t_vb_lighttmp.h revision 4c8fadc6d996c8c433826c4c763104b7d69cf7e5
1/* $Id: t_vb_lighttmp.h,v 1.24 2002/01/22 14:35:17 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  4.1
6 *
7 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 *
27 * Authors:
28 *    Brian Paul <brianp@valinux.com>
29 *    Keith Whitwell <keithw@valinux.com>
30 */
31
32
33#if (IDX & LIGHT_FLAGS)
34#  define VSTRIDE (4 * sizeof(GLfloat))
35#  define NSTRIDE nstride /*(3 * sizeof(GLfloat))*/
36#  define CHECK_MATERIAL(x)  (flags[x] & VERT_BIT_MATERIAL)
37#  define CHECK_END_VB(x)    (flags[x] & VERT_BIT_END_VB)
38#  if (IDX & LIGHT_COLORMATERIAL)
39#    define CMSTRIDE STRIDE_F(CMcolor, CMstride)
40#    define CHECK_COLOR_MATERIAL(x) (flags[x] & VERT_BIT_COLOR0)
41#    define CHECK_VALIDATE(x) (flags[x] & (VERT_BIT_COLOR0|VERT_BIT_MATERIAL))
42#    define DO_ANOTHER_NORMAL(x) \
43     ((flags[x] & (VERT_BIT_COLOR0|VERT_BIT_NORMAL|VERT_BIT_END_VB|VERT_BIT_MATERIAL)) == VERT_BIT_NORMAL)
44#    define REUSE_LIGHT_RESULTS(x) \
45     ((flags[x] & (VERT_BIT_COLOR0|VERT_BIT_NORMAL|VERT_BIT_END_VB|VERT_BIT_MATERIAL)) == 0)
46#  else
47#    define CMSTRIDE (void)0
48#    define CHECK_COLOR_MATERIAL(x) 0
49#    define CHECK_VALIDATE(x) (flags[x] & (VERT_BIT_MATERIAL))
50#    define DO_ANOTHER_NORMAL(x) \
51      ((flags[x] & (VERT_BIT_NORMAL|VERT_BIT_END_VB|VERT_BIT_MATERIAL)) == VERT_BIT_NORMAL)
52#    define REUSE_LIGHT_RESULTS(x) \
53      ((flags[x] & (VERT_BIT_NORMAL|VERT_BIT_END_VB|VERT_BIT_MATERIAL)) == 0)
54#  endif
55#else
56#  define VSTRIDE vstride
57#  define NSTRIDE nstride
58#  define CHECK_MATERIAL(x)   0	           /* no materials on array paths */
59#  define CHECK_END_VB(XX)     (XX >= nr)
60#  if (IDX & LIGHT_COLORMATERIAL)
61#     define CMSTRIDE STRIDE_F(CMcolor, CMstride)
62#     define CHECK_COLOR_MATERIAL(x) (x < nr) /* always have colormaterial */
63#     define CHECK_VALIDATE(x) (x < nr)
64#     define DO_ANOTHER_NORMAL(x) 0        /* always stop to recalc colormat */
65#  else
66#     define CMSTRIDE (void)0
67#     define CHECK_COLOR_MATERIAL(x) 0        /* no colormaterial */
68#     define CHECK_VALIDATE(x) (0)
69#     define DO_ANOTHER_NORMAL(XX) (XX < nr) /* keep going to end of vb */
70#  endif
71#  define REUSE_LIGHT_RESULTS(x) 0         /* always have a new normal */
72#endif
73
74
75
76#if (IDX & LIGHT_TWOSIDE)
77#  define NR_SIDES 2
78#else
79#  define NR_SIDES 1
80#endif
81
82
83/* define TRACE if to trace lighting code */
84
85
86/*
87 * ctx is the current context
88 * VB is the vertex buffer
89 * stage is the lighting stage-private data
90 * input is the vector of eye or object-space vertex coordinates
91 */
92static void TAG(light_rgba_spec)( GLcontext *ctx,
93				  struct vertex_buffer *VB,
94				  struct gl_pipeline_stage *stage,
95				  GLvector4f *input )
96{
97   struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
98   GLfloat (*base)[3] = ctx->Light._BaseColor;
99   GLchan sumA[2];
100   GLuint j;
101
102   const GLuint vstride = input->stride;
103   const GLfloat *vertex = (GLfloat *)input->data;
104   const GLuint nstride = VB->NormalPtr->stride;
105   const GLfloat *normal = (GLfloat *)VB->NormalPtr->data;
106
107   GLfloat *CMcolor;
108   GLuint CMstride;
109
110   GLchan (*Fcolor)[4] = (GLchan (*)[4]) store->LitColor[0].Ptr;
111   GLchan (*Bcolor)[4] = (GLchan (*)[4]) store->LitColor[1].Ptr;
112   GLchan (*Fspec)[4] = (GLchan (*)[4]) store->LitSecondary[0].Ptr;
113   GLchan (*Bspec)[4] = (GLchan (*)[4]) store->LitSecondary[1].Ptr;
114
115   const GLuint nr = VB->Count;
116   const GLuint *flags = VB->Flag;
117   struct gl_material (*new_material)[2] = VB->Material;
118   const GLuint *new_material_mask = VB->MaterialMask;
119
120   (void) flags;
121   (void) nstride;
122   (void) vstride;
123
124#ifdef TRACE
125   fprintf(stderr, "%s\n", __FUNCTION__ );
126#endif
127
128   if (IDX & LIGHT_COLORMATERIAL) {
129      if (VB->ColorPtr[0]->Type != GL_FLOAT ||
130	  VB->ColorPtr[0]->Size != 4)
131	 import_color_material( ctx, stage );
132
133      CMcolor = (GLfloat *) VB->ColorPtr[0]->Ptr;
134      CMstride = VB->ColorPtr[0]->StrideB;
135   }
136
137   VB->ColorPtr[0] = &store->LitColor[0];
138   VB->SecondaryColorPtr[0] = &store->LitSecondary[0];
139   UNCLAMPED_FLOAT_TO_CHAN(sumA[0], ctx->Light.Material[0].Diffuse[3]);
140
141   if (IDX & LIGHT_TWOSIDE) {
142      VB->ColorPtr[1] = &store->LitColor[1];
143      VB->SecondaryColorPtr[1] = &store->LitSecondary[1];
144      UNCLAMPED_FLOAT_TO_CHAN(sumA[1], ctx->Light.Material[1].Diffuse[3]);
145   }
146
147   /* Side-effects done, can we finish now?
148    */
149   if (stage->changed_inputs == 0)
150      return;
151
152   for ( j=0 ;
153	 j<nr ;
154	 j++,STRIDE_F(vertex,VSTRIDE),STRIDE_F(normal,NSTRIDE),CMSTRIDE)
155   {
156      GLfloat sum[2][3], spec[2][3];
157      struct gl_light *light;
158
159      if ( CHECK_COLOR_MATERIAL(j) )
160	 _mesa_update_color_material( ctx, CMcolor );
161
162      if ( CHECK_MATERIAL(j) )
163	 _mesa_update_material( ctx, new_material[j], new_material_mask[j] );
164
165      if ( CHECK_VALIDATE(j) ) {
166	 _mesa_validate_all_lighting_tables( ctx );
167	 UNCLAMPED_FLOAT_TO_CHAN(sumA[0], ctx->Light.Material[0].Diffuse[3]);
168	 if (IDX & LIGHT_TWOSIDE)
169	    UNCLAMPED_FLOAT_TO_CHAN(sumA[1], ctx->Light.Material[1].Diffuse[3]);
170      }
171
172      COPY_3V(sum[0], base[0]);
173      ZERO_3V(spec[0]);
174
175      if (IDX & LIGHT_TWOSIDE) {
176	 COPY_3V(sum[1], base[1]);
177	 ZERO_3V(spec[1]);
178      }
179
180      /* Add contribution from each enabled light source */
181      foreach (light, &ctx->Light.EnabledList) {
182	 GLfloat n_dot_h;
183	 GLfloat correction;
184	 GLint side;
185	 GLfloat contrib[3];
186	 GLfloat attenuation;
187	 GLfloat VP[3];  /* unit vector from vertex to light */
188	 GLfloat n_dot_VP;       /* n dot VP */
189	 GLfloat *h;
190
191	 /* compute VP and attenuation */
192	 if (!(light->_Flags & LIGHT_POSITIONAL)) {
193	    /* directional light */
194	    COPY_3V(VP, light->_VP_inf_norm);
195	    attenuation = light->_VP_inf_spot_attenuation;
196	 }
197	 else {
198	    GLfloat d;     /* distance from vertex to light */
199
200	    SUB_3V(VP, light->_Position, vertex);
201
202	    d = (GLfloat) LEN_3FV( VP );
203
204	    if (d > 1e-6) {
205	       GLfloat invd = 1.0F / d;
206	       SELF_SCALE_SCALAR_3V(VP, invd);
207	    }
208
209	    attenuation = 1.0F / (light->ConstantAttenuation + d *
210				  (light->LinearAttenuation + d *
211				   light->QuadraticAttenuation));
212
213	    /* spotlight attenuation */
214	    if (light->_Flags & LIGHT_SPOT) {
215	       GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection);
216
217	       if (PV_dot_dir<light->_CosCutoff) {
218		  continue; /* this light makes no contribution */
219	       }
220	       else {
221		  GLdouble x = PV_dot_dir * (EXP_TABLE_SIZE-1);
222		  GLint k = (GLint) x;
223		  GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
224				    + (x-k)*light->_SpotExpTable[k][1]);
225		  attenuation *= spot;
226	       }
227	    }
228	 }
229
230	 if (attenuation < 1e-3)
231	    continue;		/* this light makes no contribution */
232
233	 /* Compute dot product or normal and vector from V to light pos */
234	 n_dot_VP = DOT3( normal, VP );
235
236	 /* Which side gets the diffuse & specular terms? */
237	 if (n_dot_VP < 0.0F) {
238	    ACC_SCALE_SCALAR_3V(sum[0], attenuation, light->_MatAmbient[0]);
239	    if (!(IDX & LIGHT_TWOSIDE)) {
240	       continue;
241	    }
242	    side = 1;
243	    correction = -1;
244	    n_dot_VP = -n_dot_VP;
245	 }
246         else {
247	    if (IDX & LIGHT_TWOSIDE) {
248	       ACC_SCALE_SCALAR_3V( sum[1], attenuation, light->_MatAmbient[1]);
249	    }
250	    side = 0;
251	    correction = 1;
252	 }
253
254	 /* diffuse term */
255	 COPY_3V(contrib, light->_MatAmbient[side]);
256	 ACC_SCALE_SCALAR_3V(contrib, n_dot_VP, light->_MatDiffuse[side]);
257	 ACC_SCALE_SCALAR_3V(sum[side], attenuation, contrib );
258
259	 /* specular term - cannibalize VP... */
260	 if (ctx->Light.Model.LocalViewer) {
261	    GLfloat v[3];
262	    COPY_3V(v, vertex);
263	    NORMALIZE_3FV(v);
264	    SUB_3V(VP, VP, v);                /* h = VP + VPe */
265	    h = VP;
266	    NORMALIZE_3FV(h);
267	 }
268	 else if (light->_Flags & LIGHT_POSITIONAL) {
269	    h = VP;
270	    ACC_3V(h, ctx->_EyeZDir);
271	    NORMALIZE_3FV(h);
272	 }
273         else {
274	    h = light->_h_inf_norm;
275	 }
276
277	 n_dot_h = correction * DOT3(normal, h);
278
279	 if (n_dot_h > 0.0F) {
280	    GLfloat spec_coef;
281	    struct gl_shine_tab *tab = ctx->_ShineTable[side];
282	    GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec_coef );
283
284	    if (spec_coef > 1.0e-10) {
285	       spec_coef *= attenuation;
286	       ACC_SCALE_SCALAR_3V( spec[side], spec_coef,
287				    light->_MatSpecular[side]);
288	    }
289	 }
290      } /*loop over lights*/
291
292      UNCLAMPED_FLOAT_TO_RGB_CHAN( Fcolor[j], sum[0] );
293      UNCLAMPED_FLOAT_TO_RGB_CHAN( Fspec[j], spec[0] );
294      Fcolor[j][3] = sumA[0];
295
296      if (IDX & LIGHT_TWOSIDE) {
297	 UNCLAMPED_FLOAT_TO_RGB_CHAN( Bcolor[j], sum[1] );
298	 UNCLAMPED_FLOAT_TO_RGB_CHAN( Bspec[j], spec[1] );
299	 Bcolor[j][3] = sumA[1];
300      }
301   }
302}
303
304
305static void TAG(light_rgba)( GLcontext *ctx,
306			     struct vertex_buffer *VB,
307			     struct gl_pipeline_stage *stage,
308			     GLvector4f *input )
309{
310   struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
311   GLuint j;
312
313   GLfloat (*base)[3] = ctx->Light._BaseColor;
314   GLchan sumA[2];
315
316   const GLuint vstride = input->stride;
317   const GLfloat *vertex = (GLfloat *) input->data;
318   const GLuint nstride = VB->NormalPtr->stride;
319   const GLfloat *normal = (GLfloat *)VB->NormalPtr->data;
320
321   GLfloat *CMcolor;
322   GLuint CMstride;
323
324   GLchan (*Fcolor)[4] = (GLchan (*)[4]) store->LitColor[0].Ptr;
325   GLchan (*Bcolor)[4] = (GLchan (*)[4]) store->LitColor[1].Ptr;
326   GLchan (*color[2])[4];
327   const GLuint *flags = VB->Flag;
328
329   struct gl_material (*new_material)[2] = VB->Material;
330   const GLuint *new_material_mask = VB->MaterialMask;
331   const GLuint nr = VB->Count;
332
333#ifdef TRACE
334   fprintf(stderr, "%s\n", __FUNCTION__ );
335#endif
336
337   (void) flags;
338   (void) nstride;
339   (void) vstride;
340
341   color[0] = Fcolor;
342   color[1] = Bcolor;
343
344   if (IDX & LIGHT_COLORMATERIAL) {
345      if (VB->ColorPtr[0]->Type != GL_FLOAT ||
346	  VB->ColorPtr[0]->Size != 4)
347	 import_color_material( ctx, stage );
348
349      CMcolor = (GLfloat *)VB->ColorPtr[0]->Ptr;
350      CMstride = VB->ColorPtr[0]->StrideB;
351   }
352
353   VB->ColorPtr[0] = &store->LitColor[0];
354   UNCLAMPED_FLOAT_TO_CHAN(sumA[0], ctx->Light.Material[0].Diffuse[3]);
355
356   if (IDX & LIGHT_TWOSIDE) {
357      VB->ColorPtr[1] = &store->LitColor[1];
358      UNCLAMPED_FLOAT_TO_CHAN(sumA[1], ctx->Light.Material[1].Diffuse[3]);
359   }
360
361   if (stage->changed_inputs == 0)
362      return;
363
364   for ( j=0 ;
365	 j<nr ;
366	 j++,STRIDE_F(vertex,VSTRIDE), STRIDE_F(normal,NSTRIDE),CMSTRIDE)
367   {
368      GLfloat sum[2][3];
369      struct gl_light *light;
370
371      if ( CHECK_COLOR_MATERIAL(j) )
372	 _mesa_update_color_material( ctx, CMcolor );
373
374      if ( CHECK_MATERIAL(j) )
375	 _mesa_update_material( ctx, new_material[j], new_material_mask[j] );
376
377      if ( CHECK_VALIDATE(j) ) {
378	 _mesa_validate_all_lighting_tables( ctx );
379	 UNCLAMPED_FLOAT_TO_CHAN(sumA[0], ctx->Light.Material[0].Diffuse[3]);
380	 if (IDX & LIGHT_TWOSIDE)
381	    UNCLAMPED_FLOAT_TO_CHAN(sumA[1], ctx->Light.Material[1].Diffuse[3]);
382      }
383
384      COPY_3V(sum[0], base[0]);
385
386      if ( IDX & LIGHT_TWOSIDE )
387	 COPY_3V(sum[1], base[1]);
388
389      /* Add contribution from each enabled light source */
390      foreach (light, &ctx->Light.EnabledList) {
391
392	 GLfloat n_dot_h;
393	 GLfloat correction;
394	 GLint side;
395	 GLfloat contrib[3];
396	 GLfloat attenuation = 1.0;
397	 GLfloat VP[3];          /* unit vector from vertex to light */
398	 GLfloat n_dot_VP;       /* n dot VP */
399	 GLfloat *h;
400
401	 /* compute VP and attenuation */
402	 if (!(light->_Flags & LIGHT_POSITIONAL)) {
403	    /* directional light */
404	    COPY_3V(VP, light->_VP_inf_norm);
405	    attenuation = light->_VP_inf_spot_attenuation;
406	 }
407	 else {
408	    GLfloat d;     /* distance from vertex to light */
409
410
411	    SUB_3V(VP, light->_Position, vertex);
412
413	    d = (GLfloat) LEN_3FV( VP );
414
415	    if ( d > 1e-6) {
416	       GLfloat invd = 1.0F / d;
417	       SELF_SCALE_SCALAR_3V(VP, invd);
418	    }
419
420            attenuation = 1.0F / (light->ConstantAttenuation + d *
421                                  (light->LinearAttenuation + d *
422                                   light->QuadraticAttenuation));
423
424	    /* spotlight attenuation */
425	    if (light->_Flags & LIGHT_SPOT) {
426	       GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection);
427
428	       if (PV_dot_dir<light->_CosCutoff) {
429		  continue; /* this light makes no contribution */
430	       }
431	       else {
432		  GLdouble x = PV_dot_dir * (EXP_TABLE_SIZE-1);
433		  GLint k = (GLint) x;
434		  GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
435				  + (x-k)*light->_SpotExpTable[k][1]);
436		  attenuation *= spot;
437	       }
438	    }
439	 }
440
441	 if (attenuation < 1e-3)
442	    continue;		/* this light makes no contribution */
443
444	 /* Compute dot product or normal and vector from V to light pos */
445	 n_dot_VP = DOT3( normal, VP );
446
447	 /* which side are we lighting? */
448	 if (n_dot_VP < 0.0F) {
449	    ACC_SCALE_SCALAR_3V(sum[0], attenuation, light->_MatAmbient[0]);
450
451	    if (!(IDX & LIGHT_TWOSIDE))
452	       continue;
453
454	    side = 1;
455	    correction = -1;
456	    n_dot_VP = -n_dot_VP;
457	 }
458         else {
459	    if (IDX & LIGHT_TWOSIDE) {
460	       ACC_SCALE_SCALAR_3V( sum[1], attenuation, light->_MatAmbient[1]);
461	    }
462	    side = 0;
463	    correction = 1;
464	 }
465
466	 COPY_3V(contrib, light->_MatAmbient[side]);
467
468	 /* diffuse term */
469	 ACC_SCALE_SCALAR_3V(contrib, n_dot_VP, light->_MatDiffuse[side]);
470
471	 /* specular term - cannibalize VP... */
472	 {
473	    if (ctx->Light.Model.LocalViewer) {
474	       GLfloat v[3];
475	       COPY_3V(v, vertex);
476	       NORMALIZE_3FV(v);
477	       SUB_3V(VP, VP, v);                /* h = VP + VPe */
478	       h = VP;
479	       NORMALIZE_3FV(h);
480	    }
481	    else if (light->_Flags & LIGHT_POSITIONAL) {
482	       h = VP;
483	       ACC_3V(h, ctx->_EyeZDir);
484	       NORMALIZE_3FV(h);
485	    }
486            else {
487	       h = light->_h_inf_norm;
488	    }
489
490	    n_dot_h = correction * DOT3(normal, h);
491
492	    if (n_dot_h > 0.0F)
493	    {
494	       GLfloat spec_coef;
495	       struct gl_shine_tab *tab = ctx->_ShineTable[side];
496
497	       GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec_coef );
498
499	       ACC_SCALE_SCALAR_3V( contrib, spec_coef,
500				    light->_MatSpecular[side]);
501	    }
502	 }
503
504	 ACC_SCALE_SCALAR_3V( sum[side], attenuation, contrib );
505      }
506
507      UNCLAMPED_FLOAT_TO_RGB_CHAN( Fcolor[j], sum[0] );
508      Fcolor[j][3] = sumA[0];
509
510      if (IDX & LIGHT_TWOSIDE) {
511	 UNCLAMPED_FLOAT_TO_RGB_CHAN( Bcolor[j], sum[1] );
512	 Bcolor[j][3] = sumA[1];
513      }
514   }
515}
516
517
518
519
520/* As below, but with just a single light.
521 */
522static void TAG(light_fast_rgba_single)( GLcontext *ctx,
523					 struct vertex_buffer *VB,
524					 struct gl_pipeline_stage *stage,
525					 GLvector4f *input )
526
527{
528   struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
529   const GLuint nstride = VB->NormalPtr->stride;
530   const GLfloat *normal = (GLfloat *)VB->NormalPtr->data;
531   GLfloat *CMcolor;
532   GLuint CMstride;
533   GLchan (*Fcolor)[4] = (GLchan (*)[4]) store->LitColor[0].Ptr;
534   GLchan (*Bcolor)[4] = (GLchan (*)[4]) store->LitColor[1].Ptr;
535   const struct gl_light *light = ctx->Light.EnabledList.next;
536   const GLuint *flags = VB->Flag;
537   GLchan basechan[2][4];
538   GLuint j = 0;
539   struct gl_material (*new_material)[2] = VB->Material;
540   const GLuint *new_material_mask = VB->MaterialMask;
541   GLfloat base[2][3];
542   const GLuint nr = VB->Count;
543
544#ifdef TRACE
545   fprintf(stderr, "%s\n", __FUNCTION__ );
546#endif
547
548   (void) input;		/* doesn't refer to Eye or Obj */
549   (void) flags;
550   (void) nr;
551   (void) nstride;
552
553   if (IDX & LIGHT_COLORMATERIAL) {
554      if (VB->ColorPtr[0]->Type != GL_FLOAT ||
555	  VB->ColorPtr[0]->Size != 4)
556	 import_color_material( ctx, stage );
557
558      CMcolor = (GLfloat *)VB->ColorPtr[0]->Ptr;
559      CMstride = VB->ColorPtr[0]->StrideB;
560   }
561
562   VB->ColorPtr[0] = &store->LitColor[0];
563   if (IDX & LIGHT_TWOSIDE)
564      VB->ColorPtr[1] = &store->LitColor[1];
565
566   if (stage->changed_inputs == 0)
567      return;
568
569   do {
570
571      if ( CHECK_COLOR_MATERIAL(j) ) {
572	 _mesa_update_color_material( ctx, CMcolor );
573      }
574
575      if ( CHECK_MATERIAL(j) )
576	 _mesa_update_material( ctx, new_material[j], new_material_mask[j] );
577
578      if ( CHECK_VALIDATE(j) )
579	 _mesa_validate_all_lighting_tables( ctx );
580
581
582      /* No attenuation, so incoporate _MatAmbient into base color.
583       */
584      COPY_3V(base[0], light->_MatAmbient[0]);
585      ACC_3V(base[0], ctx->Light._BaseColor[0] );
586      UNCLAMPED_FLOAT_TO_RGB_CHAN( basechan[0], base[0] );
587      UNCLAMPED_FLOAT_TO_CHAN(basechan[0][3],
588			      ctx->Light.Material[0].Diffuse[3]);
589
590      if (IDX & LIGHT_TWOSIDE) {
591	 COPY_3V(base[1], light->_MatAmbient[1]);
592	 ACC_3V(base[1], ctx->Light._BaseColor[1]);
593	 UNCLAMPED_FLOAT_TO_RGB_CHAN( basechan[1], base[1]);
594	 UNCLAMPED_FLOAT_TO_CHAN(basechan[1][3],
595				 ctx->Light.Material[1].Diffuse[3]);
596      }
597
598      do {
599	 GLfloat n_dot_VP = DOT3(normal, light->_VP_inf_norm);
600
601	 if (n_dot_VP < 0.0F) {
602	    if (IDX & LIGHT_TWOSIDE) {
603	       GLfloat n_dot_h = -DOT3(normal, light->_h_inf_norm);
604	       GLfloat sum[3];
605	       COPY_3V(sum, base[1]);
606	       ACC_SCALE_SCALAR_3V(sum, -n_dot_VP, light->_MatDiffuse[1]);
607	       if (n_dot_h > 0.0F) {
608		  GLfloat spec;
609		  GET_SHINE_TAB_ENTRY( ctx->_ShineTable[1], n_dot_h, spec );
610		  ACC_SCALE_SCALAR_3V(sum, spec, light->_MatSpecular[1]);
611	       }
612	       UNCLAMPED_FLOAT_TO_RGB_CHAN(Bcolor[j], sum );
613	       Bcolor[j][3] = basechan[1][3];
614	    }
615	    COPY_CHAN4(Fcolor[j], basechan[0]);
616	 }
617         else {
618	    GLfloat n_dot_h = DOT3(normal, light->_h_inf_norm);
619	    GLfloat sum[3];
620	    COPY_3V(sum, base[0]);
621	    ACC_SCALE_SCALAR_3V(sum, n_dot_VP, light->_MatDiffuse[0]);
622	    if (n_dot_h > 0.0F) {
623	       GLfloat spec;
624	       GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec );
625	       ACC_SCALE_SCALAR_3V(sum, spec, light->_MatSpecular[0]);
626
627	    }
628	    UNCLAMPED_FLOAT_TO_RGB_CHAN(Fcolor[j], sum );
629	    Fcolor[j][3] = basechan[0][3];
630	    if (IDX & LIGHT_TWOSIDE) COPY_CHAN4(Bcolor[j], basechan[1]);
631	 }
632
633	 j++;
634	 CMSTRIDE;
635	 STRIDE_F(normal, NSTRIDE);
636      } while (DO_ANOTHER_NORMAL(j));
637
638
639      for ( ; REUSE_LIGHT_RESULTS(j) ; j++, CMSTRIDE, STRIDE_F(normal,NSTRIDE))
640      {
641	 COPY_CHAN4(Fcolor[j], Fcolor[j-1]);
642	 if (IDX & LIGHT_TWOSIDE)
643	    COPY_CHAN4(Bcolor[j], Bcolor[j-1]);
644      }
645
646   } while (!CHECK_END_VB(j));
647}
648
649
650/* Light infinite lights
651 */
652static void TAG(light_fast_rgba)( GLcontext *ctx,
653				  struct vertex_buffer *VB,
654				  struct gl_pipeline_stage *stage,
655				  GLvector4f *input )
656{
657   struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
658   GLchan sumA[2];
659   const GLuint nstride = VB->NormalPtr->stride;
660   const GLfloat *normal = (GLfloat *)VB->NormalPtr->data;
661   GLfloat *CMcolor;
662   GLuint CMstride;
663   GLchan (*Fcolor)[4] = (GLchan (*)[4]) store->LitColor[0].Ptr;
664   GLchan (*Bcolor)[4] = (GLchan (*)[4]) store->LitColor[1].Ptr;
665   const GLuint *flags = VB->Flag;
666   GLuint j = 0;
667   struct gl_material (*new_material)[2] = VB->Material;
668   GLuint *new_material_mask = VB->MaterialMask;
669   const GLuint nr = VB->Count;
670   const struct gl_light *light;
671
672#ifdef TRACE
673   fprintf(stderr, "%s\n", __FUNCTION__ );
674#endif
675
676   (void) flags;
677   (void) input;
678   (void) nr;
679   (void) nstride;
680
681   UNCLAMPED_FLOAT_TO_CHAN(sumA[0], ctx->Light.Material[0].Diffuse[3]);
682   UNCLAMPED_FLOAT_TO_CHAN(sumA[1], ctx->Light.Material[1].Diffuse[3]);
683
684   if (IDX & LIGHT_COLORMATERIAL) {
685      if (VB->ColorPtr[0]->Type != GL_FLOAT ||
686	  VB->ColorPtr[0]->Size != 4)
687	 import_color_material( ctx, stage );
688
689      CMcolor = (GLfloat *)VB->ColorPtr[0]->Ptr;
690      CMstride = VB->ColorPtr[0]->StrideB;
691   }
692
693   VB->ColorPtr[0] = &store->LitColor[0];
694   if (IDX & LIGHT_TWOSIDE)
695      VB->ColorPtr[1] = &store->LitColor[1];
696
697   if (stage->changed_inputs == 0)
698      return;
699
700   do {
701      do {
702	 GLfloat sum[2][3];
703
704	 if ( CHECK_COLOR_MATERIAL(j) )
705	    _mesa_update_color_material( ctx, CMcolor );
706
707	 if ( CHECK_MATERIAL(j) )
708	    _mesa_update_material( ctx, new_material[j], new_material_mask[j] );
709
710	 if ( CHECK_VALIDATE(j) ) {
711	    _mesa_validate_all_lighting_tables( ctx );
712	    UNCLAMPED_FLOAT_TO_CHAN(sumA[0], ctx->Light.Material[0].Diffuse[3]);
713	    if (IDX & LIGHT_TWOSIDE)
714	       UNCLAMPED_FLOAT_TO_CHAN(sumA[1],
715				       ctx->Light.Material[1].Diffuse[3]);
716	 }
717
718
719	 COPY_3V(sum[0], ctx->Light._BaseColor[0]);
720	 if (IDX & LIGHT_TWOSIDE)
721	    COPY_3V(sum[1], ctx->Light._BaseColor[1]);
722
723	 foreach (light, &ctx->Light.EnabledList) {
724	    GLfloat n_dot_h, n_dot_VP, spec;
725
726	    ACC_3V(sum[0], light->_MatAmbient[0]);
727	    if (IDX & LIGHT_TWOSIDE)
728	       ACC_3V(sum[1], light->_MatAmbient[1]);
729
730	    n_dot_VP = DOT3(normal, light->_VP_inf_norm);
731
732	    if (n_dot_VP > 0.0F) {
733	       ACC_SCALE_SCALAR_3V(sum[0], n_dot_VP, light->_MatDiffuse[0]);
734	       n_dot_h = DOT3(normal, light->_h_inf_norm);
735	       if (n_dot_h > 0.0F) {
736		  struct gl_shine_tab *tab = ctx->_ShineTable[0];
737		  GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec );
738		  ACC_SCALE_SCALAR_3V( sum[0], spec,
739				       light->_MatSpecular[0]);
740	       }
741	    }
742	    else if (IDX & LIGHT_TWOSIDE) {
743	       ACC_SCALE_SCALAR_3V(sum[1], -n_dot_VP, light->_MatDiffuse[1]);
744	       n_dot_h = -DOT3(normal, light->_h_inf_norm);
745	       if (n_dot_h > 0.0F) {
746		  struct gl_shine_tab *tab = ctx->_ShineTable[1];
747		  GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec );
748		  ACC_SCALE_SCALAR_3V( sum[1], spec,
749				       light->_MatSpecular[1]);
750	       }
751	    }
752	 }
753
754	 UNCLAMPED_FLOAT_TO_RGB_CHAN( Fcolor[j], sum[0] );
755	 Fcolor[j][3] = sumA[0];
756
757	 if (IDX & LIGHT_TWOSIDE) {
758	    UNCLAMPED_FLOAT_TO_RGB_CHAN( Bcolor[j], sum[1] );
759	    Bcolor[j][3] = sumA[1];
760	 }
761
762	 j++;
763	 CMSTRIDE;
764	 STRIDE_F(normal, NSTRIDE);
765      } while (DO_ANOTHER_NORMAL(j));
766
767      /* Reuse the shading results while there is no change to
768       * normal or material values.
769       */
770      for ( ; REUSE_LIGHT_RESULTS(j) ; j++, CMSTRIDE, STRIDE_F(normal, NSTRIDE))
771      {
772	 COPY_CHAN4(Fcolor[j], Fcolor[j-1]);
773	 if (IDX & LIGHT_TWOSIDE)
774	    COPY_CHAN4(Bcolor[j], Bcolor[j-1]);
775      }
776
777   } while (!CHECK_END_VB(j));
778}
779
780
781
782
783
784/*
785 * Use current lighting/material settings to compute the color indexes
786 * for an array of vertices.
787 * Input:  n - number of vertices to light
788 *         side - 0=use front material, 1=use back material
789 *         vertex - array of [n] vertex position in eye coordinates
790 *         normal - array of [n] surface normal vector
791 * Output:  indexResult - resulting array of [n] color indexes
792 */
793static void TAG(light_ci)( GLcontext *ctx,
794			   struct vertex_buffer *VB,
795			   struct gl_pipeline_stage *stage,
796			   GLvector4f *input )
797{
798   struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
799   GLuint j;
800   const GLuint vstride = input->stride;
801   const GLfloat *vertex = (GLfloat *) input->data;
802   const GLuint nstride = VB->NormalPtr->stride;
803   const GLfloat *normal = (GLfloat *)VB->NormalPtr->data;
804   GLfloat *CMcolor;
805   GLuint CMstride;
806   const GLuint *flags = VB->Flag;
807   GLuint *indexResult[2];
808   struct gl_material (*new_material)[2] = VB->Material;
809   GLuint *new_material_mask = VB->MaterialMask;
810   const GLuint nr = VB->Count;
811
812#ifdef TRACE
813   fprintf(stderr, "%s\n", __FUNCTION__ );
814#endif
815
816   (void) flags;
817   (void) nstride;
818   (void) vstride;
819
820   VB->IndexPtr[0] = &store->LitIndex[0];
821   if (IDX & LIGHT_TWOSIDE)
822      VB->IndexPtr[1] = &store->LitIndex[1];
823
824   if (stage->changed_inputs == 0)
825      return;
826
827   indexResult[0] = VB->IndexPtr[0]->data;
828   if (IDX & LIGHT_TWOSIDE)
829      indexResult[1] = VB->IndexPtr[1]->data;
830
831   if (IDX & LIGHT_COLORMATERIAL) {
832      if (VB->ColorPtr[0]->Type != GL_FLOAT ||
833	  VB->ColorPtr[0]->Size != 4)
834	 import_color_material( ctx, stage );
835
836      CMcolor = (GLfloat *)VB->ColorPtr[0]->Ptr;
837      CMstride = VB->ColorPtr[0]->StrideB;
838   }
839
840   /* loop over vertices */
841   for ( j=0 ;
842	 j<nr ;
843	 j++,STRIDE_F(vertex,VSTRIDE),STRIDE_F(normal, NSTRIDE), CMSTRIDE)
844   {
845      GLfloat diffuse[2], specular[2];
846      GLuint side = 0;
847      struct gl_light *light;
848
849      if ( CHECK_COLOR_MATERIAL(j) )
850	 _mesa_update_color_material( ctx, CMcolor );
851
852      if ( CHECK_MATERIAL(j) )
853	 _mesa_update_material( ctx, new_material[j], new_material_mask[j] );
854
855      if ( CHECK_VALIDATE(j) )
856	 _mesa_validate_all_lighting_tables( ctx );
857
858      diffuse[0] = specular[0] = 0.0F;
859
860      if ( IDX & LIGHT_TWOSIDE ) {
861	 diffuse[1] = specular[1] = 0.0F;
862      }
863
864      /* Accumulate diffuse and specular from each light source */
865      foreach (light, &ctx->Light.EnabledList) {
866
867	 GLfloat attenuation = 1.0F;
868	 GLfloat VP[3];  /* unit vector from vertex to light */
869	 GLfloat n_dot_VP;  /* dot product of l and n */
870	 GLfloat *h, n_dot_h, correction = 1.0;
871
872	 /* compute l and attenuation */
873	 if (!(light->_Flags & LIGHT_POSITIONAL)) {
874	    /* directional light */
875	    COPY_3V(VP, light->_VP_inf_norm);
876	 }
877	 else {
878	    GLfloat d;     /* distance from vertex to light */
879
880	    SUB_3V(VP, light->_Position, vertex);
881
882	    d = (GLfloat) LEN_3FV( VP );
883	    if ( d > 1e-6) {
884	       GLfloat invd = 1.0F / d;
885	       SELF_SCALE_SCALAR_3V(VP, invd);
886	    }
887
888	    attenuation = 1.0F / (light->ConstantAttenuation + d *
889				  (light->LinearAttenuation + d *
890				   light->QuadraticAttenuation));
891
892	    /* spotlight attenuation */
893	    if (light->_Flags & LIGHT_SPOT) {
894	       GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection);
895	       if (PV_dot_dir < light->_CosCutoff) {
896		  continue; /* this light makes no contribution */
897	       }
898	       else {
899		  GLdouble x = PV_dot_dir * (EXP_TABLE_SIZE-1);
900		  GLint k = (GLint) x;
901		  GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
902				  + (x-k)*light->_SpotExpTable[k][1]);
903		  attenuation *= spot;
904	       }
905	    }
906	 }
907
908	 if (attenuation < 1e-3)
909	    continue;		/* this light makes no contribution */
910
911	 n_dot_VP = DOT3( normal, VP );
912
913	 /* which side are we lighting? */
914	 if (n_dot_VP < 0.0F) {
915	    if (!(IDX & LIGHT_TWOSIDE))
916	       continue;
917	    side = 1;
918	    correction = -1;
919	    n_dot_VP = -n_dot_VP;
920	 }
921
922	 /* accumulate diffuse term */
923	 diffuse[side] += n_dot_VP * light->_dli * attenuation;
924
925	 /* specular term */
926	 if (ctx->Light.Model.LocalViewer) {
927	    GLfloat v[3];
928	    COPY_3V(v, vertex);
929	    NORMALIZE_3FV(v);
930	    SUB_3V(VP, VP, v);                /* h = VP + VPe */
931	    h = VP;
932	    NORMALIZE_3FV(h);
933	 }
934	 else if (light->_Flags & LIGHT_POSITIONAL) {
935	    h = VP;
936            /* Strangely, disabling this addition fixes a conformance
937             * problem.  If this code is enabled, l_sed.c fails.
938             */
939	    /*ACC_3V(h, ctx->_EyeZDir);*/
940	    NORMALIZE_3FV(h);
941	 }
942         else {
943	    h = light->_h_inf_norm;
944	 }
945
946	 n_dot_h = correction * DOT3(normal, h);
947	 if (n_dot_h > 0.0F) {
948	    GLfloat spec_coef;
949	    struct gl_shine_tab *tab = ctx->_ShineTable[side];
950	    GET_SHINE_TAB_ENTRY( tab, n_dot_h, spec_coef);
951	    specular[side] += spec_coef * light->_sli * attenuation;
952	 }
953      } /*loop over lights*/
954
955      /* Now compute final color index */
956      for (side = 0 ; side < NR_SIDES ; side++) {
957	 struct gl_material *mat = &ctx->Light.Material[side];
958	 GLfloat index;
959
960	 if (specular[side] > 1.0F) {
961	    index = mat->SpecularIndex;
962	 }
963	 else {
964	    GLfloat d_a = mat->DiffuseIndex - mat->AmbientIndex;
965	    GLfloat s_a = mat->SpecularIndex - mat->AmbientIndex;
966
967	    index = mat->AmbientIndex
968	       + diffuse[side] * (1.0F-specular[side]) * d_a
969	       + specular[side] * s_a;
970
971	    if (index > mat->SpecularIndex) {
972	       index = mat->SpecularIndex;
973	    }
974	 }
975	 indexResult[side][j] = (GLuint) (GLint) index;
976      }
977   } /*for vertex*/
978}
979
980
981
982static void TAG(init_light_tab)( void )
983{
984   _tnl_light_tab[IDX] = TAG(light_rgba);
985   _tnl_light_fast_tab[IDX] = TAG(light_fast_rgba);
986   _tnl_light_fast_single_tab[IDX] = TAG(light_fast_rgba_single);
987   _tnl_light_spec_tab[IDX] = TAG(light_rgba_spec);
988   _tnl_light_ci_tab[IDX] = TAG(light_ci);
989}
990
991
992#undef TAG
993#undef IDX
994#undef NR_SIDES
995#undef NSTRIDE
996#undef VSTRIDE
997#undef CHECK_MATERIAL
998#undef CHECK_END_VB
999#undef DO_ANOTHER_NORMAL
1000#undef REUSE_LIGHT_RESULTS
1001#undef CMSTRIDE
1002#undef CHECK_COLOR_MATERIAL
1003#undef CHECK_VALIDATE
1004