st_mesa_to_tgsi.c revision 350f12fb657a2ac860796c179233fa357e4bf46c
1/**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34#include "pipe/p_compiler.h"
35#include "pipe/p_context.h"
36#include "pipe/p_screen.h"
37#include "pipe/p_shader_tokens.h"
38#include "pipe/p_state.h"
39#include "tgsi/tgsi_ureg.h"
40#include "st_mesa_to_tgsi.h"
41#include "st_context.h"
42#include "program/prog_instruction.h"
43#include "program/prog_parameter.h"
44#include "util/u_debug.h"
45#include "util/u_math.h"
46#include "util/u_memory.h"
47
48
49#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) |  \
50                           (1 << PROGRAM_ENV_PARAM) |    \
51                           (1 << PROGRAM_STATE_VAR) |    \
52                           (1 << PROGRAM_NAMED_PARAM) |  \
53                           (1 << PROGRAM_CONSTANT) |     \
54                           (1 << PROGRAM_UNIFORM))
55
56
57struct label {
58   unsigned branch_target;
59   unsigned token;
60};
61
62
63/**
64 * Intermediate state used during shader translation.
65 */
66struct st_translate {
67   struct ureg_program *ureg;
68
69   struct ureg_dst temps[MAX_PROGRAM_TEMPS];
70   struct ureg_src *constants;
71   struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
72   struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
73   struct ureg_dst address[1];
74   struct ureg_src samplers[PIPE_MAX_SAMPLERS];
75   struct ureg_src systemValues[SYSTEM_VALUE_MAX];
76
77   const GLuint *inputMapping;
78   const GLuint *outputMapping;
79
80   /* For every instruction that contains a label (eg CALL), keep
81    * details so that we can go back afterwards and emit the correct
82    * tgsi instruction number for each label.
83    */
84   struct label *labels;
85   unsigned labels_size;
86   unsigned labels_count;
87
88   /* Keep a record of the tgsi instruction number that each mesa
89    * instruction starts at, will be used to fix up labels after
90    * translation.
91    */
92   unsigned *insn;
93   unsigned insn_size;
94   unsigned insn_count;
95
96   unsigned procType;  /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
97
98   boolean error;
99};
100
101
102/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
103static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
104   TGSI_SEMANTIC_FACE,
105   TGSI_SEMANTIC_VERTEXID,
106   TGSI_SEMANTIC_INSTANCEID
107};
108
109
110/**
111 * Make note of a branch to a label in the TGSI code.
112 * After we've emitted all instructions, we'll go over the list
113 * of labels built here and patch the TGSI code with the actual
114 * location of each label.
115 */
116static unsigned *get_label( struct st_translate *t,
117                            unsigned branch_target )
118{
119   unsigned i;
120
121   if (t->labels_count + 1 >= t->labels_size) {
122      unsigned old_size = t->labels_size;
123      t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
124      t->labels = REALLOC( t->labels,
125                           old_size * sizeof t->labels[0],
126                           t->labels_size * sizeof t->labels[0] );
127      if (t->labels == NULL) {
128         static unsigned dummy;
129         t->error = TRUE;
130         return &dummy;
131      }
132   }
133
134   i = t->labels_count++;
135   t->labels[i].branch_target = branch_target;
136   return &t->labels[i].token;
137}
138
139
140/**
141 * Called prior to emitting the TGSI code for each Mesa instruction.
142 * Allocate additional space for instructions if needed.
143 * Update the insn[] array so the next Mesa instruction points to
144 * the next TGSI instruction.
145 */
146static void set_insn_start( struct st_translate *t,
147                            unsigned start )
148{
149   if (t->insn_count + 1 >= t->insn_size) {
150      unsigned old_size = t->insn_size;
151      t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
152      t->insn = REALLOC( t->insn,
153                         old_size * sizeof t->insn[0],
154                         t->insn_size * sizeof t->insn[0] );
155      if (t->insn == NULL) {
156         t->error = TRUE;
157         return;
158      }
159   }
160
161   t->insn[t->insn_count++] = start;
162}
163
164
165/**
166 * Map a Mesa dst register to a TGSI ureg_dst register.
167 */
168static struct ureg_dst
169dst_register( struct st_translate *t,
170              gl_register_file file,
171              GLuint index )
172{
173   switch( file ) {
174   case PROGRAM_UNDEFINED:
175      return ureg_dst_undef();
176
177   case PROGRAM_TEMPORARY:
178      if (ureg_dst_is_undef(t->temps[index]))
179         t->temps[index] = ureg_DECL_temporary( t->ureg );
180
181      return t->temps[index];
182
183   case PROGRAM_OUTPUT:
184      if (t->procType == TGSI_PROCESSOR_VERTEX)
185         assert(index < VERT_RESULT_MAX);
186      else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
187         assert(index < FRAG_RESULT_MAX);
188      else
189         assert(index < GEOM_RESULT_MAX);
190
191      assert(t->outputMapping[index] < Elements(t->outputs));
192
193      return t->outputs[t->outputMapping[index]];
194
195   case PROGRAM_ADDRESS:
196      return t->address[index];
197
198   default:
199      debug_assert( 0 );
200      return ureg_dst_undef();
201   }
202}
203
204
205/**
206 * Map a Mesa src register to a TGSI ureg_src register.
207 */
208static struct ureg_src
209src_register( struct st_translate *t,
210              gl_register_file file,
211              GLint index )
212{
213   switch( file ) {
214   case PROGRAM_UNDEFINED:
215      return ureg_src_undef();
216
217   case PROGRAM_TEMPORARY:
218      assert(index >= 0);
219      assert(index < Elements(t->temps));
220      if (ureg_dst_is_undef(t->temps[index]))
221         t->temps[index] = ureg_DECL_temporary( t->ureg );
222      return ureg_src(t->temps[index]);
223
224   case PROGRAM_NAMED_PARAM:
225   case PROGRAM_ENV_PARAM:
226   case PROGRAM_LOCAL_PARAM:
227   case PROGRAM_UNIFORM:
228      assert(index >= 0);
229      return t->constants[index];
230   case PROGRAM_STATE_VAR:
231   case PROGRAM_CONSTANT:       /* ie, immediate */
232      if (index < 0)
233         return ureg_DECL_constant( t->ureg, 0 );
234      else
235         return t->constants[index];
236
237   case PROGRAM_INPUT:
238      assert(t->inputMapping[index] < Elements(t->inputs));
239      return t->inputs[t->inputMapping[index]];
240
241   case PROGRAM_OUTPUT:
242      assert(t->outputMapping[index] < Elements(t->outputs));
243      return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
244
245   case PROGRAM_ADDRESS:
246      return ureg_src(t->address[index]);
247
248   case PROGRAM_SYSTEM_VALUE:
249      assert(index < Elements(t->systemValues));
250      return t->systemValues[index];
251
252   default:
253      debug_assert( 0 );
254      return ureg_src_undef();
255   }
256}
257
258
259/**
260 * Map mesa texture target to TGSI texture target.
261 */
262unsigned
263st_translate_texture_target( GLuint textarget,
264                          GLboolean shadow )
265{
266   if (shadow) {
267      switch( textarget ) {
268      case TEXTURE_1D_INDEX:   return TGSI_TEXTURE_SHADOW1D;
269      case TEXTURE_2D_INDEX:   return TGSI_TEXTURE_SHADOW2D;
270      case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
271      case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
272      case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
273      case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
274      default: break;
275      }
276   }
277
278   switch( textarget ) {
279   case TEXTURE_1D_INDEX:   return TGSI_TEXTURE_1D;
280   case TEXTURE_2D_INDEX:   return TGSI_TEXTURE_2D;
281   case TEXTURE_3D_INDEX:   return TGSI_TEXTURE_3D;
282   case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
283   case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
284   case TEXTURE_1D_ARRAY_INDEX:   return TGSI_TEXTURE_1D_ARRAY;
285   case TEXTURE_2D_ARRAY_INDEX:   return TGSI_TEXTURE_2D_ARRAY;
286   case TEXTURE_EXTERNAL_INDEX:   return TGSI_TEXTURE_2D;
287   default:
288      debug_assert( 0 );
289      return TGSI_TEXTURE_1D;
290   }
291}
292
293
294/**
295 * Create a TGSI ureg_dst register from a Mesa dest register.
296 */
297static struct ureg_dst
298translate_dst( struct st_translate *t,
299               const struct prog_dst_register *DstReg,
300               boolean saturate,
301               boolean clamp_color)
302{
303   struct ureg_dst dst = dst_register( t,
304                                       DstReg->File,
305                                       DstReg->Index );
306
307   dst = ureg_writemask( dst,
308                         DstReg->WriteMask );
309
310   if (saturate)
311      dst = ureg_saturate( dst );
312   else if (clamp_color && DstReg->File == PROGRAM_OUTPUT) {
313      /* Clamp colors for ARB_color_buffer_float. */
314      switch (t->procType) {
315      case TGSI_PROCESSOR_VERTEX:
316         /* XXX if the geometry shader is present, this must be done there
317          * instead of here. */
318         if (DstReg->Index == VERT_RESULT_COL0 ||
319             DstReg->Index == VERT_RESULT_COL1 ||
320             DstReg->Index == VERT_RESULT_BFC0 ||
321             DstReg->Index == VERT_RESULT_BFC1) {
322            dst = ureg_saturate(dst);
323         }
324         break;
325
326      case TGSI_PROCESSOR_FRAGMENT:
327         if (DstReg->Index >= FRAG_RESULT_COLOR) {
328            dst = ureg_saturate(dst);
329         }
330         break;
331      }
332   }
333
334   if (DstReg->RelAddr)
335      dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
336
337   return dst;
338}
339
340
341/**
342 * Create a TGSI ureg_src register from a Mesa src register.
343 */
344static struct ureg_src
345translate_src( struct st_translate *t,
346               const struct prog_src_register *SrcReg )
347{
348   struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
349
350   if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
351      src = src_register( t, SrcReg->File, SrcReg->Index2 );
352      if (SrcReg->RelAddr2)
353         src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
354                                            SrcReg->Index);
355      else
356         src = ureg_src_dimension( src, SrcReg->Index);
357   }
358
359   src = ureg_swizzle( src,
360                       GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
361                       GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
362                       GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
363                       GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
364
365   if (SrcReg->Negate == NEGATE_XYZW)
366      src = ureg_negate(src);
367
368   if (SrcReg->Abs)
369      src = ureg_abs(src);
370
371   if (SrcReg->RelAddr) {
372      src = ureg_src_indirect( src, ureg_src(t->address[0]));
373      if (SrcReg->File != PROGRAM_INPUT &&
374          SrcReg->File != PROGRAM_OUTPUT) {
375         /* If SrcReg->Index was negative, it was set to zero in
376          * src_register().  Reassign it now.  But don't do this
377          * for input/output regs since they get remapped while
378          * const buffers don't.
379          */
380         src.Index = SrcReg->Index;
381      }
382   }
383
384   return src;
385}
386
387
388static struct ureg_src swizzle_4v( struct ureg_src src,
389                                   const unsigned *swz )
390{
391   return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
392}
393
394
395/**
396 * Translate a SWZ instruction into a MOV, MUL or MAD instruction.  EG:
397 *
398 *   SWZ dst, src.x-y10
399 *
400 * becomes:
401 *
402 *   MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
403 */
404static void emit_swz( struct st_translate *t,
405                      struct ureg_dst dst,
406                      const struct prog_src_register *SrcReg )
407{
408   struct ureg_program *ureg = t->ureg;
409   struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
410
411   unsigned negate_mask =  SrcReg->Negate;
412
413   unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
414                        (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
415                        (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
416                        (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
417
418   unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
419                         (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
420                         (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
421                         (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
422
423   unsigned negative_one_mask = one_mask & negate_mask;
424   unsigned positive_one_mask = one_mask & ~negate_mask;
425
426   struct ureg_src imm;
427   unsigned i;
428   unsigned mul_swizzle[4] = {0,0,0,0};
429   unsigned add_swizzle[4] = {0,0,0,0};
430   unsigned src_swizzle[4] = {0,0,0,0};
431   boolean need_add = FALSE;
432   boolean need_mul = FALSE;
433
434   if (dst.WriteMask == 0)
435      return;
436
437   /* Is this just a MOV?
438    */
439   if (zero_mask == 0 &&
440       one_mask == 0 &&
441       (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
442   {
443      ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
444      return;
445   }
446
447#define IMM_ZERO    0
448#define IMM_ONE     1
449#define IMM_NEG_ONE 2
450
451   imm = ureg_imm3f( ureg, 0, 1, -1 );
452
453   for (i = 0; i < 4; i++) {
454      unsigned bit = 1 << i;
455
456      if (dst.WriteMask & bit) {
457         if (positive_one_mask & bit) {
458            mul_swizzle[i] = IMM_ZERO;
459            add_swizzle[i] = IMM_ONE;
460            need_add = TRUE;
461         }
462         else if (negative_one_mask & bit) {
463            mul_swizzle[i] = IMM_ZERO;
464            add_swizzle[i] = IMM_NEG_ONE;
465            need_add = TRUE;
466         }
467         else if (zero_mask & bit) {
468            mul_swizzle[i] = IMM_ZERO;
469            add_swizzle[i] = IMM_ZERO;
470            need_add = TRUE;
471         }
472         else {
473            add_swizzle[i] = IMM_ZERO;
474            src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
475            need_mul = TRUE;
476            if (negate_mask & bit) {
477               mul_swizzle[i] = IMM_NEG_ONE;
478            }
479            else {
480               mul_swizzle[i] = IMM_ONE;
481            }
482         }
483      }
484   }
485
486   if (need_mul && need_add) {
487      ureg_MAD( ureg,
488                dst,
489                swizzle_4v( src, src_swizzle ),
490                swizzle_4v( imm, mul_swizzle ),
491                swizzle_4v( imm, add_swizzle ) );
492   }
493   else if (need_mul) {
494      ureg_MUL( ureg,
495                dst,
496                swizzle_4v( src, src_swizzle ),
497                swizzle_4v( imm, mul_swizzle ) );
498   }
499   else if (need_add) {
500      ureg_MOV( ureg,
501                dst,
502                swizzle_4v( imm, add_swizzle ) );
503   }
504   else {
505      debug_assert(0);
506   }
507
508#undef IMM_ZERO
509#undef IMM_ONE
510#undef IMM_NEG_ONE
511}
512
513
514/**
515 * Negate the value of DDY to match GL semantics where (0,0) is the
516 * lower-left corner of the window.
517 * Note that the GL_ARB_fragment_coord_conventions extension will
518 * effect this someday.
519 */
520static void emit_ddy( struct st_translate *t,
521                      struct ureg_dst dst,
522                      const struct prog_src_register *SrcReg )
523{
524   struct ureg_program *ureg = t->ureg;
525   struct ureg_src src = translate_src( t, SrcReg );
526   src = ureg_negate( src );
527   ureg_DDY( ureg, dst, src );
528}
529
530
531
532static unsigned
533translate_opcode( unsigned op )
534{
535   switch( op ) {
536   case OPCODE_ARL:
537      return TGSI_OPCODE_ARL;
538   case OPCODE_ABS:
539      return TGSI_OPCODE_ABS;
540   case OPCODE_ADD:
541      return TGSI_OPCODE_ADD;
542   case OPCODE_BGNLOOP:
543      return TGSI_OPCODE_BGNLOOP;
544   case OPCODE_BGNSUB:
545      return TGSI_OPCODE_BGNSUB;
546   case OPCODE_BRA:
547      return TGSI_OPCODE_BRA;
548   case OPCODE_BRK:
549      return TGSI_OPCODE_BRK;
550   case OPCODE_CAL:
551      return TGSI_OPCODE_CAL;
552   case OPCODE_CMP:
553      return TGSI_OPCODE_CMP;
554   case OPCODE_CONT:
555      return TGSI_OPCODE_CONT;
556   case OPCODE_COS:
557      return TGSI_OPCODE_COS;
558   case OPCODE_DDX:
559      return TGSI_OPCODE_DDX;
560   case OPCODE_DDY:
561      return TGSI_OPCODE_DDY;
562   case OPCODE_DP2:
563      return TGSI_OPCODE_DP2;
564   case OPCODE_DP2A:
565      return TGSI_OPCODE_DP2A;
566   case OPCODE_DP3:
567      return TGSI_OPCODE_DP3;
568   case OPCODE_DP4:
569      return TGSI_OPCODE_DP4;
570   case OPCODE_DPH:
571      return TGSI_OPCODE_DPH;
572   case OPCODE_DST:
573      return TGSI_OPCODE_DST;
574   case OPCODE_ELSE:
575      return TGSI_OPCODE_ELSE;
576   case OPCODE_EMIT_VERTEX:
577      return TGSI_OPCODE_EMIT;
578   case OPCODE_END_PRIMITIVE:
579      return TGSI_OPCODE_ENDPRIM;
580   case OPCODE_ENDIF:
581      return TGSI_OPCODE_ENDIF;
582   case OPCODE_ENDLOOP:
583      return TGSI_OPCODE_ENDLOOP;
584   case OPCODE_ENDSUB:
585      return TGSI_OPCODE_ENDSUB;
586   case OPCODE_EX2:
587      return TGSI_OPCODE_EX2;
588   case OPCODE_EXP:
589      return TGSI_OPCODE_EXP;
590   case OPCODE_FLR:
591      return TGSI_OPCODE_FLR;
592   case OPCODE_FRC:
593      return TGSI_OPCODE_FRC;
594   case OPCODE_IF:
595      return TGSI_OPCODE_IF;
596   case OPCODE_TRUNC:
597      return TGSI_OPCODE_TRUNC;
598   case OPCODE_KIL:
599      return TGSI_OPCODE_KIL;
600   case OPCODE_KIL_NV:
601      return TGSI_OPCODE_KILP;
602   case OPCODE_LG2:
603      return TGSI_OPCODE_LG2;
604   case OPCODE_LOG:
605      return TGSI_OPCODE_LOG;
606   case OPCODE_LIT:
607      return TGSI_OPCODE_LIT;
608   case OPCODE_LRP:
609      return TGSI_OPCODE_LRP;
610   case OPCODE_MAD:
611      return TGSI_OPCODE_MAD;
612   case OPCODE_MAX:
613      return TGSI_OPCODE_MAX;
614   case OPCODE_MIN:
615      return TGSI_OPCODE_MIN;
616   case OPCODE_MOV:
617      return TGSI_OPCODE_MOV;
618   case OPCODE_MUL:
619      return TGSI_OPCODE_MUL;
620   case OPCODE_NOP:
621      return TGSI_OPCODE_NOP;
622   case OPCODE_NRM3:
623      return TGSI_OPCODE_NRM;
624   case OPCODE_NRM4:
625      return TGSI_OPCODE_NRM4;
626   case OPCODE_POW:
627      return TGSI_OPCODE_POW;
628   case OPCODE_RCP:
629      return TGSI_OPCODE_RCP;
630   case OPCODE_RET:
631      return TGSI_OPCODE_RET;
632   case OPCODE_RSQ:
633      return TGSI_OPCODE_RSQ;
634   case OPCODE_SCS:
635      return TGSI_OPCODE_SCS;
636   case OPCODE_SEQ:
637      return TGSI_OPCODE_SEQ;
638   case OPCODE_SGE:
639      return TGSI_OPCODE_SGE;
640   case OPCODE_SGT:
641      return TGSI_OPCODE_SGT;
642   case OPCODE_SIN:
643      return TGSI_OPCODE_SIN;
644   case OPCODE_SLE:
645      return TGSI_OPCODE_SLE;
646   case OPCODE_SLT:
647      return TGSI_OPCODE_SLT;
648   case OPCODE_SNE:
649      return TGSI_OPCODE_SNE;
650   case OPCODE_SSG:
651      return TGSI_OPCODE_SSG;
652   case OPCODE_SUB:
653      return TGSI_OPCODE_SUB;
654   case OPCODE_TEX:
655      return TGSI_OPCODE_TEX;
656   case OPCODE_TXB:
657      return TGSI_OPCODE_TXB;
658   case OPCODE_TXD:
659      return TGSI_OPCODE_TXD;
660   case OPCODE_TXL:
661      return TGSI_OPCODE_TXL;
662   case OPCODE_TXP:
663      return TGSI_OPCODE_TXP;
664   case OPCODE_XPD:
665      return TGSI_OPCODE_XPD;
666   case OPCODE_END:
667      return TGSI_OPCODE_END;
668   default:
669      debug_assert( 0 );
670      return TGSI_OPCODE_NOP;
671   }
672}
673
674
675static void
676compile_instruction(
677   struct st_translate *t,
678   const struct prog_instruction *inst,
679   boolean clamp_dst_color_output)
680{
681   struct ureg_program *ureg = t->ureg;
682   GLuint i;
683   struct ureg_dst dst[1] = { { 0 } };
684   struct ureg_src src[4];
685   unsigned num_dst;
686   unsigned num_src;
687
688   num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
689   num_src = _mesa_num_inst_src_regs( inst->Opcode );
690
691   if (num_dst)
692      dst[0] = translate_dst( t,
693                              &inst->DstReg,
694                              inst->SaturateMode,
695                              clamp_dst_color_output);
696
697   for (i = 0; i < num_src; i++)
698      src[i] = translate_src( t, &inst->SrcReg[i] );
699
700   switch( inst->Opcode ) {
701   case OPCODE_SWZ:
702      emit_swz( t, dst[0], &inst->SrcReg[0] );
703      return;
704
705   case OPCODE_BGNLOOP:
706   case OPCODE_CAL:
707   case OPCODE_ELSE:
708   case OPCODE_ENDLOOP:
709   case OPCODE_IF:
710      debug_assert(num_dst == 0);
711      ureg_label_insn( ureg,
712                       translate_opcode( inst->Opcode ),
713                       src, num_src,
714                       get_label( t, inst->BranchTarget ));
715      return;
716
717   case OPCODE_TEX:
718   case OPCODE_TXB:
719   case OPCODE_TXD:
720   case OPCODE_TXL:
721   case OPCODE_TXP:
722      src[num_src++] = t->samplers[inst->TexSrcUnit];
723      ureg_tex_insn( ureg,
724                     translate_opcode( inst->Opcode ),
725                     dst, num_dst,
726                     st_translate_texture_target( inst->TexSrcTarget,
727                                               inst->TexShadow ),
728                     NULL, 0,
729                     src, num_src );
730      return;
731
732   case OPCODE_SCS:
733      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
734      ureg_insn( ureg,
735                 translate_opcode( inst->Opcode ),
736                 dst, num_dst,
737                 src, num_src );
738      break;
739
740   case OPCODE_XPD:
741      dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
742      ureg_insn( ureg,
743                 translate_opcode( inst->Opcode ),
744                 dst, num_dst,
745                 src, num_src );
746      break;
747
748   case OPCODE_NOISE1:
749   case OPCODE_NOISE2:
750   case OPCODE_NOISE3:
751   case OPCODE_NOISE4:
752      /* At some point, a motivated person could add a better
753       * implementation of noise.  Currently not even the nvidia
754       * binary drivers do anything more than this.  In any case, the
755       * place to do this is in the GL state tracker, not the poor
756       * driver.
757       */
758      ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
759      break;
760
761   case OPCODE_DDY:
762      emit_ddy( t, dst[0], &inst->SrcReg[0] );
763      break;
764
765   default:
766      ureg_insn( ureg,
767                 translate_opcode( inst->Opcode ),
768                 dst, num_dst,
769                 src, num_src );
770      break;
771   }
772}
773
774
775/**
776 * Emit the TGSI instructions for inverting and adjusting WPOS.
777 * This code is unavoidable because it also depends on whether
778 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
779 */
780static void
781emit_wpos_adjustment( struct st_translate *t,
782                      const struct gl_program *program,
783                      boolean invert,
784                      GLfloat adjX, GLfloat adjY[2])
785{
786   struct ureg_program *ureg = t->ureg;
787
788   /* Fragment program uses fragment position input.
789    * Need to replace instances of INPUT[WPOS] with temp T
790    * where T = INPUT[WPOS] by y is inverted.
791    */
792   static const gl_state_index wposTransformState[STATE_LENGTH]
793      = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
794
795   /* XXX: note we are modifying the incoming shader here!  Need to
796    * do this before emitting the constant decls below, or this
797    * will be missed:
798    */
799   unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
800                                                       wposTransformState);
801
802   struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
803   struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
804   struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
805
806   /* First, apply the coordinate shift: */
807   if (adjX || adjY[0] || adjY[1]) {
808      if (adjY[0] != adjY[1]) {
809         /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
810          * depending on whether inversion is actually going to be applied
811          * or not, which is determined by testing against the inversion
812          * state variable used below, which will be either +1 or -1.
813          */
814         struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
815
816         ureg_CMP(ureg, adj_temp,
817                  ureg_scalar(wpostrans, invert ? 2 : 0),
818                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
819                  ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
820         ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
821      } else {
822         ureg_ADD(ureg, wpos_temp, wpos_input,
823                  ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
824      }
825      wpos_input = ureg_src(wpos_temp);
826   } else {
827      /* MOV wpos_temp, input[wpos]
828       */
829      ureg_MOV( ureg, wpos_temp, wpos_input );
830   }
831
832   /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
833    * inversion/identity, or the other way around if we're drawing to an FBO.
834    */
835   if (invert) {
836      /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
837       */
838      ureg_MAD( ureg,
839                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
840                wpos_input,
841                ureg_scalar(wpostrans, 0),
842                ureg_scalar(wpostrans, 1));
843   } else {
844      /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
845       */
846      ureg_MAD( ureg,
847                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
848                wpos_input,
849                ureg_scalar(wpostrans, 2),
850                ureg_scalar(wpostrans, 3));
851   }
852
853   /* Use wpos_temp as position input from here on:
854    */
855   t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
856}
857
858
859/**
860 * Emit fragment position/ooordinate code.
861 */
862static void
863emit_wpos(struct st_context *st,
864          struct st_translate *t,
865          const struct gl_program *program,
866          struct ureg_program *ureg)
867{
868   const struct gl_fragment_program *fp =
869      (const struct gl_fragment_program *) program;
870   struct pipe_screen *pscreen = st->pipe->screen;
871   GLfloat adjX = 0.0f;
872   GLfloat adjY[2] = { 0.0f, 0.0f };
873   boolean invert = FALSE;
874
875   /* Query the pixel center conventions supported by the pipe driver and set
876    * adjX, adjY to help out if it cannot handle the requested one internally.
877    *
878    * The bias of the y-coordinate depends on whether y-inversion takes place
879    * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
880    * drawing to an FBO (causes additional inversion), and whether the the pipe
881    * driver origin and the requested origin differ (the latter condition is
882    * stored in the 'invert' variable).
883    *
884    * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
885    *
886    * center shift only:
887    * i -> h: +0.5
888    * h -> i: -0.5
889    *
890    * inversion only:
891    * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
892    * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
893    * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
894    * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
895    *
896    * inversion and center shift:
897    * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
898    * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
899    * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
900    * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
901    */
902   if (fp->OriginUpperLeft) {
903      /* Fragment shader wants origin in upper-left */
904      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
905         /* the driver supports upper-left origin */
906      }
907      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
908         /* the driver supports lower-left origin, need to invert Y */
909         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
910         invert = TRUE;
911      }
912      else
913         assert(0);
914   }
915   else {
916      /* Fragment shader wants origin in lower-left */
917      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
918         /* the driver supports lower-left origin */
919         ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
920      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
921         /* the driver supports upper-left origin, need to invert Y */
922         invert = TRUE;
923      else
924         assert(0);
925   }
926
927   if (fp->PixelCenterInteger) {
928      /* Fragment shader wants pixel center integer */
929      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
930         /* the driver supports pixel center integer */
931         adjY[1] = 1.0f;
932         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
933      }
934      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
935         /* the driver supports pixel center half integer, need to bias X,Y */
936         adjX = -0.5f;
937         adjY[0] = -0.5f;
938         adjY[1] = 0.5f;
939      }
940      else
941         assert(0);
942   }
943   else {
944      /* Fragment shader wants pixel center half integer */
945      if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
946         /* the driver supports pixel center half integer */
947      }
948      else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
949         /* the driver supports pixel center integer, need to bias X,Y */
950         adjX = adjY[0] = adjY[1] = 0.5f;
951         ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
952      }
953      else
954         assert(0);
955   }
956
957   /* we invert after adjustment so that we avoid the MOV to temporary,
958    * and reuse the adjustment ADD instead */
959   emit_wpos_adjustment(t, program, invert, adjX, adjY);
960}
961
962
963/**
964 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
965 * TGSI uses +1 for front, -1 for back.
966 * This function converts the TGSI value to the GL value.  Simply clamping/
967 * saturating the value to [0,1] does the job.
968 */
969static void
970emit_face_var( struct st_translate *t,
971               const struct gl_program *program )
972{
973   struct ureg_program *ureg = t->ureg;
974   struct ureg_dst face_temp = ureg_DECL_temporary( ureg );
975   struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
976
977   /* MOV_SAT face_temp, input[face]
978    */
979   face_temp = ureg_saturate( face_temp );
980   ureg_MOV( ureg, face_temp, face_input );
981
982   /* Use face_temp as face input from here on:
983    */
984   t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
985}
986
987
988static void
989emit_edgeflags( struct st_translate *t,
990                 const struct gl_program *program )
991{
992   struct ureg_program *ureg = t->ureg;
993   struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
994   struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
995
996   ureg_MOV( ureg, edge_dst, edge_src );
997}
998
999
1000/**
1001 * Translate Mesa program to TGSI format.
1002 * \param program  the program to translate
1003 * \param numInputs  number of input registers used
1004 * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
1005 *                      input indexes
1006 * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
1007 * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
1008 *                            each input
1009 * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
1010 * \param numOutputs  number of output registers used
1011 * \param outputMapping  maps Mesa fragment program outputs to TGSI
1012 *                       generic outputs
1013 * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
1014 * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
1015 *                             each output
1016 *
1017 * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
1018 */
1019enum pipe_error
1020st_translate_mesa_program(
1021   struct gl_context *ctx,
1022   uint procType,
1023   struct ureg_program *ureg,
1024   const struct gl_program *program,
1025   GLuint numInputs,
1026   const GLuint inputMapping[],
1027   const ubyte inputSemanticName[],
1028   const ubyte inputSemanticIndex[],
1029   const GLuint interpMode[],
1030   GLuint numOutputs,
1031   const GLuint outputMapping[],
1032   const ubyte outputSemanticName[],
1033   const ubyte outputSemanticIndex[],
1034   boolean passthrough_edgeflags,
1035   boolean clamp_color)
1036{
1037   struct st_translate translate, *t;
1038   unsigned i;
1039   enum pipe_error ret = PIPE_OK;
1040
1041   assert(numInputs <= Elements(t->inputs));
1042   assert(numOutputs <= Elements(t->outputs));
1043
1044   t = &translate;
1045   memset(t, 0, sizeof *t);
1046
1047   t->procType = procType;
1048   t->inputMapping = inputMapping;
1049   t->outputMapping = outputMapping;
1050   t->ureg = ureg;
1051
1052   /*_mesa_print_program(program);*/
1053
1054   /*
1055    * Declare input attributes.
1056    */
1057   if (procType == TGSI_PROCESSOR_FRAGMENT) {
1058      for (i = 0; i < numInputs; i++) {
1059         if (program->InputFlags[0] & PROG_PARAM_BIT_CYL_WRAP) {
1060            t->inputs[i] = ureg_DECL_fs_input_cyl(ureg,
1061                                                  inputSemanticName[i],
1062                                                  inputSemanticIndex[i],
1063                                                  interpMode[i],
1064                                                  TGSI_CYLINDRICAL_WRAP_X);
1065         }
1066         else {
1067            t->inputs[i] = ureg_DECL_fs_input(ureg,
1068                                              inputSemanticName[i],
1069                                              inputSemanticIndex[i],
1070                                              interpMode[i]);
1071         }
1072      }
1073
1074      if (program->InputsRead & FRAG_BIT_WPOS) {
1075         /* Must do this after setting up t->inputs, and before
1076          * emitting constant references, below:
1077          */
1078         emit_wpos(st_context(ctx), t, program, ureg);
1079      }
1080
1081      if (program->InputsRead & FRAG_BIT_FACE) {
1082         emit_face_var( t, program );
1083      }
1084
1085      /*
1086       * Declare output attributes.
1087       */
1088      for (i = 0; i < numOutputs; i++) {
1089         switch (outputSemanticName[i]) {
1090         case TGSI_SEMANTIC_POSITION:
1091            t->outputs[i] = ureg_DECL_output( ureg,
1092                                              TGSI_SEMANTIC_POSITION, /* Z / Depth */
1093                                              outputSemanticIndex[i] );
1094
1095            t->outputs[i] = ureg_writemask( t->outputs[i],
1096                                            TGSI_WRITEMASK_Z );
1097            break;
1098         case TGSI_SEMANTIC_STENCIL:
1099            t->outputs[i] = ureg_DECL_output( ureg,
1100                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
1101                                              outputSemanticIndex[i] );
1102            t->outputs[i] = ureg_writemask( t->outputs[i],
1103                                            TGSI_WRITEMASK_Y );
1104            break;
1105         case TGSI_SEMANTIC_COLOR:
1106            t->outputs[i] = ureg_DECL_output( ureg,
1107                                              TGSI_SEMANTIC_COLOR,
1108                                              outputSemanticIndex[i] );
1109            break;
1110         default:
1111            debug_assert(0);
1112            return 0;
1113         }
1114      }
1115   }
1116   else if (procType == TGSI_PROCESSOR_GEOMETRY) {
1117      for (i = 0; i < numInputs; i++) {
1118         t->inputs[i] = ureg_DECL_gs_input(ureg,
1119                                           i,
1120                                           inputSemanticName[i],
1121                                           inputSemanticIndex[i]);
1122      }
1123
1124      for (i = 0; i < numOutputs; i++) {
1125         t->outputs[i] = ureg_DECL_output( ureg,
1126                                           outputSemanticName[i],
1127                                           outputSemanticIndex[i] );
1128      }
1129   }
1130   else {
1131      assert(procType == TGSI_PROCESSOR_VERTEX);
1132
1133      for (i = 0; i < numInputs; i++) {
1134         t->inputs[i] = ureg_DECL_vs_input(ureg, i);
1135      }
1136
1137      for (i = 0; i < numOutputs; i++) {
1138         t->outputs[i] = ureg_DECL_output( ureg,
1139                                           outputSemanticName[i],
1140                                           outputSemanticIndex[i] );
1141      }
1142      if (passthrough_edgeflags)
1143         emit_edgeflags( t, program );
1144   }
1145
1146   /* Declare address register.
1147    */
1148   if (program->NumAddressRegs > 0) {
1149      debug_assert( program->NumAddressRegs == 1 );
1150      t->address[0] = ureg_DECL_address( ureg );
1151   }
1152
1153   /* Declare misc input registers
1154    */
1155   {
1156      GLbitfield sysInputs = program->SystemValuesRead;
1157      unsigned numSys = 0;
1158      for (i = 0; sysInputs; i++) {
1159         if (sysInputs & (1 << i)) {
1160            unsigned semName = mesa_sysval_to_semantic[i];
1161            t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
1162            if (semName == TGSI_SEMANTIC_INSTANCEID ||
1163                semName == TGSI_SEMANTIC_VERTEXID) {
1164               /* From Gallium perspective, these system values are always
1165                * integer, and require native integer support.  However, if
1166                * native integer is supported on the vertex stage but not the
1167                * pixel stage (e.g, i915g + draw), Mesa will generate IR that
1168                * assumes these system values are floats. To resolve the
1169                * inconsistency, we insert a U2F.
1170                */
1171               struct st_context *st = st_context(ctx);
1172               struct pipe_screen *pscreen = st->pipe->screen;
1173               assert(procType == TGSI_PROCESSOR_VERTEX);
1174               assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
1175               if (!ctx->Const.NativeIntegers) {
1176                  struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
1177                  ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
1178                  t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
1179               }
1180            }
1181            numSys++;
1182            sysInputs &= ~(1 << i);
1183         }
1184      }
1185   }
1186
1187   if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1188      /* If temps are accessed with indirect addressing, declare temporaries
1189       * in sequential order.  Else, we declare them on demand elsewhere.
1190       */
1191      for (i = 0; i < program->NumTemporaries; i++) {
1192         /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1193         t->temps[i] = ureg_DECL_temporary( t->ureg );
1194      }
1195   }
1196
1197   /* Emit constants and immediates.  Mesa uses a single index space
1198    * for these, so we put all the translated regs in t->constants.
1199    */
1200   if (program->Parameters) {
1201      t->constants = CALLOC( program->Parameters->NumParameters,
1202                             sizeof t->constants[0] );
1203      if (t->constants == NULL) {
1204         ret = PIPE_ERROR_OUT_OF_MEMORY;
1205         goto out;
1206      }
1207
1208      for (i = 0; i < program->Parameters->NumParameters; i++) {
1209         switch (program->Parameters->Parameters[i].Type) {
1210         case PROGRAM_ENV_PARAM:
1211         case PROGRAM_LOCAL_PARAM:
1212         case PROGRAM_STATE_VAR:
1213         case PROGRAM_NAMED_PARAM:
1214         case PROGRAM_UNIFORM:
1215            t->constants[i] = ureg_DECL_constant( ureg, i );
1216            break;
1217
1218            /* Emit immediates only when there's no indirect addressing of
1219             * the const buffer.
1220             * FIXME: Be smarter and recognize param arrays:
1221             * indirect addressing is only valid within the referenced
1222             * array.
1223             */
1224         case PROGRAM_CONSTANT:
1225            if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
1226               t->constants[i] = ureg_DECL_constant( ureg, i );
1227            else
1228               t->constants[i] =
1229                  ureg_DECL_immediate( ureg,
1230                                       (const float*) program->Parameters->ParameterValues[i],
1231                                       4 );
1232            break;
1233         default:
1234            break;
1235         }
1236      }
1237   }
1238
1239   /* texture samplers */
1240   for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
1241      if (program->SamplersUsed & (1 << i)) {
1242         t->samplers[i] = ureg_DECL_sampler( ureg, i );
1243      }
1244   }
1245
1246   /* Emit each instruction in turn:
1247    */
1248   for (i = 0; i < program->NumInstructions; i++) {
1249      set_insn_start( t, ureg_get_instruction_number( ureg ));
1250      compile_instruction( t, &program->Instructions[i], clamp_color );
1251   }
1252
1253   /* Fix up all emitted labels:
1254    */
1255   for (i = 0; i < t->labels_count; i++) {
1256      ureg_fixup_label( ureg,
1257                        t->labels[i].token,
1258                        t->insn[t->labels[i].branch_target] );
1259   }
1260
1261out:
1262   FREE(t->insn);
1263   FREE(t->labels);
1264   FREE(t->constants);
1265
1266   if (t->error) {
1267      debug_printf("%s: translate error flag set\n", __FUNCTION__);
1268   }
1269
1270   return ret;
1271}
1272
1273
1274/**
1275 * Tokens cannot be free with free otherwise the builtin gallium
1276 * malloc debugging will get confused.
1277 */
1278void
1279st_free_tokens(const struct tgsi_token *tokens)
1280{
1281   FREE((void *)tokens);
1282}
1283