t_vp_build.c revision 26b1c97a9dfba05334ecbe7ac312c7ee5b3a554e
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.3.1
4 *
5 * Copyright (C) 2005  Tungsten Graphics   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33#include "glheader.h"
34#include "macros.h"
35#include "enums.h"
36#include "t_context.h"
37#include "t_vp_build.h"
38
39#include "shader/program.h"
40#include "shader/nvvertprog.h"
41#include "shader/arbvertparse.h"
42
43struct state_key {
44   unsigned light_global_enabled:1;
45   unsigned light_local_viewer:1;
46   unsigned light_twoside:1;
47   unsigned light_color_material:1;
48   unsigned light_color_material_mask:12;
49   unsigned light_material_mask:12;
50
51   unsigned normalize:1;
52   unsigned rescale_normals:1;
53   unsigned fog_source_is_depth:1;
54   unsigned tnl_do_vertex_fog:1;
55   unsigned separate_specular:1;
56   unsigned fog_mode:2;
57   unsigned point_attenuated:1;
58   unsigned texture_enabled_global:1;
59   unsigned fragprog_inputs_read:12;
60
61   struct {
62      unsigned light_enabled:1;
63      unsigned light_eyepos3_is_zero:1;
64      unsigned light_spotcutoff_is_180:1;
65      unsigned light_attenuated:1;
66      unsigned texunit_really_enabled:1;
67      unsigned texmat_enabled:1;
68      unsigned texgen_enabled:4;
69      unsigned texgen_mode0:4;
70      unsigned texgen_mode1:4;
71      unsigned texgen_mode2:4;
72      unsigned texgen_mode3:4;
73   } unit[8];
74};
75
76
77
78#define FOG_NONE   0
79#define FOG_LINEAR 1
80#define FOG_EXP    2
81#define FOG_EXP2   3
82
83static GLuint translate_fog_mode( GLenum mode )
84{
85   switch (mode) {
86   case GL_LINEAR: return FOG_LINEAR;
87   case GL_EXP: return FOG_EXP;
88   case GL_EXP2: return FOG_EXP2;
89   default: return FOG_NONE;
90   }
91}
92
93#define TXG_NONE           0
94#define TXG_OBJ_LINEAR     1
95#define TXG_EYE_LINEAR     2
96#define TXG_SPHERE_MAP     3
97#define TXG_REFLECTION_MAP 4
98#define TXG_NORMAL_MAP     5
99
100static GLuint translate_texgen( GLboolean enabled, GLenum mode )
101{
102   if (!enabled)
103      return TXG_NONE;
104
105   switch (mode) {
106   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
107   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
108   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
109   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
110   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
111   default: return TXG_NONE;
112   }
113}
114
115static struct state_key *make_state_key( GLcontext *ctx )
116{
117   TNLcontext *tnl = TNL_CONTEXT(ctx);
118   struct vertex_buffer *VB = &tnl->vb;
119   struct fragment_program *fp = ctx->FragmentProgram._Current;
120   struct state_key *key = CALLOC_STRUCT(state_key);
121   GLuint i;
122
123   /* This now relies on texenvprogram.c being active:
124    */
125   assert(fp);
126
127   key->fragprog_inputs_read = fp->InputsRead;
128
129   key->separate_specular = (ctx->Light.Model.ColorControl ==
130			     GL_SEPARATE_SPECULAR_COLOR);
131
132   if (ctx->Light.Enabled) {
133      key->light_global_enabled = 1;
134
135      if (ctx->Light.Model.LocalViewer)
136	 key->light_local_viewer = 1;
137
138      if (ctx->Light.Model.TwoSide)
139	 key->light_twoside = 1;
140
141      if (ctx->Light.ColorMaterialEnabled) {
142	 key->light_color_material = 1;
143	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
144      }
145
146      for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++)
147	 if (VB->AttribPtr[i]->stride)
148	    key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
149
150      for (i = 0; i < MAX_LIGHTS; i++) {
151	 struct gl_light *light = &ctx->Light.Light[i];
152
153	 if (light->Enabled) {
154	    key->unit[i].light_enabled = 1;
155
156	    if (light->EyePosition[3] == 0.0)
157	       key->unit[i].light_eyepos3_is_zero = 1;
158
159	    if (light->SpotCutoff == 180.0)
160	       key->unit[i].light_spotcutoff_is_180 = 1;
161
162	    if (light->ConstantAttenuation != 1.0 ||
163		light->LinearAttenuation != 0.0 ||
164		light->QuadraticAttenuation != 0.0)
165	       key->unit[i].light_attenuated = 1;
166	 }
167      }
168   }
169
170   if (ctx->Transform.Normalize)
171      key->normalize = 1;
172
173   if (ctx->Transform.RescaleNormals)
174      key->rescale_normals = 1;
175
176   key->fog_mode = translate_fog_mode(fp->FogOption);
177
178   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
179      key->fog_source_is_depth = 1;
180
181   if (tnl->_DoVertexFog)
182      key->tnl_do_vertex_fog = 1;
183
184   if (ctx->Point._Attenuated)
185      key->point_attenuated = 1;
186
187   if (ctx->Texture._TexGenEnabled ||
188       ctx->Texture._TexMatEnabled ||
189       ctx->Texture._EnabledUnits)
190      key->texture_enabled_global = 1;
191
192   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
193      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
194
195      if (texUnit->_ReallyEnabled)
196	 key->unit[i].texunit_really_enabled = 1;
197
198      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
199	 key->unit[i].texmat_enabled = 1;
200
201      if (texUnit->TexGenEnabled) {
202	 key->unit[i].texgen_enabled = 1;
203
204	 key->unit[i].texgen_mode0 =
205	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
206			      texUnit->GenModeS );
207	 key->unit[i].texgen_mode1 =
208	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
209			      texUnit->GenModeT );
210	 key->unit[i].texgen_mode2 =
211	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
212			      texUnit->GenModeR );
213	 key->unit[i].texgen_mode3 =
214	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
215			      texUnit->GenModeQ );
216      }
217   }
218
219   return key;
220}
221
222
223
224/* Very useful debugging tool - produces annotated listing of
225 * generated program with line/function references for each
226 * instruction back into this file:
227 */
228#define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
229
230/* Should be tunable by the driver - do we want to do matrix
231 * multiplications with DP4's or with MUL/MAD's?  SSE works better
232 * with the latter, drivers may differ.
233 */
234#define PREFER_DP4 0
235
236#define MAX_INSN 256
237
238/* Use uregs to represent registers internally, translate to Mesa's
239 * expected formats on emit.
240 *
241 * NOTE: These are passed by value extensively in this file rather
242 * than as usual by pointer reference.  If this disturbs you, try
243 * remembering they are just 32bits in size.
244 *
245 * GCC is smart enough to deal with these dword-sized structures in
246 * much the same way as if I had defined them as dwords and was using
247 * macros to access and set the fields.  This is much nicer and easier
248 * to evolve.
249 */
250struct ureg {
251   GLuint file:4;
252   GLint idx:8;      /* relative addressing may be negative */
253   GLuint negate:1;
254   GLuint swz:12;
255   GLuint pad:7;
256};
257
258
259struct tnl_program {
260   const struct state_key *state;
261   struct vertex_program *program;
262
263   GLuint temp_in_use;
264   GLuint temp_reserved;
265
266   struct ureg eye_position;
267   struct ureg eye_position_normalized;
268   struct ureg eye_normal;
269   struct ureg identity;
270
271   GLuint materials;
272   GLuint color_materials;
273};
274
275
276const static struct ureg undef = {
277   ~0,
278   ~0,
279   0,
280   0,
281   0
282};
283
284/* Local shorthand:
285 */
286#define X    SWIZZLE_X
287#define Y    SWIZZLE_Y
288#define Z    SWIZZLE_Z
289#define W    SWIZZLE_W
290
291
292/* Construct a ureg:
293 */
294static struct ureg make_ureg(GLuint file, GLint idx)
295{
296   struct ureg reg;
297   reg.file = file;
298   reg.idx = idx;
299   reg.negate = 0;
300   reg.swz = SWIZZLE_NOOP;
301   reg.pad = 0;
302   return reg;
303}
304
305
306
307static struct ureg negate( struct ureg reg )
308{
309   reg.negate ^= 1;
310   return reg;
311}
312
313
314static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
315{
316   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
317			   GET_SWZ(reg.swz, y),
318			   GET_SWZ(reg.swz, z),
319			   GET_SWZ(reg.swz, w));
320
321   return reg;
322}
323
324static struct ureg swizzle1( struct ureg reg, int x )
325{
326   return swizzle(reg, x, x, x, x);
327}
328
329static struct ureg get_temp( struct tnl_program *p )
330{
331   int bit = _mesa_ffs( ~p->temp_in_use );
332   if (!bit) {
333      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
334      _mesa_exit(1);
335   }
336
337   if (bit > p->program->Base.NumTemporaries)
338      p->program->Base.NumTemporaries = bit;
339
340   p->temp_in_use |= 1<<(bit-1);
341   return make_ureg(PROGRAM_TEMPORARY, bit-1);
342}
343
344static struct ureg reserve_temp( struct tnl_program *p )
345{
346   struct ureg temp = get_temp( p );
347   p->temp_reserved |= 1<<temp.idx;
348   return temp;
349}
350
351static void release_temp( struct tnl_program *p, struct ureg reg )
352{
353   if (reg.file == PROGRAM_TEMPORARY) {
354      p->temp_in_use &= ~(1<<reg.idx);
355      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
356   }
357}
358
359static void release_temps( struct tnl_program *p )
360{
361   p->temp_in_use = p->temp_reserved;
362}
363
364
365
366static struct ureg register_input( struct tnl_program *p, GLuint input )
367{
368   p->program->InputsRead |= (1<<input);
369   return make_ureg(PROGRAM_INPUT, input);
370}
371
372static struct ureg register_output( struct tnl_program *p, GLuint output )
373{
374   p->program->OutputsWritten |= (1<<output);
375   return make_ureg(PROGRAM_OUTPUT, output);
376}
377
378static struct ureg register_const4f( struct tnl_program *p,
379			      GLfloat s0,
380			      GLfloat s1,
381			      GLfloat s2,
382			      GLfloat s3)
383{
384   GLfloat values[4];
385   GLint idx;
386   values[0] = s0;
387   values[1] = s1;
388   values[2] = s2;
389   values[3] = s3;
390   idx = _mesa_add_unnamed_constant( p->program->Parameters, values );
391   return make_ureg(PROGRAM_STATE_VAR, idx);
392}
393
394#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
395#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
396#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
397#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
398
399static GLboolean is_undef( struct ureg reg )
400{
401   return reg.file == 0xf;
402}
403
404static struct ureg get_identity_param( struct tnl_program *p )
405{
406   if (is_undef(p->identity))
407      p->identity = register_const4f(p, 0,0,0,1);
408
409   return p->identity;
410}
411
412static struct ureg register_param6( struct tnl_program *p,
413				   GLint s0,
414				   GLint s1,
415				   GLint s2,
416				   GLint s3,
417				   GLint s4,
418				   GLint s5)
419{
420   GLint tokens[6];
421   GLint idx;
422   tokens[0] = s0;
423   tokens[1] = s1;
424   tokens[2] = s2;
425   tokens[3] = s3;
426   tokens[4] = s4;
427   tokens[5] = s5;
428   idx = _mesa_add_state_reference( p->program->Parameters, tokens );
429   return make_ureg(PROGRAM_STATE_VAR, idx);
430}
431
432
433#define register_param1(p,s0)          register_param6(p,s0,0,0,0,0,0)
434#define register_param2(p,s0,s1)       register_param6(p,s0,s1,0,0,0,0)
435#define register_param3(p,s0,s1,s2)    register_param6(p,s0,s1,s2,0,0,0)
436#define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
437
438
439static void register_matrix_param6( struct tnl_program *p,
440				    GLint s0,
441				    GLint s1,
442				    GLint s2,
443				    GLint s3,
444				    GLint s4,
445				    GLint s5,
446				    struct ureg *matrix )
447{
448   GLuint i;
449
450   /* This is a bit sad as the support is there to pull the whole
451    * matrix out in one go:
452    */
453   for (i = 0; i <= s4 - s3; i++)
454      matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
455}
456
457
458static void emit_arg( struct vp_src_register *src,
459		      struct ureg reg )
460{
461   src->File = reg.file;
462   src->Index = reg.idx;
463   src->Swizzle = reg.swz;
464   src->Negate = reg.negate;
465   src->RelAddr = 0;
466   src->pad = 0;
467}
468
469static void emit_dst( struct vp_dst_register *dst,
470		      struct ureg reg, GLuint mask )
471{
472   dst->File = reg.file;
473   dst->Index = reg.idx;
474   /* allow zero as a shorthand for xyzw */
475   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
476   dst->pad = 0;
477}
478
479static void debug_insn( struct vp_instruction *inst, const char *fn,
480			GLuint line )
481{
482   if (DISASSEM) {
483      static const char *last_fn;
484
485      if (fn != last_fn) {
486	 last_fn = fn;
487	 _mesa_printf("%s:\n", fn);
488      }
489
490      _mesa_printf("%d:\t", line);
491      _mesa_debug_vp_inst(1, inst);
492   }
493}
494
495
496static void emit_op3fn(struct tnl_program *p,
497		       GLuint op,
498		       struct ureg dest,
499		       GLuint mask,
500		       struct ureg src0,
501		       struct ureg src1,
502		       struct ureg src2,
503		       const char *fn,
504		       GLuint line)
505{
506   GLuint nr = p->program->Base.NumInstructions++;
507   struct vp_instruction *inst = &p->program->Instructions[nr];
508
509   if (p->program->Base.NumInstructions > MAX_INSN) {
510      _mesa_problem(0, "Out of instructions in emit_op3fn\n");
511      return;
512   }
513
514   inst->Opcode = op;
515   inst->StringPos = 0;
516   inst->Data = 0;
517
518   emit_arg( &inst->SrcReg[0], src0 );
519   emit_arg( &inst->SrcReg[1], src1 );
520   emit_arg( &inst->SrcReg[2], src2 );
521
522   emit_dst( &inst->DstReg, dest, mask );
523
524   debug_insn(inst, fn, line);
525}
526
527
528#define emit_op3(p, op, dst, mask, src0, src1, src2) \
529   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
530
531#define emit_op2(p, op, dst, mask, src0, src1) \
532    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
533
534#define emit_op1(p, op, dst, mask, src0) \
535    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
536
537
538static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
539{
540   if (reg.file == PROGRAM_TEMPORARY &&
541       !(p->temp_reserved & (1<<reg.idx)))
542      return reg;
543   else {
544      struct ureg temp = get_temp(p);
545      emit_op1(p, VP_OPCODE_MOV, temp, 0, reg);
546      return temp;
547   }
548}
549
550
551/* Currently no tracking performed of input/output/register size or
552 * active elements.  Could be used to reduce these operations, as
553 * could the matrix type.
554 */
555static void emit_matrix_transform_vec4( struct tnl_program *p,
556					struct ureg dest,
557					const struct ureg *mat,
558					struct ureg src)
559{
560   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
561   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
562   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
563   emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
564}
565
566/* This version is much easier to implement if writemasks are not
567 * supported natively on the target or (like SSE), the target doesn't
568 * have a clean/obvious dotproduct implementation.
569 */
570static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
571						  struct ureg dest,
572						  const struct ureg *mat,
573						  struct ureg src)
574{
575   struct ureg tmp;
576
577   if (dest.file != PROGRAM_TEMPORARY)
578      tmp = get_temp(p);
579   else
580      tmp = dest;
581
582   emit_op2(p, VP_OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
583   emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
584   emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
585   emit_op3(p, VP_OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
586
587   if (dest.file != PROGRAM_TEMPORARY)
588      release_temp(p, tmp);
589}
590
591static void emit_matrix_transform_vec3( struct tnl_program *p,
592					struct ureg dest,
593					const struct ureg *mat,
594					struct ureg src)
595{
596   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
597   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
598   emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
599}
600
601
602static void emit_normalize_vec3( struct tnl_program *p,
603				 struct ureg dest,
604				 struct ureg src )
605{
606   struct ureg tmp = get_temp(p);
607   emit_op2(p, VP_OPCODE_DP3, tmp, 0, src, src);
608   emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
609   emit_op2(p, VP_OPCODE_MUL, dest, 0, src, tmp);
610   release_temp(p, tmp);
611}
612
613static void emit_passthrough( struct tnl_program *p,
614			      GLuint input,
615			      GLuint output )
616{
617   struct ureg out = register_output(p, output);
618   emit_op1(p, VP_OPCODE_MOV, out, 0, register_input(p, input));
619}
620
621static struct ureg get_eye_position( struct tnl_program *p )
622{
623   if (is_undef(p->eye_position)) {
624      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
625      struct ureg modelview[4];
626
627      p->eye_position = reserve_temp(p);
628
629      if (PREFER_DP4) {
630	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
631				 STATE_MATRIX, modelview );
632
633	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
634      }
635      else {
636	 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
637				 STATE_MATRIX_TRANSPOSE, modelview );
638
639	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
640      }
641   }
642
643   return p->eye_position;
644}
645
646
647static struct ureg get_eye_position_normalized( struct tnl_program *p )
648{
649   if (is_undef(p->eye_position_normalized)) {
650      struct ureg eye = get_eye_position(p);
651      p->eye_position_normalized = reserve_temp(p);
652      emit_normalize_vec3(p, p->eye_position_normalized, eye);
653   }
654
655   return p->eye_position_normalized;
656}
657
658
659static struct ureg get_eye_normal( struct tnl_program *p )
660{
661   if (is_undef(p->eye_normal)) {
662      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
663      struct ureg mvinv[3];
664
665      register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
666			      STATE_MATRIX_INVTRANS, mvinv );
667
668      p->eye_normal = reserve_temp(p);
669
670      /* Transform to eye space:
671       */
672      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
673
674      /* Normalize/Rescale:
675       */
676      if (p->state->normalize) {
677	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
678      }
679      else if (p->state->rescale_normals) {
680	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
681					       STATE_NORMAL_SCALE);
682
683	 emit_op2( p, VP_OPCODE_MUL, p->eye_normal, 0, normal,
684		   swizzle1(rescale, X));
685      }
686   }
687
688   return p->eye_normal;
689}
690
691
692
693static void build_hpos( struct tnl_program *p )
694{
695   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
696   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
697   struct ureg mvp[4];
698
699   if (PREFER_DP4) {
700      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
701			      STATE_MATRIX, mvp );
702      emit_matrix_transform_vec4( p, hpos, mvp, pos );
703   }
704   else {
705      register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
706			      STATE_MATRIX_TRANSPOSE, mvp );
707      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
708   }
709}
710
711
712static GLuint material_attrib( GLuint side, GLuint property )
713{
714   return ((property - STATE_AMBIENT) * 2 +
715	   side);
716}
717
718/* Get a bitmask of which material values vary on a per-vertex basis.
719 */
720static void set_material_flags( struct tnl_program *p )
721{
722   p->color_materials = 0;
723   p->materials = 0;
724
725   if (p->state->light_color_material) {
726      p->materials =
727	 p->color_materials = p->state->light_color_material_mask;
728   }
729
730   p->materials |= p->state->light_material_mask;
731}
732
733
734static struct ureg get_material( struct tnl_program *p, GLuint side,
735				 GLuint property )
736{
737   GLuint attrib = material_attrib(side, property);
738
739   if (p->color_materials & (1<<attrib))
740      return register_input(p, VERT_ATTRIB_COLOR0);
741   else if (p->materials & (1<<attrib))
742      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
743   else
744      return register_param3( p, STATE_MATERIAL, side, property );
745}
746
747#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
748				   MAT_BIT_FRONT_AMBIENT | \
749				   MAT_BIT_FRONT_DIFFUSE) << (side))
750
751/* Either return a precalculated constant value or emit code to
752 * calculate these values dynamically in the case where material calls
753 * are present between begin/end pairs.
754 *
755 * Probably want to shift this to the program compilation phase - if
756 * we always emitted the calculation here, a smart compiler could
757 * detect that it was constant (given a certain set of inputs), and
758 * lift it out of the main loop.  That way the programs created here
759 * would be independent of the vertex_buffer details.
760 */
761static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
762{
763   if (p->materials & SCENE_COLOR_BITS(side)) {
764      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
765      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
766      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
767      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
768      struct ureg tmp = make_temp(p, material_diffuse);
769      emit_op3(p, VP_OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
770	       material_ambient, material_emission);
771      return tmp;
772   }
773   else
774      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
775}
776
777
778static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
779				  GLuint side, GLuint property )
780{
781   GLuint attrib = material_attrib(side, property);
782   if (p->materials & (1<<attrib)) {
783      struct ureg light_value =
784	 register_param3(p, STATE_LIGHT, light, property);
785      struct ureg material_value = get_material(p, side, property);
786      struct ureg tmp = get_temp(p);
787      emit_op2(p, VP_OPCODE_MUL, tmp,  0, light_value, material_value);
788      return tmp;
789   }
790   else
791      return register_param4(p, STATE_LIGHTPROD, light, side, property);
792}
793
794static struct ureg calculate_light_attenuation( struct tnl_program *p,
795						GLuint i,
796						struct ureg VPpli,
797						struct ureg dist )
798{
799   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
800					     STATE_ATTENUATION);
801   struct ureg att = get_temp(p);
802
803   /* Calculate spot attenuation:
804    */
805   if (!p->state->unit[i].light_spotcutoff_is_180) {
806      struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
807					     STATE_SPOT_DIRECTION);
808      struct ureg spot = get_temp(p);
809      struct ureg slt = get_temp(p);
810
811      emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
812      emit_op2(p, VP_OPCODE_DP3, spot, 0, negate(VPpli), spot);
813      emit_op2(p, VP_OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
814      emit_op2(p, VP_OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
815      emit_op2(p, VP_OPCODE_MUL, att, 0, slt, spot);
816
817      release_temp(p, spot);
818      release_temp(p, slt);
819   }
820
821   /* Calculate distance attenuation:
822    */
823   if (p->state->unit[i].light_attenuated) {
824
825      /* 1/d,d,d,1/d */
826      emit_op1(p, VP_OPCODE_RCP, dist, WRITEMASK_YZ, dist);
827      /* 1,d,d*d,1/d */
828      emit_op2(p, VP_OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
829      /* 1/dist-atten */
830      emit_op2(p, VP_OPCODE_DP3, dist, 0, attenuation, dist);
831
832      if (!p->state->unit[i].light_spotcutoff_is_180) {
833	 /* dist-atten */
834	 emit_op1(p, VP_OPCODE_RCP, dist, 0, dist);
835	 /* spot-atten * dist-atten */
836	 emit_op2(p, VP_OPCODE_MUL, att, 0, dist, att);
837      } else {
838	 /* dist-atten */
839	 emit_op1(p, VP_OPCODE_RCP, att, 0, dist);
840      }
841   }
842
843   return att;
844}
845
846
847
848
849
850/* Need to add some addtional parameters to allow lighting in object
851 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
852 * space lighting.
853 */
854static void build_lighting( struct tnl_program *p )
855{
856   const GLboolean twoside = p->state->light_twoside;
857   const GLboolean separate = p->state->separate_specular;
858   GLuint nr_lights = 0, count = 0;
859   struct ureg normal = get_eye_normal(p);
860   struct ureg lit = get_temp(p);
861   struct ureg dots = get_temp(p);
862   struct ureg _col0 = undef, _col1 = undef;
863   struct ureg _bfc0 = undef, _bfc1 = undef;
864   GLuint i;
865
866   for (i = 0; i < MAX_LIGHTS; i++)
867      if (p->state->unit[i].light_enabled)
868	 nr_lights++;
869
870   set_material_flags(p);
871
872   {
873      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
874      emit_op1(p, VP_OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
875      release_temp(p, shininess);
876
877      _col0 = make_temp(p, get_scenecolor(p, 0));
878      if (separate)
879	 _col1 = make_temp(p, get_identity_param(p));
880      else
881	 _col1 = _col0;
882
883   }
884
885   if (twoside) {
886      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
887      emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_Z,
888	       negate(swizzle1(shininess,X)));
889      release_temp(p, shininess);
890
891      _bfc0 = make_temp(p, get_scenecolor(p, 1));
892      if (separate)
893	 _bfc1 = make_temp(p, get_identity_param(p));
894      else
895	 _bfc1 = _bfc0;
896   }
897
898
899   /* If no lights, still need to emit the scenecolor.
900    */
901      {
902	 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
903	 emit_op1(p, VP_OPCODE_MOV, res0, 0, _col0);
904      }
905
906      if (separate) {
907	 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
908	 emit_op1(p, VP_OPCODE_MOV, res1, 0, _col1);
909      }
910
911      if (twoside) {
912	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
913	 emit_op1(p, VP_OPCODE_MOV, res0, 0, _bfc0);
914      }
915
916      if (twoside && separate) {
917	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
918	 emit_op1(p, VP_OPCODE_MOV, res1, 0, _bfc1);
919      }
920
921   if (nr_lights == 0) {
922      release_temps(p);
923      return;
924   }
925
926
927   for (i = 0; i < MAX_LIGHTS; i++) {
928      if (p->state->unit[i].light_enabled) {
929	 struct ureg half = undef;
930	 struct ureg att = undef, VPpli = undef;
931
932	 count++;
933
934	 if (p->state->unit[i].light_eyepos3_is_zero) {
935	    /* Can used precomputed constants in this case.
936	     * Attenuation never applies to infinite lights.
937	     */
938	    VPpli = register_param3(p, STATE_LIGHT, i,
939				    STATE_POSITION_NORMALIZED);
940	    half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
941	 }
942	 else {
943	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
944					       STATE_POSITION);
945	    struct ureg V = get_eye_position(p);
946	    struct ureg dist = get_temp(p);
947
948	    VPpli = get_temp(p);
949	    half = get_temp(p);
950
951	    /* Calulate VPpli vector
952	     */
953	    emit_op2(p, VP_OPCODE_SUB, VPpli, 0, Ppli, V);
954
955	    /* Normalize VPpli.  The dist value also used in
956	     * attenuation below.
957	     */
958	    emit_op2(p, VP_OPCODE_DP3, dist, 0, VPpli, VPpli);
959	    emit_op1(p, VP_OPCODE_RSQ, dist, 0, dist);
960	    emit_op2(p, VP_OPCODE_MUL, VPpli, 0, VPpli, dist);
961
962
963	    /* Calculate  attenuation:
964	     */
965	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
966		p->state->unit[i].light_attenuated) {
967	       att = calculate_light_attenuation(p, i, VPpli, dist);
968	    }
969
970
971	    /* Calculate viewer direction, or use infinite viewer:
972	     */
973	    if (p->state->light_local_viewer) {
974	       struct ureg eye_hat = get_eye_position_normalized(p);
975	       emit_op2(p, VP_OPCODE_SUB, half, 0, VPpli, eye_hat);
976	    }
977	    else {
978	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
979	       emit_op2(p, VP_OPCODE_ADD, half, 0, VPpli, z_dir);
980	    }
981
982	    emit_normalize_vec3(p, half, half);
983
984	    release_temp(p, dist);
985	 }
986
987	 /* Calculate dot products:
988	  */
989	 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
990	 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
991
992
993	 /* Front face lighting:
994	  */
995	 {
996	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
997	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
998	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
999	    struct ureg res0, res1;
1000	    GLuint mask0, mask1;
1001
1002	    emit_op1(p, VP_OPCODE_LIT, lit, 0, dots);
1003
1004	    if (!is_undef(att))
1005	       emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1006
1007
1008	    if (count == nr_lights) {
1009	       if (separate) {
1010		  mask0 = WRITEMASK_XYZ;
1011		  mask1 = WRITEMASK_XYZ;
1012		  res0 = register_output( p, VERT_RESULT_COL0 );
1013		  res1 = register_output( p, VERT_RESULT_COL1 );
1014	       }
1015	       else {
1016		  mask0 = 0;
1017		  mask1 = WRITEMASK_XYZ;
1018		  res0 = _col0;
1019		  res1 = register_output( p, VERT_RESULT_COL0 );
1020	       }
1021	    } else {
1022	       mask0 = 0;
1023	       mask1 = 0;
1024	       res0 = _col0;
1025	       res1 = _col1;
1026	    }
1027
1028	    emit_op3(p, VP_OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1029	    emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1030	    emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1031
1032	    release_temp(p, ambient);
1033	    release_temp(p, diffuse);
1034	    release_temp(p, specular);
1035	 }
1036
1037	 /* Back face lighting:
1038	  */
1039	 if (twoside) {
1040	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1041	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1042	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1043	    struct ureg res0, res1;
1044	    GLuint mask0, mask1;
1045
1046	    emit_op1(p, VP_OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1047
1048	    if (!is_undef(att))
1049	       emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1050
1051	    if (count == nr_lights) {
1052	       if (separate) {
1053		  mask0 = WRITEMASK_XYZ;
1054		  mask1 = WRITEMASK_XYZ;
1055		  res0 = register_output( p, VERT_RESULT_BFC0 );
1056		  res1 = register_output( p, VERT_RESULT_BFC1 );
1057	       }
1058	       else {
1059		  mask0 = 0;
1060		  mask1 = WRITEMASK_XYZ;
1061		  res0 = _bfc0;
1062		  res1 = register_output( p, VERT_RESULT_BFC0 );
1063	       }
1064	    } else {
1065	       res0 = _bfc0;
1066	       res1 = _bfc1;
1067	       mask0 = 0;
1068	       mask1 = 0;
1069	    }
1070
1071	    emit_op3(p, VP_OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1072	    emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1073	    emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1074
1075	    release_temp(p, ambient);
1076	    release_temp(p, diffuse);
1077	    release_temp(p, specular);
1078	 }
1079
1080	 release_temp(p, half);
1081	 release_temp(p, VPpli);
1082	 release_temp(p, att);
1083      }
1084   }
1085
1086   release_temps( p );
1087}
1088
1089
1090static void build_fog( struct tnl_program *p )
1091{
1092   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1093   struct ureg input;
1094
1095   if (p->state->fog_source_is_depth) {
1096      input = swizzle1(get_eye_position(p), Z);
1097   }
1098   else {
1099      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1100   }
1101
1102   if (p->state->tnl_do_vertex_fog) {
1103      struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1104      struct ureg tmp = get_temp(p);
1105
1106      switch (p->state->fog_mode) {
1107      case FOG_LINEAR: {
1108	 struct ureg id = get_identity_param(p);
1109	 emit_op2(p, VP_OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1110	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1111	 emit_op2(p, VP_OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1112	 emit_op2(p, VP_OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1113	 break;
1114      }
1115      case FOG_EXP:
1116	 emit_op1(p, VP_OPCODE_ABS, tmp, 0, input);
1117	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1118	 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1119		  register_const1f(p, M_E), negate(tmp));
1120	 break;
1121      case FOG_EXP2:
1122	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1123	 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, tmp);
1124	 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1125		  register_const1f(p, M_E), negate(tmp));
1126	 break;
1127      }
1128
1129      release_temp(p, tmp);
1130   }
1131   else {
1132      /* results = incoming fog coords (compute fog per-fragment later)
1133       *
1134       * KW:  Is it really necessary to do anything in this case?
1135       */
1136      emit_op1(p, VP_OPCODE_MOV, fog, WRITEMASK_X, input);
1137   }
1138}
1139
1140static void build_reflect_texgen( struct tnl_program *p,
1141				  struct ureg dest,
1142				  GLuint writemask )
1143{
1144   struct ureg normal = get_eye_normal(p);
1145   struct ureg eye_hat = get_eye_position_normalized(p);
1146   struct ureg tmp = get_temp(p);
1147
1148   /* n.u */
1149   emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1150   /* 2n.u */
1151   emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1152   /* (-2n.u)n + u */
1153   emit_op3(p, VP_OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1154}
1155
1156static void build_sphere_texgen( struct tnl_program *p,
1157				 struct ureg dest,
1158				 GLuint writemask )
1159{
1160   struct ureg normal = get_eye_normal(p);
1161   struct ureg eye_hat = get_eye_position_normalized(p);
1162   struct ureg tmp = get_temp(p);
1163   struct ureg half = register_scalar_const(p, .5);
1164   struct ureg r = get_temp(p);
1165   struct ureg inv_m = get_temp(p);
1166   struct ureg id = get_identity_param(p);
1167
1168   /* Could share the above calculations, but it would be
1169    * a fairly odd state for someone to set (both sphere and
1170    * reflection active for different texture coordinate
1171    * components.  Of course - if two texture units enable
1172    * reflect and/or sphere, things start to tilt in favour
1173    * of seperating this out:
1174    */
1175
1176   /* n.u */
1177   emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1178   /* 2n.u */
1179   emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1180   /* (-2n.u)n + u */
1181   emit_op3(p, VP_OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1182   /* r + 0,0,1 */
1183   emit_op2(p, VP_OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1184   /* rx^2 + ry^2 + (rz+1)^2 */
1185   emit_op2(p, VP_OPCODE_DP3, tmp, 0, tmp, tmp);
1186   /* 2/m */
1187   emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
1188   /* 1/m */
1189   emit_op2(p, VP_OPCODE_MUL, inv_m, 0, tmp, half);
1190   /* r/m + 1/2 */
1191   emit_op3(p, VP_OPCODE_MAD, dest, writemask, r, inv_m, half);
1192
1193   release_temp(p, tmp);
1194   release_temp(p, r);
1195   release_temp(p, inv_m);
1196}
1197
1198
1199static void build_texture_transform( struct tnl_program *p )
1200{
1201   GLuint i, j;
1202
1203   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1204
1205      if (!(p->state->fragprog_inputs_read & (FRAG_BIT_TEX0<<i)))
1206	 continue;
1207
1208      if (p->state->unit[i].texgen_enabled ||
1209	  p->state->unit[i].texmat_enabled) {
1210
1211	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1212	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1213	 struct ureg out_texgen = undef;
1214
1215	 if (p->state->unit[i].texgen_enabled) {
1216	    GLuint copy_mask = 0;
1217	    GLuint sphere_mask = 0;
1218	    GLuint reflect_mask = 0;
1219	    GLuint normal_mask = 0;
1220	    GLuint modes[4];
1221
1222	    if (texmat_enabled)
1223	       out_texgen = get_temp(p);
1224	    else
1225	       out_texgen = out;
1226
1227	    modes[0] = p->state->unit[i].texgen_mode0;
1228	    modes[1] = p->state->unit[i].texgen_mode1;
1229	    modes[2] = p->state->unit[i].texgen_mode2;
1230	    modes[3] = p->state->unit[i].texgen_mode3;
1231
1232	    for (j = 0; j < 4; j++) {
1233	       switch (modes[j]) {
1234	       case TXG_OBJ_LINEAR: {
1235		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1236		  struct ureg plane =
1237		     register_param3(p, STATE_TEXGEN, i,
1238				     STATE_TEXGEN_OBJECT_S + j);
1239
1240		  emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1241			   obj, plane );
1242		  break;
1243	       }
1244	       case TXG_EYE_LINEAR: {
1245		  struct ureg eye = get_eye_position(p);
1246		  struct ureg plane =
1247		     register_param3(p, STATE_TEXGEN, i,
1248				     STATE_TEXGEN_EYE_S + j);
1249
1250		  emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1251			   eye, plane );
1252		  break;
1253	       }
1254	       case TXG_SPHERE_MAP:
1255		  sphere_mask |= WRITEMASK_X << j;
1256		  break;
1257	       case TXG_REFLECTION_MAP:
1258		  reflect_mask |= WRITEMASK_X << j;
1259		  break;
1260	       case TXG_NORMAL_MAP:
1261		  normal_mask |= WRITEMASK_X << j;
1262		  break;
1263	       case TXG_NONE:
1264		  copy_mask |= WRITEMASK_X << j;
1265	       }
1266
1267	    }
1268
1269
1270	    if (sphere_mask) {
1271	       build_sphere_texgen(p, out_texgen, sphere_mask);
1272	    }
1273
1274	    if (reflect_mask) {
1275	       build_reflect_texgen(p, out_texgen, reflect_mask);
1276	    }
1277
1278	    if (normal_mask) {
1279	       struct ureg normal = get_eye_normal(p);
1280	       emit_op1(p, VP_OPCODE_MOV, out_texgen, normal_mask, normal );
1281	    }
1282
1283	    if (copy_mask) {
1284	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1285	       emit_op1(p, VP_OPCODE_MOV, out_texgen, copy_mask, in );
1286	    }
1287	 }
1288
1289	 if (texmat_enabled) {
1290	    struct ureg texmat[4];
1291	    struct ureg in = (!is_undef(out_texgen) ?
1292			      out_texgen :
1293			      register_input(p, VERT_ATTRIB_TEX0+i));
1294	    if (PREFER_DP4) {
1295	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1296				       0, 3, STATE_MATRIX, texmat );
1297	       emit_matrix_transform_vec4( p, out, texmat, in );
1298	    }
1299	    else {
1300	       register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1301				       0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1302	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1303	    }
1304	 }
1305
1306	 release_temps(p);
1307      }
1308      else {
1309	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1310      }
1311   }
1312}
1313
1314
1315/* Seems like it could be tighter:
1316 */
1317static void build_pointsize( struct tnl_program *p )
1318{
1319   struct ureg eye = get_eye_position(p);
1320   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1321   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1322   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1323   struct ureg ut = get_temp(p);
1324
1325   /* 1, -Z, Z * Z, 1 */
1326   emit_op1(p, VP_OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1327   emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1328   emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1329
1330
1331   /* p1 +  p2 * dist + p3 * dist * dist, 0 */
1332   emit_op2(p, VP_OPCODE_DP3, ut, 0, ut, state_attenuation);
1333
1334   /* 1 / factor */
1335   emit_op1(p, VP_OPCODE_RCP, ut, 0, ut );
1336
1337   /* out = pointSize / factor */
1338   emit_op2(p, VP_OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1339
1340   release_temp(p, ut);
1341}
1342
1343static void build_tnl_program( struct tnl_program *p )
1344{   /* Emit the program, starting with modelviewproject:
1345    */
1346   build_hpos(p);
1347
1348   /* Lighting calculations:
1349    */
1350   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1351      if (p->state->light_global_enabled)
1352	 build_lighting(p);
1353      else {
1354	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1355	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1356
1357	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1358	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL1);
1359      }
1360   }
1361
1362   if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1363       p->state->fog_mode != FOG_NONE)
1364      build_fog(p);
1365
1366   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1367      build_texture_transform(p);
1368
1369   if (p->state->point_attenuated)
1370      build_pointsize(p);
1371
1372   /* Finish up:
1373    */
1374   emit_op1(p, VP_OPCODE_END, undef, 0, undef);
1375
1376   /* Disassemble:
1377    */
1378   if (DISASSEM) {
1379      _mesa_printf ("\n");
1380   }
1381}
1382
1383
1384static void
1385create_new_program( const struct state_key *key,
1386                    struct vertex_program *program,
1387                    GLuint max_temps)
1388{
1389   struct tnl_program p;
1390
1391   _mesa_memset(&p, 0, sizeof(p));
1392   p.state = key;
1393   p.program = program;
1394   p.eye_position = undef;
1395   p.eye_position_normalized = undef;
1396   p.eye_normal = undef;
1397   p.identity = undef;
1398   p.temp_in_use = 0;
1399
1400   if (max_temps >= sizeof(int) * 8)
1401      p.temp_reserved = 0;
1402   else
1403      p.temp_reserved = ~((1<<max_temps)-1);
1404
1405   p.program->Instructions = MALLOC(sizeof(struct vp_instruction) * MAX_INSN);
1406   p.program->Base.String = 0;
1407   p.program->Base.NumInstructions =
1408   p.program->Base.NumTemporaries =
1409   p.program->Base.NumParameters =
1410   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1411   p.program->Parameters = _mesa_new_parameter_list();
1412   p.program->InputsRead = 0;
1413   p.program->OutputsWritten = 0;
1414
1415   build_tnl_program( &p );
1416}
1417
1418static void *search_cache( struct tnl_cache *cache,
1419			   GLuint hash,
1420			   const void *key,
1421			   GLuint keysize)
1422{
1423   struct tnl_cache_item *c;
1424
1425   for (c = cache->items[hash % cache->size]; c; c = c->next) {
1426      if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1427	 return c->data;
1428   }
1429
1430   return NULL;
1431}
1432
1433static void rehash( struct tnl_cache *cache )
1434{
1435   struct tnl_cache_item **items;
1436   struct tnl_cache_item *c, *next;
1437   GLuint size, i;
1438
1439   size = cache->size * 3;
1440   items = MALLOC(size * sizeof(*items));
1441   _mesa_memset(items, 0, size * sizeof(*items));
1442
1443   for (i = 0; i < cache->size; i++)
1444      for (c = cache->items[i]; c; c = next) {
1445	 next = c->next;
1446	 c->next = items[c->hash % size];
1447	 items[c->hash % size] = c;
1448      }
1449
1450   FREE(cache->items);
1451   cache->items = items;
1452   cache->size = size;
1453}
1454
1455static void cache_item( struct tnl_cache *cache,
1456			GLuint hash,
1457			void *key,
1458			void *data )
1459{
1460   struct tnl_cache_item *c = MALLOC(sizeof(*c));
1461   c->hash = hash;
1462   c->key = key;
1463   c->data = data;
1464
1465   if (++cache->n_items > cache->size * 1.5)
1466      rehash(cache);
1467
1468   c->next = cache->items[hash % cache->size];
1469   cache->items[hash % cache->size] = c;
1470}
1471
1472static GLuint hash_key( struct state_key *key )
1473{
1474   GLuint *ikey = (GLuint *)key;
1475   GLuint hash = 0, i;
1476
1477   /* I'm sure this can be improved on, but speed is important:
1478    */
1479   for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1480      hash ^= ikey[i];
1481
1482   return hash;
1483}
1484
1485void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1486{
1487   TNLcontext *tnl = TNL_CONTEXT(ctx);
1488   struct state_key *key;
1489   GLuint hash;
1490   struct vertex_program *prev = ctx->VertexProgram._Current;
1491
1492   if (ctx->VertexProgram._Enabled == GL_FALSE) {
1493      /* Grab all the relevent state and put it in a single structure:
1494       */
1495      key = make_state_key(ctx);
1496      hash = hash_key(key);
1497
1498      /* Look for an already-prepared program for this state:
1499       */
1500      ctx->_TnlProgram = (struct vertex_program *)
1501	 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1502
1503      /* OK, we'll have to build a new one:
1504       */
1505      if (!ctx->_TnlProgram) {
1506	 if (0)
1507	    _mesa_printf("Build new TNL program\n");
1508
1509	 ctx->_TnlProgram = (struct vertex_program *)
1510	    ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1511
1512	 create_new_program( key, ctx->_TnlProgram,
1513			     ctx->Const.VertexProgram.MaxTemps );
1514
1515
1516	 cache_item(tnl->vp_cache, hash, key, ctx->_TnlProgram );
1517      }
1518      else {
1519	 FREE(key);
1520	 if (0)
1521	    _mesa_printf("Found existing TNL program for key %x\n", hash);
1522      }
1523      ctx->VertexProgram._Current = ctx->_TnlProgram;
1524   }
1525   else {
1526      ctx->VertexProgram._Current = ctx->VertexProgram.Current;
1527   }
1528
1529   /* Tell the driver about the change.  Could define a new target for
1530    * this?
1531    */
1532   if (ctx->VertexProgram._Current != prev)
1533      ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB, (struct program *)
1534			      ctx->VertexProgram._Current);
1535}
1536
1537
1538void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1539{
1540   TNLcontext *tnl = TNL_CONTEXT(ctx);
1541   struct tnl_cache_item *c, *next;
1542   GLuint i;
1543
1544   for (i = 0; i < tnl->vp_cache->size; i++)
1545      for (c = tnl->vp_cache->items[i]; c; c = next) {
1546	 next = c->next;
1547	 FREE(c->key);
1548	 FREE(c->data);
1549	 FREE(c);
1550      }
1551
1552   FREE(tnl->vp_cache->items);
1553   FREE(tnl->vp_cache);
1554}
1555