemask & (1 << c)) {
3576               if (writes[4 * inst->dst.index + c]) {
3577                  if (write_level[4 * inst->dst.index + c] < level)
3578                     continue;
3579                  else
3580                     writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3581               }
3582               writes[4 * inst->dst.index + c] = inst;
3583               write_level[4 * inst->dst.index + c] = level;
3584            }
3585         }
3586      }
3587   }
3588
3589   /* Anything still in the write array at this point is dead code. */
3590   for (int r = 0; r < this->next_temp; r++) {
3591      for (int c = 0; c < 4; c++) {
3592         glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3593         if (inst)
3594            inst->dead_mask |= (1 << c);
3595      }
3596   }
3597
3598   /* Now actually remove the instructions that are completely dead and update
3599    * the writemask of other instructions with dead channels.
3600    */
3601   foreach_iter(exec_list_iterator, iter, this->instructions) {
3602      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3603
3604      if (!inst->dead_mask || !inst->dst.writemask)
3605         continue;
3606      else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3607         iter.remove();
3608         delete inst;
3609         removed++;
3610      } else
3611         inst->dst.writemask &= ~(inst->dead_mask);
3612   }
3613
3614   ralloc_free(write_level);
3615   ralloc_free(writes);
3616
3617   return removed;
3618}
3619
3620/* Merges temporary registers together where possible to reduce the number of
3621 * registers needed to run a program.
3622 *
3623 * Produces optimal code only after copy propagation and dead code elimination
3624 * have been run. */
3625void
3626glsl_to_tgsi_visitor::merge_registers(void)
3627{
3628   int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3629   int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3630   int i, j;
3631
3632   /* Read the indices of the last read and first write to each temp register
3633    * into an array so that we don't have to traverse the instruction list as
3634    * much. */
3635   for (i=0; i < this->next_temp; i++) {
3636      last_reads[i] = get_last_temp_read(i);
3637      first_writes[i] = get_first_temp_write(i);
3638   }
3639
3640   /* Start looking for registers with non-overlapping usages that can be
3641    * merged together. */
3642   for (i=0; i < this->next_temp; i++) {
3643      /* Don't touch unused registers. */
3644      if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3645
3646      for (j=0; j < this->next_temp; j++) {
3647         /* Don't touch unused registers. */
3648         if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3649
3650         /* We can merge the two registers if the first write to j is after or
3651          * in the same instruction as the last read from i.  Note that the
3652          * register at index i will always be used earlier or at the same time
3653          * as the register at index j. */
3654         if (first_writes[i] <= first_writes[j] &&
3655             last_reads[i] <= first_writes[j])
3656         {
3657            rename_temp_register(j, i); /* Replace all references to j with i.*/
3658
3659            /* Update the first_writes and last_reads arrays with the new
3660             * values for the merged register index, and mark the newly unused
3661             * register index as such. */
3662            last_reads[i] = last_reads[j];
3663            first_writes[j] = -1;
3664            last_reads[j] = -1;
3665         }
3666      }
3667   }
3668
3669   ralloc_free(last_reads);
3670   ralloc_free(first_writes);
3671}
3672
3673/* Reassign indices to temporary registers by reusing unused indices created
3674 * by optimization passes. */
3675void
3676glsl_to_tgsi_visitor::renumber_registers(void)
3677{
3678   int i = 0;
3679   int new_index = 0;
3680
3681   for (i=0; i < this->next_temp; i++) {
3682      if (get_first_temp_read(i) < 0) continue;
3683      if (i != new_index)
3684         rename_temp_register(i, new_index);
3685      new_index++;
3686   }
3687
3688   this->next_temp = new_index;
3689}
3690
3691/**
3692 * Returns a fragment program which implements the current pixel transfer ops.
3693 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3694 */
3695extern "C" void
3696get_pixel_transfer_visitor(struct st_fragment_program *fp,
3697                           glsl_to_tgsi_visitor *original,
3698                           int scale_and_bias, int pixel_maps)
3699{
3700   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3701   struct st_context *st = st_context(original->ctx);
3702   struct gl_program *prog = &fp->Base.Base;
3703   struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3704   st_src_reg coord, src0;
3705   st_dst_reg dst0;
3706   glsl_to_tgsi_instruction *inst;
3707
3708   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3709   v->ctx = original->ctx;
3710   v->prog = prog;
3711   v->glsl_version = original->glsl_version;
3712   v->native_integers = original->native_integers;
3713   v->options = original->options;
3714   v->next_temp = original->next_temp;
3715   v->num_address_regs = original->num_address_regs;
3716   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3717   v->indirect_addr_temps = original->indirect_addr_temps;
3718   v->indirect_addr_consts = original->indirect_addr_consts;
3719   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3720
3721   /*
3722    * Get initial pixel color from the texture.
3723    * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3724    */
3725   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3726   src0 = v->get_temp(glsl_type::vec4_type);
3727   dst0 = st_dst_reg(src0);
3728   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3729   inst->sampler = 0;
3730   inst->tex_target = TEXTURE_2D_INDEX;
3731
3732   prog->InputsRead |= FRAG_BIT_TEX0;
3733   prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3734   v->samplers_used |= (1 << 0);
3735
3736   if (scale_and_bias) {
3737      static const gl_state_index scale_state[STATE_LENGTH] =
3738         { STATE_INTERNAL, STATE_PT_SCALE,
3739           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3740      static const gl_state_index bias_state[STATE_LENGTH] =
3741         { STATE_INTERNAL, STATE_PT_BIAS,
3742           (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3743      GLint scale_p, bias_p;
3744      st_src_reg scale, bias;
3745
3746      scale_p = _mesa_add_state_reference(params, scale_state);
3747      bias_p = _mesa_add_state_reference(params, bias_state);
3748
3749      /* MAD colorTemp, colorTemp, scale, bias; */
3750      scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3751      bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3752      inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3753   }
3754
3755   if (pixel_maps) {
3756      st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3757      st_dst_reg temp_dst = st_dst_reg(temp);
3758
3759      assert(st->pixel_xfer.pixelmap_texture);
3760
3761      /* With a little effort, we can do four pixel map look-ups with
3762       * two TEX instructions:
3763       */
3764
3765      /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3766      temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3767      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3768      inst->sampler = 1;
3769      inst->tex_target = TEXTURE_2D_INDEX;
3770
3771      /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3772      src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3773      temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3774      inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3775      inst->sampler = 1;
3776      inst->tex_target = TEXTURE_2D_INDEX;
3777
3778      prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3779      v->samplers_used |= (1 << 1);
3780
3781      /* MOV colorTemp, temp; */
3782      inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3783   }
3784
3785   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3786    * new visitor. */
3787   foreach_iter(exec_list_iterator, iter, original->instructions) {
3788      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3789      glsl_to_tgsi_instruction *newinst;
3790      st_src_reg src_regs[3];
3791
3792      if (inst->dst.file == PROGRAM_OUTPUT)
3793         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3794
3795      for (int i=0; i<3; i++) {
3796         src_regs[i] = inst->src[i];
3797         if (src_regs[i].file == PROGRAM_INPUT &&
3798             src_regs[i].index == FRAG_ATTRIB_COL0)
3799         {
3800            src_regs[i].file = PROGRAM_TEMPORARY;
3801            src_regs[i].index = src0.index;
3802         }
3803         else if (src_regs[i].file == PROGRAM_INPUT)
3804            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3805      }
3806
3807      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3808      newinst->tex_target = inst->tex_target;
3809   }
3810
3811   /* Make modifications to fragment program info. */
3812   prog->Parameters = _mesa_combine_parameter_lists(params,
3813                                                    original->prog->Parameters);
3814   _mesa_free_parameter_list(params);
3815   count_resources(v, prog);
3816   fp->glsl_to_tgsi = v;
3817}
3818
3819/**
3820 * Make fragment program for glBitmap:
3821 *   Sample the texture and kill the fragment if the bit is 0.
3822 * This program will be combined with the user's fragment program.
3823 *
3824 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3825 */
3826extern "C" void
3827get_bitmap_visitor(struct st_fragment_program *fp,
3828                   glsl_to_tgsi_visitor *original, int samplerIndex)
3829{
3830   glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3831   struct st_context *st = st_context(original->ctx);
3832   struct gl_program *prog = &fp->Base.Base;
3833   st_src_reg coord, src0;
3834   st_dst_reg dst0;
3835   glsl_to_tgsi_instruction *inst;
3836
3837   /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3838   v->ctx = original->ctx;
3839   v->prog = prog;
3840   v->glsl_version = original->glsl_version;
3841   v->native_integers = original->native_integers;
3842   v->options = original->options;
3843   v->next_temp = original->next_temp;
3844   v->num_address_regs = original->num_address_regs;
3845   v->samplers_used = prog->SamplersUsed = original->samplers_used;
3846   v->indirect_addr_temps = original->indirect_addr_temps;
3847   v->indirect_addr_consts = original->indirect_addr_consts;
3848   memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3849
3850   /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3851   coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3852   src0 = v->get_temp(glsl_type::vec4_type);
3853   dst0 = st_dst_reg(src0);
3854   inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3855   inst->sampler = samplerIndex;
3856   inst->tex_target = TEXTURE_2D_INDEX;
3857
3858   prog->InputsRead |= FRAG_BIT_TEX0;
3859   prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3860   v->samplers_used |= (1 << samplerIndex);
3861
3862   /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3863   src0.negate = NEGATE_XYZW;
3864   if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3865      src0.swizzle = SWIZZLE_XXXX;
3866   inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3867
3868   /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3869    * new visitor. */
3870   foreach_iter(exec_list_iterator, iter, original->instructions) {
3871      glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3872      glsl_to_tgsi_instruction *newinst;
3873      st_src_reg src_regs[3];
3874
3875      if (inst->dst.file == PROGRAM_OUTPUT)
3876         prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3877
3878      for (int i=0; i<3; i++) {
3879         src_regs[i] = inst->src[i];
3880         if (src_regs[i].file == PROGRAM_INPUT)
3881            prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3882      }
3883
3884      newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3885      newinst->tex_target = inst->tex_target;
3886   }
3887
3888   /* Make modifications to fragment program info. */
3889   prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3890   count_resources(v, prog);
3891   fp->glsl_to_tgsi = v;
3892}
3893
3894/* ------------------------- TGSI conversion stuff -------------------------- */
3895struct label {
3896   unsigned branch_target;
3897   unsigned token;
3898};
3899
3900/**
3901 * Intermediate state used during shader translation.
3902 */
3903struct st_translate {
3904   struct ureg_program *ureg;
3905
3906   struct ureg_dst temps[MAX_TEMPS];
3907   struct ureg_src *constants;
3908   struct ureg_src *immediates;
3909   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3910   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3911   struct ureg_dst address[1];
3912   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3913   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3914
3915   /* Extra info for handling point size clamping in vertex shader */
3916   struct ureg_dst pointSizeResult; /**< Actual point size output register */
3917   struct ureg_src pointSizeConst;  /**< Point size range constant register */
3918   GLint pointSizeOutIndex;         /**< Temp point size output register */
3919   GLboolean prevInstWrotePointSize;
3920
3921   const GLuint *inputMapping;
3922   const GLuint *outputMapping;
3923
3924   /* For every instruction that contains a label (eg CALL), keep
3925    * details so that we can go back afterwards and emit the correct
3926    * tgsi instruction number for each label.
3927    */
3928   struct label *labels;
3929   unsigned labels_size;
3930   unsigned labels_count;
3931
3932   /* Keep a record of the tgsi instruction number that each mesa
3933    * instruction starts at, will be used to fix up labels after
3934    * translation.
3935    */
3936   unsigned *insn;
3937   unsigned insn_size;
3938   unsigned insn_count;
3939
3940   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3941
3942   boolean error;
3943};
3944
3945/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3946static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3947   TGSI_SEMANTIC_FACE,
3948   TGSI_SEMANTIC_VERTEXID,
3949   TGSI_SEMANTIC_INSTANCEID
3950};
3951
3952/**
3953 * Make note of a branch to a label in the TGSI code.
3954 * After we've emitted all instructions, we'll go over the list
3955 * of labels built here and patch the TGSI code with the actual
3956 * location of each label.
3957 */
3958static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3959{
3960   unsigned i;
3961
3962   if (t->labels_count + 1 >= t->labels_size) {
3963      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3964      t->labels = (struct label *)realloc(t->labels,
3965                                          t->labels_size * sizeof(struct label));
3966      if (t->labels == NULL) {
3967         static unsigned dummy;
3968         t->error = TRUE;
3969         return &dummy;
3970      }
3971   }
3972
3973   i = t->labels_count++;
3974   t->labels[i].branch_target = branch_target;
3975   return &t->labels[i].token;
3976}
3977
3978/**
3979 * Called prior to emitting the TGSI code for each instruction.
3980 * Allocate additional space for instructions if needed.
3981 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3982 * the next TGSI instruction.
3983 */
3984static void set_insn_start(struct st_translate *t, unsigned start)
3985{
3986   if (t->insn_count + 1 >= t->insn_size) {
3987      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3988      t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3989      if (t->insn == NULL) {
3990         t->error = TRUE;
3991         return;
3992      }
3993   }
3994
3995   t->insn[t->insn_count++] = start;
3996}
3997
3998/**
3999 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4000 */
4001static struct ureg_src
4002emit_immediate(struct st_translate *t,
4003               gl_constant_value values[4],
4004               int type, int size)
4005{
4006   struct ureg_program *ureg = t->ureg;
4007
4008   switch(type)
4009   {
4010   case GL_FLOAT:
4011      return ureg_DECL_immediate(ureg, &values[0].f, size);
4012   case GL_INT:
4013      return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4014   case GL_UNSIGNED_INT:
4015   case GL_BOOL:
4016      return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4017   default:
4018      assert(!"should not get here - type must be float, int, uint, or bool");
4019      return ureg_src_undef();
4020   }
4021}
4022
4023/**
4024 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4025 */
4026static struct ureg_dst
4027dst_register(struct st_translate *t,
4028             gl_register_file file,
4029             GLuint index)
4030{
4031   switch(file) {
4032   case PROGRAM_UNDEFINED:
4033      return ureg_dst_undef();
4034
4035   case PROGRAM_TEMPORARY:
4036      if (ureg_dst_is_undef(t->temps[index]))
4037         t->temps[index] = ureg_DECL_temporary(t->ureg);
4038
4039      return t->temps[index];
4040
4041   case PROGRAM_OUTPUT:
4042      if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
4043         t->prevInstWrotePointSize = GL_TRUE;
4044
4045      if (t->procType == TGSI_PROCESSOR_VERTEX)
4046         assert(index < VERT_RESULT_MAX);
4047      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4048         assert(index < FRAG_RESULT_MAX);
4049      else
4050         assert(index < GEOM_RESULT_MAX);
4051
4052      assert(t->outputMapping[index] < Elements(t->outputs));
4053
4054      return t->outputs[t->outputMapping[index]];
4055
4056   case PROGRAM_ADDRESS:
4057      return t->address[index];
4058
4059   default:
4060      assert(!"unknown dst register file");
4061      return ureg_dst_undef();
4062   }
4063}
4064
4065/**
4066 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4067 */
4068static struct ureg_src
4069src_register(struct st_translate *t,
4070             gl_register_file file,
4071             GLuint index)
4072{
4073   switch(file) {
4074   case PROGRAM_UNDEFINED:
4075      return ureg_src_undef();
4076
4077   case PROGRAM_TEMPORARY:
4078      assert(index >= 0);
4079      assert(index < Elements(t->temps));
4080      if (ureg_dst_is_undef(t->temps[index]))
4081         t->temps[index] = ureg_DECL_temporary(t->ureg);
4082      return ureg_src(t->temps[index]);
4083
4084   case PROGRAM_NAMED_PARAM:
4085   case PROGRAM_ENV_PARAM:
4086   case PROGRAM_LOCAL_PARAM:
4087   case PROGRAM_UNIFORM:
4088      assert(index >= 0);
4089      return t->constants[index];
4090   case PROGRAM_STATE_VAR:
4091   case PROGRAM_CONSTANT:       /* ie, immediate */
4092      if (index < 0)
4093         return ureg_DECL_constant(t->ureg, 0);
4094      else
4095         return t->constants[index];
4096
4097   case PROGRAM_IMMEDIATE:
4098      return t->immediates[index];
4099
4100   case PROGRAM_INPUT:
4101      assert(t->inputMapping[index] < Elements(t->inputs));
4102      return t->inputs[t->inputMapping[index]];
4103
4104   case PROGRAM_OUTPUT:
4105      assert(t->outputMapping[index] < Elements(t->outputs));
4106      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4107
4108   case PROGRAM_ADDRESS:
4109      return ureg_src(t->address[index]);
4110
4111   case PROGRAM_SYSTEM_VALUE:
4112      assert(index < Elements(t->systemValues));
4113      return t->systemValues[index];
4114
4115   default:
4116      assert(!"unknown src register file");
4117      return ureg_src_undef();
4118   }
4119}
4120
4121/**
4122 * Create a TGSI ureg_dst register from an st_dst_reg.
4123 */
4124static struct ureg_dst
4125translate_dst(struct st_translate *t,
4126              const st_dst_reg *dst_reg,
4127              bool saturate)
4128{
4129   struct ureg_dst dst = dst_register(t,
4130                                      dst_reg->file,
4131                                      dst_reg->index);
4132
4133   dst = ureg_writemask(dst, dst_reg->writemask);
4134
4135   if (saturate)
4136      dst = ureg_saturate(dst);
4137
4138   if (dst_reg->reladdr != NULL)
4139      dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4140
4141   return dst;
4142}
4143
4144/**
4145 * Create a TGSI ureg_src register from an st_src_reg.
4146 */
4147static struct ureg_src
4148translate_src(struct st_translate *t, const st_src_reg *src_reg)
4149{
4150   struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4151
4152   src = ureg_swizzle(src,
4153                      GET_SWZ(src_reg->swizzle, 0) & 0x3,
4154                      GET_SWZ(src_reg->swizzle, 1) & 0x3,
4155                      GET_SWZ(src_reg->swizzle, 2) & 0x3,
4156                      GET_SWZ(src_reg->swizzle, 3) & 0x3);
4157
4158   if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4159      src = ureg_negate(src);
4160
4161   if (src_reg->reladdr != NULL) {
4162      /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4163       * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4164       * set the bit for src.Negate.  So we have to do the operation manually
4165       * here to work around the compiler's problems. */
4166      /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4167      struct ureg_src addr = ureg_src(t->address[0]);
4168      src.Indirect = 1;
4169      src.IndirectFile = addr.File;
4170      src.IndirectIndex = addr.Index;
4171      src.IndirectSwizzle = addr.SwizzleX;
4172
4173      if (src_reg->file != PROGRAM_INPUT &&
4174          src_reg->file != PROGRAM_OUTPUT) {
4175         /* If src_reg->index was negative, it was set to zero in
4176          * src_register().  Reassign it now.  But don't do this
4177          * for input/output regs since they get remapped while
4178          * const buffers don't.
4179          */
4180         src.Index = src_reg->index;
4181      }
4182   }
4183
4184   return src;
4185}
4186
4187static struct tgsi_texture_offset
4188translate_tex_offset(struct st_translate *t,
4189                     const struct tgsi_texture_offset *in_offset)
4190{
4191   struct tgsi_texture_offset offset;
4192
4193   assert(in_offset->File == PROGRAM_IMMEDIATE);
4194
4195   offset.File = TGSI_FILE_IMMEDIATE;
4196   offset.Index = in_offset->Index;
4197   offset.SwizzleX = in_offset->SwizzleX;
4198   offset.SwizzleY = in_offset->SwizzleY;
4199   offset.SwizzleZ = in_offset->SwizzleZ;
4200
4201   return offset;
4202}
4203
4204static void
4205compile_tgsi_instruction(struct st_translate *t,
4206                         const glsl_to_tgsi_instruction *inst)
4207{
4208   struct ureg_program *ureg = t->ureg;
4209   GLuint i;
4210   struct ureg_dst dst[1];
4211   struct ureg_src src[4];
4212   struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4213
4214   unsigned num_dst;
4215   unsigned num_src;
4216
4217   num_dst = num_inst_dst_regs(inst->op);
4218   num_src = num_inst_src_regs(inst->op);
4219
4220   if (num_dst)
4221      dst[0] = translate_dst(t,
4222                             &inst->dst,
4223                             inst->saturate);
4224
4225   for (i = 0; i < num_src; i++)
4226      src[i] = translate_src(t, &inst->src[i]);
4227
4228   switch(inst->op) {
4229   case TGSI_OPCODE_BGNLOOP:
4230   case TGSI_OPCODE_CAL:
4231   case TGSI_OPCODE_ELSE:
4232   case TGSI_OPCODE_ENDLOOP:
4233   case TGSI_OPCODE_IF:
4234      assert(num_dst == 0);
4235      ureg_label_insn(ureg,
4236                      inst->op,
4237                      src, num_src,
4238                      get_label(t,
4239                                inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4240      return;
4241
4242   case TGSI_OPCODE_TEX:
4243   case TGSI_OPCODE_TXB:
4244   case TGSI_OPCODE_TXD:
4245   case TGSI_OPCODE_TXL:
4246   case TGSI_OPCODE_TXP:
4247   case TGSI_OPCODE_TXQ:
4248   case TGSI_OPCODE_TXF:
4249      src[num_src++] = t->samplers[inst->sampler];
4250      for (i = 0; i < inst->tex_offset_num_offset; i++) {
4251         texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4252      }
4253      ureg_tex_insn(ureg,
4254                    inst->op,
4255                    dst, num_dst,
4256                    translate_texture_target(inst->tex_target, inst->tex_shadow),
4257                    texoffsets, inst->tex_offset_num_offset,
4258                    src, num_src);
4259      return;
4260
4261   case TGSI_OPCODE_SCS:
4262      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4263      ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4264      break;
4265
4266   default:
4267      ureg_insn(ureg,
4268                inst->op,
4269                dst, num_dst,
4270                src, num_src);
4271      break;
4272   }
4273}
4274
4275/**
4276 * Emit the TGSI instructions for inverting and adjusting WPOS.
4277 * This code is unavoidable because it also depends on whether
4278 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4279 */
4280static void
4281emit_wpos_adjustment( struct st_translate *t,
4282                      const struct gl_program *program,
4283                      boolean invert,
4284                      GLfloat adjX, GLfloat adjY[2])
4285{
4286   struct ureg_program *ureg = t->ureg;
4287
4288   /* Fragment program uses fragment position input.
4289    * Need to replace instances of INPUT[WPOS] with temp T
4290    * where T = INPUT[WPOS] by y is inverted.
4291    */
4292   static const gl_state_index wposTransformState[STATE_LENGTH]
4293      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4294          (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4295
4296   /* XXX: note we are modifying the incoming shader here!  Need to
4297    * do this before emitting the constant decls below, or this
4298    * will be missed:
4299    */
4300   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4301                                                       wposTransformState);
4302
4303   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4304   struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4305   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4306
4307   /* First, apply the coordinate shift: */
4308   if (adjX || adjY[0] || adjY[1]) {
4309      if (adjY[0] != adjY[1]) {
4310         /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4311          * depending on whether inversion is actually going to be applied
4312          * or not, which is determined by testing against the inversion
4313          * state variable used below, which will be either +1 or -1.
4314          */
4315         struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
4316
4317         ureg_CMP(ureg, adj_temp,
4318                  ureg_scalar(wpostrans, invert ? 2 : 0),
4319                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4320                  ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4321         ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4322      } else {
4323         ureg_ADD(ureg, wpos_temp, wpos_input,
4324                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4325      }
4326      wpos_input = ureg_src(wpos_temp);
4327   } else {
4328      /* MOV wpos_temp, input[wpos]
4329       */
4330      ureg_MOV( ureg, wpos_temp, wpos_input );
4331   }
4332
4333   /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4334    * inversion/identity, or the other way around if we're drawing to an FBO.
4335    */
4336   if (invert) {
4337      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4338       */
4339      ureg_MAD( ureg,
4340                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4341                wpos_input,
4342                ureg_scalar(wpostrans, 0),
4343                ureg_scalar(wpostrans, 1));
4344   } else {
4345      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4346       */
4347      ureg_MAD( ureg,
4348                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4349                wpos_input,
4350                ureg_scalar(wpostrans, 2),
4351                ureg_scalar(wpostrans, 3));
4352   }
4353
4354   /* Use wpos_temp as position input from here on:
4355    */
4356   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4357}
4358
4359
4360/**
4361 * Emit fragment position/ooordinate code.
4362 */
4363static void
4364emit_wpos(struct st_context *st,
4365          struct st_translate *t,
4366          const struct gl_program *program,
4367          struct ureg_program *ureg)
4368{
4369   const struct gl_fragment_program *fp =
4370      (const struct gl_fragment_program *) program;
4371   struct pipe_screen *pscreen = st->pipe->screen;
4372   GLfloat adjX = 0.0f;
4373   GLfloat adjY[2] = { 0.0f, 0.0f };
4374   boolean invert = FALSE;
4375
4376   /* Query the pixel center conventions supported by the pipe driver and set
4377    * adjX, adjY to help out if it cannot handle the requested one internally.
4378    *
4379    * The bias of the y-coordinate depends on whether y-inversion takes place
4380    * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4381    * drawing to an FBO (causes additional inversion), and whether the the pipe
4382    * driver origin and the requested origin differ (the latter condition is
4383    * stored in the 'invert' variable).
4384    *
4385    * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4386    *
4387    * center shift only:
4388    * i -> h: +0.5
4389    * h -> i: -0.5
4390    *
4391    * inversion only:
4392    * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4393    * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4394    * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4395    * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4396    *
4397    * inversion and center shift:
4398    * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4399    * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4400    * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4401    * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4402    */
4403   if (fp->OriginUpperLeft) {
4404      /* Fragment shader wants origin in upper-left */
4405      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4406         /* the driver supports upper-left origin */
4407      }
4408      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4409         /* the driver supports lower-left origin, need to invert Y */
4410         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4411         invert = TRUE;
4412      }
4413      else
4414         assert(0);
4415   }
4416   else {
4417      /* Fragment shader wants origin in lower-left */
4418      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4419         /* the driver supports lower-left origin */
4420         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4421      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4422         /* the driver supports upper-left origin, need to invert Y */
4423         invert = TRUE;
4424      else
4425         assert(0);
4426   }
4427
4428   if (fp->PixelCenterInteger) {
4429      /* Fragment shader wants pixel center integer */
4430      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4431         /* the driver supports pixel center integer */
4432         adjY[1] = 1.0f;
4433         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4434      }
4435      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4436         /* the driver supports pixel center half integer, need to bias X,Y */
4437         adjX = -0.5f;
4438         adjY[0] = -0.5f;
4439         adjY[1] = 0.5f;
4440      }
4441      else
4442         assert(0);
4443   }
4444   else {
4445      /* Fragment shader wants pixel center half integer */
4446      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4447         /* the driver supports pixel center half integer */
4448      }
4449      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4450         /* the driver supports pixel center integer, need to bias X,Y */
4451         adjX = adjY[0] = adjY[1] = 0.5f;
4452         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4453      }
4454      else
4455         assert(0);
4456   }
4457
4458   /* we invert after adjustment so that we avoid the MOV to temporary,
4459    * and reuse the adjustment ADD instead */
4460   emit_wpos_adjustment(t, program, invert, adjX, adjY);
4461}
4462
4463/**
4464 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4465 * TGSI uses +1 for front, -1 for back.
4466 * This function converts the TGSI value to the GL value.  Simply clamping/
4467 * saturating the value to [0,1] does the job.
4468 */
4469static void
4470emit_face_var(struct st_translate *t)
4471{
4472   struct ureg_program *ureg = t->ureg;
4473   struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4474   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4475
4476   /* MOV_SAT face_temp, input[face] */
4477   face_temp = ureg_saturate(face_temp);
4478   ureg_MOV(ureg, face_temp, face_input);
4479
4480   /* Use face_temp as face input from here on: */
4481   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4482}
4483
4484static void
4485emit_edgeflags(struct st_translate *t)
4486{
4487   struct ureg_program *ureg = t->ureg;
4488   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4489   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4490
4491   ureg_MOV(ureg, edge_dst, edge_src);
4492}
4493
4494/**
4495 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4496 * \param program  the program to translate
4497 * \param numInputs  number of input registers used
4498 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
4499 *                      input indexes
4500 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
4501 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
4502 *                            each input
4503 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4504 * \param numOutputs  number of output registers used
4505 * \param outputMapping  maps Mesa fragment program outputs to TGSI
4506 *                       generic outputs
4507 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
4508 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
4509 *                             each output
4510 *
4511 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4512 */
4513extern "C" enum pipe_error
4514st_translate_program(
4515   struct gl_context *ctx,
4516   uint procType,
4517   struct ureg_program *ureg,
4518   glsl_to_tgsi_visitor *program,
4519   const struct gl_program *proginfo,
4520   GLuint numInputs,
4521   const GLuint inputMapping[],
4522   const ubyte inputSemanticName[],
4523   const ubyte inputSemanticIndex[],
4524   const GLuint interpMode[],
4525   GLuint numOutputs,
4526   const GLuint outputMapping[],
4527   const ubyte outputSemanticName[],
4528   const ubyte outputSemanticIndex[],
4529   boolean passthrough_edgeflags)
4530{
4531   struct st_translate *t;
4532   unsigned i;
4533   enum pipe_error ret = PIPE_OK;
4534
4535   assert(numInputs <= Elements(t->inputs));
4536   assert(numOutputs <= Elements(t->outputs));
4537
4538   t = CALLOC_STRUCT(st_translate);
4539   if (!t) {
4540      ret = PIPE_ERROR_OUT_OF_MEMORY;
4541      goto out;
4542   }
4543
4544   memset(t, 0, sizeof *t);
4545
4546   t->procType = procType;
4547   t->inputMapping = inputMapping;
4548   t->outputMapping = outputMapping;
4549   t->ureg = ureg;
4550   t->pointSizeOutIndex = -1;
4551   t->prevInstWrotePointSize = GL_FALSE;
4552
4553   /*
4554    * Declare input attributes.
4555    */
4556   if (procType == TGSI_PROCESSOR_FRAGMENT) {
4557      for (i = 0; i < numInputs; i++) {
4558         t->inputs[i] = ureg_DECL_fs_input(ureg,
4559                                           inputSemanticName[i],
4560                                           inputSemanticIndex[i],
4561                                           interpMode[i]);
4562      }
4563
4564      if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4565         /* Must do this after setting up t->inputs, and before
4566          * emitting constant references, below:
4567          */
4568          emit_wpos(st_context(ctx), t, proginfo, ureg);
4569      }
4570
4571      if (proginfo->InputsRead & FRAG_BIT_FACE)
4572         emit_face_var(t);
4573
4574      /*
4575       * Declare output attributes.
4576       */
4577      for (i = 0; i < numOutputs; i++) {
4578         switch (outputSemanticName[i]) {
4579         case TGSI_SEMANTIC_POSITION:
4580            t->outputs[i] = ureg_DECL_output(ureg,
4581                                             TGSI_SEMANTIC_POSITION, /* Z/Depth */
4582                                             outputSemanticIndex[i]);
4583            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4584            break;
4585         case TGSI_SEMANTIC_STENCIL:
4586            t->outputs[i] = ureg_DECL_output(ureg,
4587                                             TGSI_SEMANTIC_STENCIL, /* Stencil */
4588                                             outputSemanticIndex[i]);
4589            t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4590            break;
4591         case TGSI_SEMANTIC_COLOR:
4592            t->outputs[i] = ureg_DECL_output(ureg,
4593                                             TGSI_SEMANTIC_COLOR,
4594                                             outputSemanticIndex[i]);
4595            break;
4596         default:
4597            assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4598            ret = PIPE_ERROR_BAD_INPUT;
4599            goto out;
4600         }
4601      }
4602   }
4603   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4604      for (i = 0; i < numInputs; i++) {
4605         t->inputs[i] = ureg_DECL_gs_input(ureg,
4606                                           i,
4607                                           inputSemanticName[i],
4608                                           inputSemanticIndex[i]);
4609      }
4610
4611      for (i = 0; i < numOutputs; i++) {
4612         t->outputs[i] = ureg_DECL_output(ureg,
4613                                          outputSemanticName[i],
4614                                          outputSemanticIndex[i]);
4615      }
4616   }
4617   else {
4618      assert(procType == TGSI_PROCESSOR_VERTEX);
4619
4620      for (i = 0; i < numInputs; i++) {
4621         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4622      }
4623
4624      for (i = 0; i < numOutputs; i++) {
4625         t->outputs[i] = ureg_DECL_output(ureg,
4626                                          outputSemanticName[i],
4627                                          outputSemanticIndex[i]);
4628         if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4629            /* Writing to the point size result register requires special
4630             * handling to implement clamping.
4631             */
4632            static const gl_state_index pointSizeClampState[STATE_LENGTH]
4633               = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4634               /* XXX: note we are modifying the incoming shader here!  Need to
4635               * do this before emitting the constant decls below, or this
4636               * will be missed.
4637               */
4638            unsigned pointSizeClampConst =
4639               _mesa_add_state_reference(proginfo->Parameters,
4640                                         pointSizeClampState);
4641            struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4642            t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4643            t->pointSizeResult = t->outputs[i];
4644            t->pointSizeOutIndex = i;
4645            t->outputs[i] = psizregtemp;
4646         }
4647      }
4648      if (passthrough_edgeflags)
4649         emit_edgeflags(t);
4650   }
4651
4652   /* Declare address register.
4653    */
4654   if (program->num_address_regs > 0) {
4655      assert(program->num_address_regs == 1);
4656      t->address[0] = ureg_DECL_address(ureg);
4657   }
4658
4659   /* Declare misc input registers
4660    */
4661   {
4662      GLbitfield sysInputs = proginfo->SystemValuesRead;
4663      unsigned numSys = 0;
4664      for (i = 0; sysInputs; i++) {
4665         if (sysInputs & (1 << i)) {
4666            unsigned semName = mesa_sysval_to_semantic[i];
4667            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4668            numSys++;
4669            sysInputs &= ~(1 << i);
4670         }
4671      }
4672   }
4673
4674   if (program->indirect_addr_temps) {
4675      /* If temps are accessed with indirect addressing, declare temporaries
4676       * in sequential order.  Else, we declare them on demand elsewhere.
4677       * (Note: the number of temporaries is equal to program->next_temp)
4678       */
4679      for (i = 0; i < (unsigned)program->next_temp; i++) {
4680         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4681         t->temps[i] = ureg_DECL_temporary(t->ureg);
4682      }
4683   }
4684
4685   /* Emit constants and uniforms.  TGSI uses a single index space for these,
4686    * so we put all the translated regs in t->constants.
4687    */
4688   if (proginfo->Parameters) {
4689      t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4690      if (t->constants == NULL) {
4691         ret = PIPE_ERROR_OUT_OF_MEMORY;
4692         goto out;
4693      }
4694
4695      for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4696         switch (proginfo->Parameters->Parameters[i].Type) {
4697         case PROGRAM_ENV_PARAM:
4698         case PROGRAM_LOCAL_PARAM:
4699         case PROGRAM_STATE_VAR:
4700         case PROGRAM_NAMED_PARAM:
4701         case PROGRAM_UNIFORM:
4702            t->constants[i] = ureg_DECL_constant(ureg, i);
4703            break;
4704
4705         /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4706          * addressing of the const buffer.
4707          * FIXME: Be smarter and recognize param arrays:
4708          * indirect addressing is only valid within the referenced
4709          * array.
4710          */
4711         case PROGRAM_CONSTANT:
4712            if (program->indirect_addr_consts)
4713               t->constants[i] = ureg_DECL_constant(ureg, i);
4714            else
4715               t->constants[i] = emit_immediate(t,
4716                                                proginfo->Parameters->ParameterValues[i],
4717                                                proginfo->Parameters->Parameters[i].DataType,
4718                                                4);
4719            break;
4720         default:
4721            break;
4722         }
4723      }
4724   }
4725
4726   /* Emit immediate values.
4727    */
4728   t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4729   if (t->immediates == NULL) {
4730      ret = PIPE_ERROR_OUT_OF_MEMORY;
4731      goto out;
4732   }
4733   i = 0;
4734   foreach_iter(exec_list_iterator, iter, program->immediates) {
4735      immediate_storage *imm = (immediate_storage *)iter.get();
4736      t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4737   }
4738
4739   /* texture samplers */
4740   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4741      if (program->samplers_used & (1 << i)) {
4742         t->samplers[i] = ureg_DECL_sampler(ureg, i);
4743      }
4744   }
4745
4746   /* Emit each instruction in turn:
4747    */
4748   foreach_iter(exec_list_iterator, iter, program->instructions) {
4749      set_insn_start(t, ureg_get_instruction_number(ureg));
4750      compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4751
4752      if (t->prevInstWrotePointSize && proginfo->Id) {
4753         /* The previous instruction wrote to the (fake) vertex point size
4754          * result register.  Now we need to clamp that value to the min/max
4755          * point size range, putting the result into the real point size
4756          * register.
4757          * Note that we can't do this easily at the end of program due to
4758          * possible early return.
4759          */
4760         set_insn_start(t, ureg_get_instruction_number(ureg));
4761         ureg_MAX(t->ureg,
4762                  ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4763                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4764                  ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4765         ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4766                  ureg_src(t->outputs[t->pointSizeOutIndex]),
4767                  ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4768      }
4769      t->prevInstWrotePointSize = GL_FALSE;
4770   }
4771
4772   /* Fix up all emitted labels:
4773    */
4774   for (i = 0; i < t->labels_count; i++) {
4775      ureg_fixup_label(ureg, t->labels[i].token,
4776                       t->insn[t->labels[i].branch_target]);
4777   }
4778
4779out:
4780   if (t) {
4781      FREE(t->insn);
4782      FREE(t->labels);
4783      FREE(t->constants);
4784      FREE(t->immediates);
4785
4786      if (t->error) {
4787         debug_printf("%s: translate error flag set\n", __FUNCTION__);
4788      }
4789
4790      FREE(t);
4791   }
4792
4793   return ret;
4794}
4795/* ----------------------------- End TGSI code ------------------------------ */
4796
4797/**
4798 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4799 * generating Mesa IR.
4800 */
4801static struct gl_program *
4802get_mesa_program(struct gl_context *ctx,
4803                 struct gl_shader_program *shader_program,
4804        	 struct gl_shader *shader)
4805{
4806   glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4807   struct gl_program *prog;
4808   struct pipe_screen * screen = st_context(ctx)->pipe->screen;
4809   unsigned pipe_shader_type;
4810   GLenum target;
4811   const char *target_string;
4812   bool progress;
4813   struct gl_shader_compiler_options *options =
4814         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4815
4816   switch (shader->Type) {
4817   case GL_VERTEX_SHADER:
4818      target = GL_VERTEX_PROGRAM_ARB;
4819      target_string = "vertex";
4820      pipe_shader_type = PIPE_SHADER_VERTEX;
4821      break;
4822   case GL_FRAGMENT_SHADER:
4823      target = GL_FRAGMENT_PROGRAM_ARB;
4824      target_string = "fragment";
4825      pipe_shader_type = PIPE_SHADER_FRAGMENT;
4826      break;
4827   case GL_GEOMETRY_SHADER:
4828      target = GL_GEOMETRY_PROGRAM_NV;
4829      target_string = "geometry";
4830      pipe_shader_type = PIPE_SHADER_GEOMETRY;
4831      break;
4832   default:
4833      assert(!"should not be reached");
4834      return NULL;
4835   }
4836
4837   validate_ir_tree(shader->ir);
4838
4839   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4840   if (!prog)
4841      return NULL;
4842   prog->Parameters = _mesa_new_parameter_list();
4843   v->ctx = ctx;
4844   v->prog = prog;
4845   v->shader_program = shader_program;
4846   v->options = options;
4847   v->glsl_version = ctx->Const.GLSLVersion;
4848   v->native_integers = ctx->Const.NativeIntegers;
4849
4850   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4851					       prog->Parameters);
4852
4853   /* Emit intermediate IR for main(). */
4854   visit_exec_list(shader->ir, v);
4855
4856   /* Now emit bodies for any functions that were used. */
4857   do {
4858      progress = GL_FALSE;
4859
4860      foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4861         function_entry *entry = (function_entry *)iter.get();
4862
4863         if (!entry->bgn_inst) {
4864            v->current_function = entry;
4865
4866            entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4867            entry->bgn_inst->function = entry;
4868
4869            visit_exec_list(&entry->sig->body, v);
4870
4871            glsl_to_tgsi_instruction *last;
4872            last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4873            if (last->op != TGSI_OPCODE_RET)
4874               v->emit(NULL, TGSI_OPCODE_RET);
4875
4876            glsl_to_tgsi_instruction *end;
4877            end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4878            end->function = entry;
4879
4880            progress = GL_TRUE;
4881         }
4882      }
4883   } while (progress);
4884
4885#if 0
4886   /* Print out some information (for debugging purposes) used by the
4887    * optimization passes. */
4888   for (i=0; i < v->next_temp; i++) {
4889      int fr = v->get_first_temp_read(i);
4890      int fw = v->get_first_temp_write(i);
4891      int lr = v->get_last_temp_read(i);
4892      int lw = v->get_last_temp_write(i);
4893
4894      printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4895      assert(fw <= fr);
4896   }
4897#endif
4898
4899   if (!screen->get_shader_param(screen, pipe_shader_type,
4900                                 PIPE_SHADER_CAP_OUTPUT_READ)) {
4901      /* Remove reads to output registers, and to varyings in vertex shaders. */
4902      v->remove_output_reads(PROGRAM_OUTPUT);
4903      if (target == GL_VERTEX_PROGRAM_ARB)
4904         v->remove_output_reads(PROGRAM_VARYING);
4905   }
4906
4907   /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4908   v->simplify_cmp();
4909   v->copy_propagate();
4910   while (v->eliminate_dead_code_advanced());
4911
4912   /* FIXME: These passes to optimize temporary registers don't work when there
4913    * is indirect addressing of the temporary register space.  We need proper
4914    * array support so that we don't have to give up these passes in every
4915    * shader that uses arrays.
4916    */
4917   if (!v->indirect_addr_temps) {
4918      v->eliminate_dead_code();
4919      v->merge_registers();
4920      v->renumber_registers();
4921   }
4922
4923   /* Write the END instruction. */
4924   v->emit(NULL, TGSI_OPCODE_END);
4925
4926   if (ctx->Shader.Flags & GLSL_DUMP) {
4927      printf("\n");
4928      printf("GLSL IR for linked %s program %d:\n", target_string,
4929             shader_program->Name);
4930      _mesa_print_ir(shader->ir, NULL);
4931      printf("\n");
4932      printf("\n");
4933      fflush(stdout);
4934   }
4935
4936   prog->Instructions = NULL;
4937   prog->NumInstructions = 0;
4938
4939   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
4940   count_resources(v, prog);
4941
4942   _mesa_reference_program(ctx, &shader->Program, prog);
4943
4944   /* This has to be done last.  Any operation the can cause
4945    * prog->ParameterValues to get reallocated (e.g., anything that adds a
4946    * program constant) has to happen before creating this linkage.
4947    */
4948   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
4949   if (!shader_program->LinkStatus) {
4950      return NULL;
4951   }
4952
4953   struct st_vertex_program *stvp;
4954   struct st_fragment_program *stfp;
4955   struct st_geometry_program *stgp;
4956
4957   switch (shader->Type) {
4958   case GL_VERTEX_SHADER:
4959      stvp = (struct st_vertex_program *)prog;
4960      stvp->glsl_to_tgsi = v;
4961      break;
4962   case GL_FRAGMENT_SHADER:
4963      stfp = (struct st_fragment_program *)prog;
4964      stfp->glsl_to_tgsi = v;
4965      break;
4966   case GL_GEOMETRY_SHADER:
4967      stgp = (struct st_geometry_program *)prog;
4968      stgp->glsl_to_tgsi = v;
4969      break;
4970   default:
4971      assert(!"should not be reached");
4972      return NULL;
4973   }
4974
4975   return prog;
4976}
4977
4978extern "C" {
4979
4980struct gl_shader *
4981st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4982{
4983   struct gl_shader *shader;
4984   assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4985          type == GL_GEOMETRY_SHADER_ARB);
4986   shader = rzalloc(NULL, struct gl_shader);
4987   if (shader) {
4988      shader->Type = type;
4989      shader->Name = name;
4990      _mesa_init_shader(ctx, shader);
4991   }
4992   return shader;
4993}
4994
4995struct gl_shader_program *
4996st_new_shader_program(struct gl_context *ctx, GLuint name)
4997{
4998   struct gl_shader_program *shProg;
4999   shProg = rzalloc(NULL, struct gl_shader_program);
5000   if (shProg) {
5001      shProg->Name = name;
5002      _mesa_init_shader_program(ctx, shProg);
5003   }
5004   return shProg;
5005}
5006
5007/**
5008 * Link a shader.
5009 * Called via ctx->Driver.LinkShader()
5010 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5011 * with code lowering and other optimizations.
5012 */
5013GLboolean
5014st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5015{
5016   assert(prog->LinkStatus);
5017
5018   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5019      if (prog->_LinkedShaders[i] == NULL)
5020         continue;
5021
5022      bool progress;
5023      exec_list *ir = prog->_LinkedShaders[i]->ir;
5024      const struct gl_shader_compiler_options *options =
5025            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5026
5027      do {
5028         progress = false;
5029
5030         /* Lowering */
5031         do_mat_op_to_vec(ir);
5032         lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
5033				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
5034        			 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
5035
5036         progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5037
5038         progress = do_common_optimization(ir, true, true,
5039					   options->MaxUnrollIterations)
5040	   || progress;
5041
5042         progress = lower_quadop_vector(ir, false) || progress;
5043
5044         if (options->MaxIfDepth == 0)
5045            progress = lower_discard(ir) || progress;
5046
5047         progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5048
5049         if (options->EmitNoNoise)
5050            progress = lower_noise(ir) || progress;
5051
5052         /* If there are forms of indirect addressing that the driver
5053          * cannot handle, perform the lowering pass.
5054          */
5055         if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5056             || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5057           progress =
5058             lower_variable_index_to_cond_assign(ir,
5059        					 options->EmitNoIndirectInput,
5060        					 options->EmitNoIndirectOutput,
5061        					 options->EmitNoIndirectTemp,
5062        					 options->EmitNoIndirectUniform)
5063             || progress;
5064
5065         progress = do_vec_index_to_cond_assign(ir) || progress;
5066      } while (progress);
5067
5068      validate_ir_tree(ir);
5069   }
5070
5071   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5072      struct gl_program *linked_prog;
5073
5074      if (prog->_LinkedShaders[i] == NULL)
5075         continue;
5076
5077      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5078
5079      if (linked_prog) {
5080	 static const GLenum targets[] = {
5081	    GL_VERTEX_PROGRAM_ARB,
5082	    GL_FRAGMENT_PROGRAM_ARB,
5083	    GL_GEOMETRY_PROGRAM_NV
5084	 };
5085
5086	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5087				 linked_prog);
5088         if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5089	    _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5090				    NULL);
5091            _mesa_reference_program(ctx, &linked_prog, NULL);
5092            return GL_FALSE;
5093         }
5094      }
5095
5096      _mesa_reference_program(ctx, &linked_prog, NULL);
5097   }
5098
5099   return GL_TRUE;
5100}
5101
5102void
5103st_translate_stream_output_info(struct glsl_to_tgsi_visitor *glsl_to_tgsi,
5104                                const GLuint outputMapping[],
5105                                struct pipe_stream_output_info *so)
5106{
5107   static unsigned comps_to_mask[] = {
5108      0,
5109      TGSI_WRITEMASK_X,
5110      TGSI_WRITEMASK_XY,
5111      TGSI_WRITEMASK_XYZ,
5112      TGSI_WRITEMASK_XYZW
5113   };
5114   unsigned i;
5115   struct gl_transform_feedback_info *info =
5116      &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5117
5118   for (i = 0; i < info->NumOutputs; i++) {
5119      assert(info->Outputs[i].NumComponents < Elements(comps_to_mask));
5120      so->output[i].register_index =
5121         outputMapping[info->Outputs[i].OutputRegister];
5122      so->output[i].register_mask =
5123         comps_to_mask[info->Outputs[i].NumComponents];
5124      so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5125   }
5126   so->num_outputs = info->NumOutputs;
5127}
5128
5129} /* extern "C" */
5130