t_vp_build.c revision dba21ed913da2222e3b55fc8ba724ca93acbabf1
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5
4 *
5 * Copyright (C) 2006  Tungsten Graphics   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33#include "glheader.h"
34#include "macros.h"
35#include "enums.h"
36#include "program.h"
37#include "prog_instruction.h"
38#include "prog_parameter.h"
39#include "prog_print.h"
40#include "prog_statevars.h"
41#include "t_context.h" /* NOTE: very light dependency on this */
42#include "t_vp_build.h"
43
44
45struct state_key {
46   unsigned light_global_enabled:1;
47   unsigned light_local_viewer:1;
48   unsigned light_twoside:1;
49   unsigned light_color_material:1;
50   unsigned light_color_material_mask:12;
51   unsigned light_material_mask:12;
52
53   unsigned normalize:1;
54   unsigned rescale_normals:1;
55   unsigned fog_source_is_depth:1;
56   unsigned tnl_do_vertex_fog:1;
57   unsigned separate_specular:1;
58   unsigned fog_mode:2;
59   unsigned point_attenuated:1;
60   unsigned texture_enabled_global:1;
61   unsigned fragprog_inputs_read:12;
62
63   struct {
64      unsigned light_enabled:1;
65      unsigned light_eyepos3_is_zero:1;
66      unsigned light_spotcutoff_is_180:1;
67      unsigned light_attenuated:1;
68      unsigned texunit_really_enabled:1;
69      unsigned texmat_enabled:1;
70      unsigned texgen_enabled:4;
71      unsigned texgen_mode0:4;
72      unsigned texgen_mode1:4;
73      unsigned texgen_mode2:4;
74      unsigned texgen_mode3:4;
75   } unit[8];
76};
77
78
79
80#define FOG_NONE   0
81#define FOG_LINEAR 1
82#define FOG_EXP    2
83#define FOG_EXP2   3
84
85static GLuint translate_fog_mode( GLenum mode )
86{
87   switch (mode) {
88   case GL_LINEAR: return FOG_LINEAR;
89   case GL_EXP: return FOG_EXP;
90   case GL_EXP2: return FOG_EXP2;
91   default: return FOG_NONE;
92   }
93}
94
95#define TXG_NONE           0
96#define TXG_OBJ_LINEAR     1
97#define TXG_EYE_LINEAR     2
98#define TXG_SPHERE_MAP     3
99#define TXG_REFLECTION_MAP 4
100#define TXG_NORMAL_MAP     5
101
102static GLuint translate_texgen( GLboolean enabled, GLenum mode )
103{
104   if (!enabled)
105      return TXG_NONE;
106
107   switch (mode) {
108   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
109   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
110   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
111   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
112   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
113   default: return TXG_NONE;
114   }
115}
116
117static struct state_key *make_state_key( GLcontext *ctx )
118{
119   TNLcontext *tnl = TNL_CONTEXT(ctx);
120   struct vertex_buffer *VB = &tnl->vb;
121   const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
122   struct state_key *key = CALLOC_STRUCT(state_key);
123   GLuint i;
124
125   /* This now relies on texenvprogram.c being active:
126    */
127   assert(fp);
128
129   key->fragprog_inputs_read = fp->Base.InputsRead;
130
131   key->separate_specular = (ctx->Light.Model.ColorControl ==
132			     GL_SEPARATE_SPECULAR_COLOR);
133
134   if (ctx->Light.Enabled) {
135      key->light_global_enabled = 1;
136
137      if (ctx->Light.Model.LocalViewer)
138	 key->light_local_viewer = 1;
139
140      if (ctx->Light.Model.TwoSide)
141	 key->light_twoside = 1;
142
143      if (ctx->Light.ColorMaterialEnabled) {
144	 key->light_color_material = 1;
145	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
146      }
147
148      for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
149	 if (VB->AttribPtr[i]->stride)
150	    key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
151
152      for (i = 0; i < MAX_LIGHTS; i++) {
153	 struct gl_light *light = &ctx->Light.Light[i];
154
155	 if (light->Enabled) {
156	    key->unit[i].light_enabled = 1;
157
158	    if (light->EyePosition[3] == 0.0)
159	       key->unit[i].light_eyepos3_is_zero = 1;
160
161	    if (light->SpotCutoff == 180.0)
162	       key->unit[i].light_spotcutoff_is_180 = 1;
163
164	    if (light->ConstantAttenuation != 1.0 ||
165		light->LinearAttenuation != 0.0 ||
166		light->QuadraticAttenuation != 0.0)
167	       key->unit[i].light_attenuated = 1;
168	 }
169      }
170   }
171
172   if (ctx->Transform.Normalize)
173      key->normalize = 1;
174
175   if (ctx->Transform.RescaleNormals)
176      key->rescale_normals = 1;
177
178   key->fog_mode = translate_fog_mode(fp->FogOption);
179
180   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
181      key->fog_source_is_depth = 1;
182
183   if (tnl->_DoVertexFog)
184      key->tnl_do_vertex_fog = 1;
185
186   if (ctx->Point._Attenuated)
187      key->point_attenuated = 1;
188
189   if (ctx->Texture._TexGenEnabled ||
190       ctx->Texture._TexMatEnabled ||
191       ctx->Texture._EnabledUnits)
192      key->texture_enabled_global = 1;
193
194   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
195      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
196
197      if (texUnit->_ReallyEnabled)
198	 key->unit[i].texunit_really_enabled = 1;
199
200      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
201	 key->unit[i].texmat_enabled = 1;
202
203      if (texUnit->TexGenEnabled) {
204	 key->unit[i].texgen_enabled = 1;
205
206	 key->unit[i].texgen_mode0 =
207	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
208			      texUnit->GenModeS );
209	 key->unit[i].texgen_mode1 =
210	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
211			      texUnit->GenModeT );
212	 key->unit[i].texgen_mode2 =
213	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
214			      texUnit->GenModeR );
215	 key->unit[i].texgen_mode3 =
216	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
217			      texUnit->GenModeQ );
218      }
219   }
220
221   return key;
222}
223
224
225
226/* Very useful debugging tool - produces annotated listing of
227 * generated program with line/function references for each
228 * instruction back into this file:
229 */
230#define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
231
232/* Should be tunable by the driver - do we want to do matrix
233 * multiplications with DP4's or with MUL/MAD's?  SSE works better
234 * with the latter, drivers may differ.
235 */
236#define PREFER_DP4 0
237
238#define MAX_INSN 256
239
240/* Use uregs to represent registers internally, translate to Mesa's
241 * expected formats on emit.
242 *
243 * NOTE: These are passed by value extensively in this file rather
244 * than as usual by pointer reference.  If this disturbs you, try
245 * remembering they are just 32bits in size.
246 *
247 * GCC is smart enough to deal with these dword-sized structures in
248 * much the same way as if I had defined them as dwords and was using
249 * macros to access and set the fields.  This is much nicer and easier
250 * to evolve.
251 */
252struct ureg {
253   GLuint file:4;
254   GLint idx:8;      /* relative addressing may be negative */
255   GLuint negate:1;
256   GLuint swz:12;
257   GLuint pad:7;
258};
259
260
261struct tnl_program {
262   const struct state_key *state;
263   struct gl_vertex_program *program;
264
265   GLuint temp_in_use;
266   GLuint temp_reserved;
267
268   struct ureg eye_position;
269   struct ureg eye_position_normalized;
270   struct ureg eye_normal;
271   struct ureg identity;
272
273   GLuint materials;
274   GLuint color_materials;
275};
276
277
278static const struct ureg undef = {
279   PROGRAM_UNDEFINED,
280   ~0,
281   0,
282   0,
283   0
284};
285
286/* Local shorthand:
287 */
288#define X    SWIZZLE_X
289#define Y    SWIZZLE_Y
290#define Z    SWIZZLE_Z
291#define W    SWIZZLE_W
292
293
294/* Construct a ureg:
295 */
296static struct ureg make_ureg(GLuint file, GLint idx)
297{
298   struct ureg reg;
299   reg.file = file;
300   reg.idx = idx;
301   reg.negate = 0;
302   reg.swz = SWIZZLE_NOOP;
303   reg.pad = 0;
304   return reg;
305}
306
307
308
309static struct ureg negate( struct ureg reg )
310{
311   reg.negate ^= 1;
312   return reg;
313}
314
315
316static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
317{
318   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
319			   GET_SWZ(reg.swz, y),
320			   GET_SWZ(reg.swz, z),
321			   GET_SWZ(reg.swz, w));
322
323   return reg;
324}
325
326static struct ureg swizzle1( struct ureg reg, int x )
327{
328   return swizzle(reg, x, x, x, x);
329}
330
331static struct ureg get_temp( struct tnl_program *p )
332{
333   int bit = _mesa_ffs( ~p->temp_in_use );
334   if (!bit) {
335      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
336      _mesa_exit(1);
337   }
338
339   if ((GLuint) bit > p->program->Base.NumTemporaries)
340      p->program->Base.NumTemporaries = bit;
341
342   p->temp_in_use |= 1<<(bit-1);
343   return make_ureg(PROGRAM_TEMPORARY, bit-1);
344}
345
346static struct ureg reserve_temp( struct tnl_program *p )
347{
348   struct ureg temp = get_temp( p );
349   p->temp_reserved |= 1<<temp.idx;
350   return temp;
351}
352
353static void release_temp( struct tnl_program *p, struct ureg reg )
354{
355   if (reg.file == PROGRAM_TEMPORARY) {
356      p->temp_in_use &= ~(1<<reg.idx);
357      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
358   }
359}
360
361static void release_temps( struct tnl_program *p )
362{
363   p->temp_in_use = p->temp_reserved;
364}
365
366
367
368static struct ureg register_input( struct tnl_program *p, GLuint input )
369{
370   p->program->Base.InputsRead |= (1<<input);
371   return make_ureg(PROGRAM_INPUT, input);
372}
373
374static struct ureg register_output( struct tnl_program *p, GLuint output )
375{
376   p->program->Base.OutputsWritten |= (1<<output);
377   return make_ureg(PROGRAM_OUTPUT, output);
378}
379
380static struct ureg register_const4f( struct tnl_program *p,
381			      GLfloat s0,
382			      GLfloat s1,
383			      GLfloat s2,
384			      GLfloat s3)
385{
386   GLfloat values[4];
387   GLint idx;
388   GLuint swizzle;
389   values[0] = s0;
390   values[1] = s1;
391   values[2] = s2;
392   values[3] = s3;
393   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
394                                     &swizzle );
395   ASSERT(swizzle == SWIZZLE_NOOP);
396   return make_ureg(PROGRAM_STATE_VAR, idx);
397}
398
399#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
400#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
401#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
402#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
403
404static GLboolean is_undef( struct ureg reg )
405{
406   return reg.file == PROGRAM_UNDEFINED;
407}
408
409static struct ureg get_identity_param( struct tnl_program *p )
410{
411   if (is_undef(p->identity))
412      p->identity = register_const4f(p, 0,0,0,1);
413
414   return p->identity;
415}
416
417static struct ureg register_param5(struct tnl_program *p,
418				   GLint s0,
419				   GLint s1,
420				   GLint s2,
421				   GLint s3,
422                                   GLint s4)
423{
424   gl_state_index tokens[STATE_LENGTH];
425   GLint idx;
426   tokens[0] = s0;
427   tokens[1] = s1;
428   tokens[2] = s2;
429   tokens[3] = s3;
430   tokens[4] = s4;
431   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432   return make_ureg(PROGRAM_STATE_VAR, idx);
433}
434
435
436#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
437#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
438#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
439#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440
441
442static void register_matrix_param5( struct tnl_program *p,
443				    GLint s0, /* modelview, projection, etc */
444				    GLint s1, /* texture matrix number */
445				    GLint s2, /* first row */
446				    GLint s3, /* last row */
447				    GLint s4, /* inverse, transpose, etc */
448				    struct ureg *matrix )
449{
450   GLint i;
451
452   /* This is a bit sad as the support is there to pull the whole
453    * matrix out in one go:
454    */
455   for (i = 0; i <= s3 - s2; i++)
456      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
457}
458
459
460static void emit_arg( struct prog_src_register *src,
461		      struct ureg reg )
462{
463   src->File = reg.file;
464   src->Index = reg.idx;
465   src->Swizzle = reg.swz;
466   src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
467   src->Abs = 0;
468   src->NegateAbs = 0;
469   src->RelAddr = 0;
470}
471
472static void emit_dst( struct prog_dst_register *dst,
473		      struct ureg reg, GLuint mask )
474{
475   dst->File = reg.file;
476   dst->Index = reg.idx;
477   /* allow zero as a shorthand for xyzw */
478   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
479   dst->CondMask = COND_TR;
480   dst->CondSwizzle = 0;
481   dst->CondSrc = 0;
482   dst->pad = 0;
483}
484
485static void debug_insn( struct prog_instruction *inst, const char *fn,
486			GLuint line )
487{
488   if (DISASSEM) {
489      static const char *last_fn;
490
491      if (fn != last_fn) {
492	 last_fn = fn;
493	 _mesa_printf("%s:\n", fn);
494      }
495
496      _mesa_printf("%d:\t", line);
497      _mesa_print_instruction(inst);
498   }
499}
500
501
502static void emit_op3fn(struct tnl_program *p,
503		       GLuint op,
504		       struct ureg dest,
505		       GLuint mask,
506		       struct ureg src0,
507		       struct ureg src1,
508		       struct ureg src2,
509		       const char *fn,
510		       GLuint line)
511{
512   GLuint nr = p->program->Base.NumInstructions++;
513   struct prog_instruction *inst = &p->program->Base.Instructions[nr];
514
515   if (p->program->Base.NumInstructions > MAX_INSN) {
516      _mesa_problem(0, "Out of instructions in emit_op3fn\n");
517      return;
518   }
519
520   inst->Opcode = (enum prog_opcode) op;
521   inst->StringPos = 0;
522   inst->Data = 0;
523
524   emit_arg( &inst->SrcReg[0], src0 );
525   emit_arg( &inst->SrcReg[1], src1 );
526   emit_arg( &inst->SrcReg[2], src2 );
527
528   emit_dst( &inst->DstReg, dest, mask );
529
530   debug_insn(inst, fn, line);
531}
532
533
534#define emit_op3(p, op, dst, mask, src0, src1, src2) \
535   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
536
537#define emit_op2(p, op, dst, mask, src0, src1) \
538    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
539
540#define emit_op1(p, op, dst, mask, src0) \
541    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
542
543
544static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
545{
546   if (reg.file == PROGRAM_TEMPORARY &&
547       !(p->temp_reserved & (1<<reg.idx)))
548      return reg;
549   else {
550      struct ureg temp = get_temp(p);
551      emit_op1(p, OPCODE_MOV, temp, 0, reg);
552      return temp;
553   }
554}
555
556
557/* Currently no tracking performed of input/output/register size or
558 * active elements.  Could be used to reduce these operations, as
559 * could the matrix type.
560 */
561static void emit_matrix_transform_vec4( struct tnl_program *p,
562					struct ureg dest,
563					const struct ureg *mat,
564					struct ureg src)
565{
566   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
567   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
568   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
569   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
570}
571
572/* This version is much easier to implement if writemasks are not
573 * supported natively on the target or (like SSE), the target doesn't
574 * have a clean/obvious dotproduct implementation.
575 */
576static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
577						  struct ureg dest,
578						  const struct ureg *mat,
579						  struct ureg src)
580{
581   struct ureg tmp;
582
583   if (dest.file != PROGRAM_TEMPORARY)
584      tmp = get_temp(p);
585   else
586      tmp = dest;
587
588   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
589   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
590   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
591   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
592
593   if (dest.file != PROGRAM_TEMPORARY)
594      release_temp(p, tmp);
595}
596
597static void emit_matrix_transform_vec3( struct tnl_program *p,
598					struct ureg dest,
599					const struct ureg *mat,
600					struct ureg src)
601{
602   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
603   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
604   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
605}
606
607
608static void emit_normalize_vec3( struct tnl_program *p,
609				 struct ureg dest,
610				 struct ureg src )
611{
612   struct ureg tmp = get_temp(p);
613   emit_op2(p, OPCODE_DP3, tmp, 0, src, src);
614   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
615   emit_op2(p, OPCODE_MUL, dest, 0, src, tmp);
616   release_temp(p, tmp);
617}
618
619static void emit_passthrough( struct tnl_program *p,
620			      GLuint input,
621			      GLuint output )
622{
623   struct ureg out = register_output(p, output);
624   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
625}
626
627static struct ureg get_eye_position( struct tnl_program *p )
628{
629   if (is_undef(p->eye_position)) {
630      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
631      struct ureg modelview[4];
632
633      p->eye_position = reserve_temp(p);
634
635      if (PREFER_DP4) {
636	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
637                                 0, modelview );
638
639	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
640      }
641      else {
642	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
643				 STATE_MATRIX_TRANSPOSE, modelview );
644
645	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
646      }
647   }
648
649   return p->eye_position;
650}
651
652
653static struct ureg get_eye_position_normalized( struct tnl_program *p )
654{
655   if (is_undef(p->eye_position_normalized)) {
656      struct ureg eye = get_eye_position(p);
657      p->eye_position_normalized = reserve_temp(p);
658      emit_normalize_vec3(p, p->eye_position_normalized, eye);
659   }
660
661   return p->eye_position_normalized;
662}
663
664
665static struct ureg get_eye_normal( struct tnl_program *p )
666{
667   if (is_undef(p->eye_normal)) {
668      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
669      struct ureg mvinv[3];
670
671      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
672			      STATE_MATRIX_INVTRANS, mvinv );
673
674      p->eye_normal = reserve_temp(p);
675
676      /* Transform to eye space:
677       */
678      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
679
680      /* Normalize/Rescale:
681       */
682      if (p->state->normalize) {
683	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
684      }
685      else if (p->state->rescale_normals) {
686	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
687					       STATE_NORMAL_SCALE);
688
689	 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, normal,
690		   swizzle1(rescale, X));
691      }
692   }
693
694   return p->eye_normal;
695}
696
697
698
699static void build_hpos( struct tnl_program *p )
700{
701   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
702   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
703   struct ureg mvp[4];
704
705   if (PREFER_DP4) {
706      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
707			      0, mvp );
708      emit_matrix_transform_vec4( p, hpos, mvp, pos );
709   }
710   else {
711      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
712			      STATE_MATRIX_TRANSPOSE, mvp );
713      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
714   }
715}
716
717
718static GLuint material_attrib( GLuint side, GLuint property )
719{
720   return ((property - STATE_AMBIENT) * 2 +
721	   side);
722}
723
724/* Get a bitmask of which material values vary on a per-vertex basis.
725 */
726static void set_material_flags( struct tnl_program *p )
727{
728   p->color_materials = 0;
729   p->materials = 0;
730
731   if (p->state->light_color_material) {
732      p->materials =
733	 p->color_materials = p->state->light_color_material_mask;
734   }
735
736   p->materials |= p->state->light_material_mask;
737}
738
739
740static struct ureg get_material( struct tnl_program *p, GLuint side,
741				 GLuint property )
742{
743   GLuint attrib = material_attrib(side, property);
744
745   if (p->color_materials & (1<<attrib))
746      return register_input(p, VERT_ATTRIB_COLOR0);
747   else if (p->materials & (1<<attrib))
748      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
749   else
750      return register_param3( p, STATE_MATERIAL, side, property );
751}
752
753#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
754				   MAT_BIT_FRONT_AMBIENT | \
755				   MAT_BIT_FRONT_DIFFUSE) << (side))
756
757/* Either return a precalculated constant value or emit code to
758 * calculate these values dynamically in the case where material calls
759 * are present between begin/end pairs.
760 *
761 * Probably want to shift this to the program compilation phase - if
762 * we always emitted the calculation here, a smart compiler could
763 * detect that it was constant (given a certain set of inputs), and
764 * lift it out of the main loop.  That way the programs created here
765 * would be independent of the vertex_buffer details.
766 */
767static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
768{
769   if (p->materials & SCENE_COLOR_BITS(side)) {
770      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
771      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
772      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
773      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
774      struct ureg tmp = make_temp(p, material_diffuse);
775      emit_op3(p, OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
776	       material_ambient, material_emission);
777      return tmp;
778   }
779   else
780      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
781}
782
783
784static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
785				  GLuint side, GLuint property )
786{
787   GLuint attrib = material_attrib(side, property);
788   if (p->materials & (1<<attrib)) {
789      struct ureg light_value =
790	 register_param3(p, STATE_LIGHT, light, property);
791      struct ureg material_value = get_material(p, side, property);
792      struct ureg tmp = get_temp(p);
793      emit_op2(p, OPCODE_MUL, tmp,  0, light_value, material_value);
794      return tmp;
795   }
796   else
797      return register_param4(p, STATE_LIGHTPROD, light, side, property);
798}
799
800static struct ureg calculate_light_attenuation( struct tnl_program *p,
801						GLuint i,
802						struct ureg VPpli,
803						struct ureg dist )
804{
805   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
806					     STATE_ATTENUATION);
807   struct ureg att = get_temp(p);
808
809   /* Calculate spot attenuation:
810    */
811   if (!p->state->unit[i].light_spotcutoff_is_180) {
812      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
813						  STATE_SPOT_DIR_NORMALIZED, i);
814      struct ureg spot = get_temp(p);
815      struct ureg slt = get_temp(p);
816
817      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
818      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
819      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
820      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
821
822      release_temp(p, spot);
823      release_temp(p, slt);
824   }
825
826   /* Calculate distance attenuation:
827    */
828   if (p->state->unit[i].light_attenuated) {
829
830      /* 1/d,d,d,1/d */
831      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
832      /* 1,d,d*d,1/d */
833      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
834      /* 1/dist-atten */
835      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
836
837      if (!p->state->unit[i].light_spotcutoff_is_180) {
838	 /* dist-atten */
839	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
840	 /* spot-atten * dist-atten */
841	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
842      } else {
843	 /* dist-atten */
844	 emit_op1(p, OPCODE_RCP, att, 0, dist);
845      }
846   }
847
848   return att;
849}
850
851
852
853
854
855/* Need to add some addtional parameters to allow lighting in object
856 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
857 * space lighting.
858 */
859static void build_lighting( struct tnl_program *p )
860{
861   const GLboolean twoside = p->state->light_twoside;
862   const GLboolean separate = p->state->separate_specular;
863   GLuint nr_lights = 0, count = 0;
864   struct ureg normal = get_eye_normal(p);
865   struct ureg lit = get_temp(p);
866   struct ureg dots = get_temp(p);
867   struct ureg _col0 = undef, _col1 = undef;
868   struct ureg _bfc0 = undef, _bfc1 = undef;
869   GLuint i;
870
871   for (i = 0; i < MAX_LIGHTS; i++)
872      if (p->state->unit[i].light_enabled)
873	 nr_lights++;
874
875   set_material_flags(p);
876
877   {
878      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
879      emit_op1(p, OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
880      release_temp(p, shininess);
881
882      _col0 = make_temp(p, get_scenecolor(p, 0));
883      if (separate)
884	 _col1 = make_temp(p, get_identity_param(p));
885      else
886	 _col1 = _col0;
887
888   }
889
890   if (twoside) {
891      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
892      emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
893	       negate(swizzle1(shininess,X)));
894      release_temp(p, shininess);
895
896      _bfc0 = make_temp(p, get_scenecolor(p, 1));
897      if (separate)
898	 _bfc1 = make_temp(p, get_identity_param(p));
899      else
900	 _bfc1 = _bfc0;
901   }
902
903
904   /* If no lights, still need to emit the scenecolor.
905    */
906      {
907	 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
908	 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
909      }
910
911      if (separate) {
912	 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
913	 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
914      }
915
916      if (twoside) {
917	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
918	 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
919      }
920
921      if (twoside && separate) {
922	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
923	 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
924      }
925
926   if (nr_lights == 0) {
927      release_temps(p);
928      return;
929   }
930
931
932   for (i = 0; i < MAX_LIGHTS; i++) {
933      if (p->state->unit[i].light_enabled) {
934	 struct ureg half = undef;
935	 struct ureg att = undef, VPpli = undef;
936
937	 count++;
938
939	 if (p->state->unit[i].light_eyepos3_is_zero) {
940	    /* Can used precomputed constants in this case.
941	     * Attenuation never applies to infinite lights.
942	     */
943	    VPpli = register_param3(p, STATE_LIGHT, i,
944				    STATE_POSITION_NORMALIZED);
945            if (p->state->light_local_viewer) {
946                struct ureg eye_hat = get_eye_position_normalized(p);
947                half = get_temp(p);
948                emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
949                emit_normalize_vec3(p, half, half);
950            } else {
951                half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR);
952            }
953	 }
954	 else {
955	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
956					       STATE_POSITION);
957	    struct ureg V = get_eye_position(p);
958	    struct ureg dist = get_temp(p);
959
960	    VPpli = get_temp(p);
961	    half = get_temp(p);
962
963	    /* Calulate VPpli vector
964	     */
965	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
966
967	    /* Normalize VPpli.  The dist value also used in
968	     * attenuation below.
969	     */
970	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
971	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
972	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
973
974
975	    /* Calculate  attenuation:
976	     */
977	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
978		p->state->unit[i].light_attenuated) {
979	       att = calculate_light_attenuation(p, i, VPpli, dist);
980	    }
981
982
983	    /* Calculate viewer direction, or use infinite viewer:
984	     */
985	    if (p->state->light_local_viewer) {
986	       struct ureg eye_hat = get_eye_position_normalized(p);
987	       emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
988	    }
989	    else {
990	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
991	       emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
992	    }
993
994	    emit_normalize_vec3(p, half, half);
995
996	    release_temp(p, dist);
997	 }
998
999	 /* Calculate dot products:
1000	  */
1001	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1002	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1003
1004
1005	 /* Front face lighting:
1006	  */
1007	 {
1008	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1009	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1010	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1011	    struct ureg res0, res1;
1012	    GLuint mask0, mask1;
1013
1014	    emit_op1(p, OPCODE_LIT, lit, 0, dots);
1015
1016	    if (!is_undef(att))
1017	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1018
1019
1020	    if (count == nr_lights) {
1021	       if (separate) {
1022		  mask0 = WRITEMASK_XYZ;
1023		  mask1 = WRITEMASK_XYZ;
1024		  res0 = register_output( p, VERT_RESULT_COL0 );
1025		  res1 = register_output( p, VERT_RESULT_COL1 );
1026	       }
1027	       else {
1028		  mask0 = 0;
1029		  mask1 = WRITEMASK_XYZ;
1030		  res0 = _col0;
1031		  res1 = register_output( p, VERT_RESULT_COL0 );
1032	       }
1033	    } else {
1034	       mask0 = 0;
1035	       mask1 = 0;
1036	       res0 = _col0;
1037	       res1 = _col1;
1038	    }
1039
1040	    emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1041	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1042	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1043
1044	    release_temp(p, ambient);
1045	    release_temp(p, diffuse);
1046	    release_temp(p, specular);
1047	 }
1048
1049	 /* Back face lighting:
1050	  */
1051	 if (twoside) {
1052	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1053	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1054	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1055	    struct ureg res0, res1;
1056	    GLuint mask0, mask1;
1057
1058	    emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1059
1060	    if (!is_undef(att))
1061	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1062
1063	    if (count == nr_lights) {
1064	       if (separate) {
1065		  mask0 = WRITEMASK_XYZ;
1066		  mask1 = WRITEMASK_XYZ;
1067		  res0 = register_output( p, VERT_RESULT_BFC0 );
1068		  res1 = register_output( p, VERT_RESULT_BFC1 );
1069	       }
1070	       else {
1071		  mask0 = 0;
1072		  mask1 = WRITEMASK_XYZ;
1073		  res0 = _bfc0;
1074		  res1 = register_output( p, VERT_RESULT_BFC0 );
1075	       }
1076	    } else {
1077	       res0 = _bfc0;
1078	       res1 = _bfc1;
1079	       mask0 = 0;
1080	       mask1 = 0;
1081	    }
1082
1083	    emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1084	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1085	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1086
1087	    release_temp(p, ambient);
1088	    release_temp(p, diffuse);
1089	    release_temp(p, specular);
1090	 }
1091
1092	 release_temp(p, half);
1093	 release_temp(p, VPpli);
1094	 release_temp(p, att);
1095      }
1096   }
1097
1098   release_temps( p );
1099}
1100
1101
1102static void build_fog( struct tnl_program *p )
1103{
1104   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1105   struct ureg input;
1106
1107   if (p->state->fog_source_is_depth) {
1108      input = swizzle1(get_eye_position(p), Z);
1109   }
1110   else {
1111      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1112   }
1113
1114   if (p->state->tnl_do_vertex_fog) {
1115      struct ureg params = register_param2(p, STATE_INTERNAL,
1116					   STATE_FOG_PARAMS_OPTIMIZED);
1117      struct ureg tmp = get_temp(p);
1118
1119      switch (p->state->fog_mode) {
1120      case FOG_LINEAR: {
1121	 struct ureg id = get_identity_param(p);
1122	 emit_op3(p, OPCODE_MAD, tmp, 0, input, swizzle1(params,X), swizzle1(params,Y));
1123	 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1124	 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1125	 break;
1126      }
1127      case FOG_EXP:
1128	 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1129	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, swizzle1(params,Z));
1130	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1131	 break;
1132      case FOG_EXP2:
1133	 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1134	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1135	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1136	 break;
1137      }
1138
1139      release_temp(p, tmp);
1140   }
1141   else {
1142      /* results = incoming fog coords (compute fog per-fragment later)
1143       *
1144       * KW:  Is it really necessary to do anything in this case?
1145       */
1146      emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1147   }
1148}
1149
1150static void build_reflect_texgen( struct tnl_program *p,
1151				  struct ureg dest,
1152				  GLuint writemask )
1153{
1154   struct ureg normal = get_eye_normal(p);
1155   struct ureg eye_hat = get_eye_position_normalized(p);
1156   struct ureg tmp = get_temp(p);
1157
1158   /* n.u */
1159   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1160   /* 2n.u */
1161   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1162   /* (-2n.u)n + u */
1163   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1164
1165   release_temp(p, tmp);
1166}
1167
1168static void build_sphere_texgen( struct tnl_program *p,
1169				 struct ureg dest,
1170				 GLuint writemask )
1171{
1172   struct ureg normal = get_eye_normal(p);
1173   struct ureg eye_hat = get_eye_position_normalized(p);
1174   struct ureg tmp = get_temp(p);
1175   struct ureg half = register_scalar_const(p, .5);
1176   struct ureg r = get_temp(p);
1177   struct ureg inv_m = get_temp(p);
1178   struct ureg id = get_identity_param(p);
1179
1180   /* Could share the above calculations, but it would be
1181    * a fairly odd state for someone to set (both sphere and
1182    * reflection active for different texture coordinate
1183    * components.  Of course - if two texture units enable
1184    * reflect and/or sphere, things start to tilt in favour
1185    * of seperating this out:
1186    */
1187
1188   /* n.u */
1189   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1190   /* 2n.u */
1191   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1192   /* (-2n.u)n + u */
1193   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1194   /* r + 0,0,1 */
1195   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1196   /* rx^2 + ry^2 + (rz+1)^2 */
1197   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1198   /* 2/m */
1199   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1200   /* 1/m */
1201   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1202   /* r/m + 1/2 */
1203   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1204
1205   release_temp(p, tmp);
1206   release_temp(p, r);
1207   release_temp(p, inv_m);
1208}
1209
1210
1211static void build_texture_transform( struct tnl_program *p )
1212{
1213   GLuint i, j;
1214
1215   for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1216
1217      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1218	 continue;
1219
1220      if (p->state->unit[i].texgen_enabled ||
1221	  p->state->unit[i].texmat_enabled) {
1222
1223	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1224	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1225	 struct ureg out_texgen = undef;
1226
1227	 if (p->state->unit[i].texgen_enabled) {
1228	    GLuint copy_mask = 0;
1229	    GLuint sphere_mask = 0;
1230	    GLuint reflect_mask = 0;
1231	    GLuint normal_mask = 0;
1232	    GLuint modes[4];
1233
1234	    if (texmat_enabled)
1235	       out_texgen = get_temp(p);
1236	    else
1237	       out_texgen = out;
1238
1239	    modes[0] = p->state->unit[i].texgen_mode0;
1240	    modes[1] = p->state->unit[i].texgen_mode1;
1241	    modes[2] = p->state->unit[i].texgen_mode2;
1242	    modes[3] = p->state->unit[i].texgen_mode3;
1243
1244	    for (j = 0; j < 4; j++) {
1245	       switch (modes[j]) {
1246	       case TXG_OBJ_LINEAR: {
1247		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1248		  struct ureg plane =
1249		     register_param3(p, STATE_TEXGEN, i,
1250				     STATE_TEXGEN_OBJECT_S + j);
1251
1252		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1253			   obj, plane );
1254		  break;
1255	       }
1256	       case TXG_EYE_LINEAR: {
1257		  struct ureg eye = get_eye_position(p);
1258		  struct ureg plane =
1259		     register_param3(p, STATE_TEXGEN, i,
1260				     STATE_TEXGEN_EYE_S + j);
1261
1262		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1263			   eye, plane );
1264		  break;
1265	       }
1266	       case TXG_SPHERE_MAP:
1267		  sphere_mask |= WRITEMASK_X << j;
1268		  break;
1269	       case TXG_REFLECTION_MAP:
1270		  reflect_mask |= WRITEMASK_X << j;
1271		  break;
1272	       case TXG_NORMAL_MAP:
1273		  normal_mask |= WRITEMASK_X << j;
1274		  break;
1275	       case TXG_NONE:
1276		  copy_mask |= WRITEMASK_X << j;
1277	       }
1278
1279	    }
1280
1281
1282	    if (sphere_mask) {
1283	       build_sphere_texgen(p, out_texgen, sphere_mask);
1284	    }
1285
1286	    if (reflect_mask) {
1287	       build_reflect_texgen(p, out_texgen, reflect_mask);
1288	    }
1289
1290	    if (normal_mask) {
1291	       struct ureg normal = get_eye_normal(p);
1292	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1293	    }
1294
1295	    if (copy_mask) {
1296	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1297	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1298	    }
1299	 }
1300
1301	 if (texmat_enabled) {
1302	    struct ureg texmat[4];
1303	    struct ureg in = (!is_undef(out_texgen) ?
1304			      out_texgen :
1305			      register_input(p, VERT_ATTRIB_TEX0+i));
1306	    if (PREFER_DP4) {
1307	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1308				       0, texmat );
1309	       emit_matrix_transform_vec4( p, out, texmat, in );
1310	    }
1311	    else {
1312	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1313				       STATE_MATRIX_TRANSPOSE, texmat );
1314	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1315	    }
1316	 }
1317
1318	 release_temps(p);
1319      }
1320      else {
1321	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1322      }
1323   }
1324}
1325
1326
1327static void build_pointsize( struct tnl_program *p )
1328{
1329   struct ureg eye = get_eye_position(p);
1330   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1331   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1332   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1333   struct ureg ut = get_temp(p);
1334
1335   /* dist = |eyez| */
1336   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1337   /* p1 + dist * (p2 + dist * p3); */
1338   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1339		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1340   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1341		ut, swizzle1(state_attenuation, X));
1342
1343   /* 1 / sqrt(factor) */
1344   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1345
1346#if 1
1347   /* out = pointSize / sqrt(factor) */
1348   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1349#else
1350   /* not sure, might make sense to do clamping here,
1351      but it's not done in t_vb_points neither */
1352   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1353   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1354   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1355#endif
1356
1357   release_temp(p, ut);
1358}
1359
1360static void build_tnl_program( struct tnl_program *p )
1361{   /* Emit the program, starting with modelviewproject:
1362    */
1363   build_hpos(p);
1364
1365   /* Lighting calculations:
1366    */
1367   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1368      if (p->state->light_global_enabled)
1369	 build_lighting(p);
1370      else {
1371	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1372	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1373
1374	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1375	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1376      }
1377   }
1378
1379   if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1380       p->state->fog_mode != FOG_NONE)
1381      build_fog(p);
1382
1383   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1384      build_texture_transform(p);
1385
1386   if (p->state->point_attenuated)
1387      build_pointsize(p);
1388
1389   /* Finish up:
1390    */
1391   emit_op1(p, OPCODE_END, undef, 0, undef);
1392
1393   /* Disassemble:
1394    */
1395   if (DISASSEM) {
1396      _mesa_printf ("\n");
1397   }
1398}
1399
1400
1401static void
1402create_new_program( const struct state_key *key,
1403                    struct gl_vertex_program *program,
1404                    GLuint max_temps)
1405{
1406   struct tnl_program p;
1407
1408   _mesa_memset(&p, 0, sizeof(p));
1409   p.state = key;
1410   p.program = program;
1411   p.eye_position = undef;
1412   p.eye_position_normalized = undef;
1413   p.eye_normal = undef;
1414   p.identity = undef;
1415   p.temp_in_use = 0;
1416
1417   if (max_temps >= sizeof(int) * 8)
1418      p.temp_reserved = 0;
1419   else
1420      p.temp_reserved = ~((1<<max_temps)-1);
1421
1422   p.program->Base.Instructions = _mesa_alloc_instructions(MAX_INSN);
1423   p.program->Base.String = NULL;
1424   p.program->Base.NumInstructions =
1425   p.program->Base.NumTemporaries =
1426   p.program->Base.NumParameters =
1427   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1428   p.program->Base.Parameters = _mesa_new_parameter_list();
1429   p.program->Base.InputsRead = 0;
1430   p.program->Base.OutputsWritten = 0;
1431
1432   build_tnl_program( &p );
1433}
1434
1435static void *search_cache( struct tnl_cache *cache,
1436			   GLuint hash,
1437			   const void *key,
1438			   GLuint keysize)
1439{
1440   struct tnl_cache_item *c;
1441
1442   for (c = cache->items[hash % cache->size]; c; c = c->next) {
1443      if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1444	 return c->data;
1445   }
1446
1447   return NULL;
1448}
1449
1450static void rehash( struct tnl_cache *cache )
1451{
1452   struct tnl_cache_item **items;
1453   struct tnl_cache_item *c, *next;
1454   GLuint size, i;
1455
1456   size = cache->size * 3;
1457   items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1458   _mesa_memset(items, 0, size * sizeof(*items));
1459
1460   for (i = 0; i < cache->size; i++)
1461      for (c = cache->items[i]; c; c = next) {
1462	 next = c->next;
1463	 c->next = items[c->hash % size];
1464	 items[c->hash % size] = c;
1465      }
1466
1467   FREE(cache->items);
1468   cache->items = items;
1469   cache->size = size;
1470}
1471
1472static void cache_item( struct tnl_cache *cache,
1473			GLuint hash,
1474			void *key,
1475			void *data )
1476{
1477   struct tnl_cache_item *c = (struct tnl_cache_item*) _mesa_malloc(sizeof(*c));
1478   c->hash = hash;
1479   c->key = key;
1480   c->data = data;
1481
1482   if (++cache->n_items > cache->size * 1.5)
1483      rehash(cache);
1484
1485   c->next = cache->items[hash % cache->size];
1486   cache->items[hash % cache->size] = c;
1487}
1488
1489static GLuint hash_key( struct state_key *key )
1490{
1491   GLuint *ikey = (GLuint *)key;
1492   GLuint hash = 0, i;
1493
1494   /* I'm sure this can be improved on, but speed is important:
1495    */
1496   for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1497      hash ^= ikey[i];
1498
1499   return hash;
1500}
1501
1502void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1503{
1504   TNLcontext *tnl = TNL_CONTEXT(ctx);
1505   struct state_key *key;
1506   GLuint hash;
1507   const struct gl_vertex_program *prev = ctx->VertexProgram._Current;
1508
1509   if (!ctx->VertexProgram._Current ||
1510       ctx->VertexProgram._Current == ctx->VertexProgram._TnlProgram) {
1511      /* Grab all the relevent state and put it in a single structure:
1512       */
1513      key = make_state_key(ctx);
1514      hash = hash_key(key);
1515
1516      /* Look for an already-prepared program for this state:
1517       */
1518      ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *)
1519	 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1520
1521      /* OK, we'll have to build a new one:
1522       */
1523      if (!ctx->VertexProgram._TnlProgram) {
1524	 if (0)
1525	    _mesa_printf("Build new TNL program\n");
1526
1527	 ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *)
1528	    ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1529
1530	 create_new_program( key, ctx->VertexProgram._TnlProgram,
1531			     ctx->Const.VertexProgram.MaxTemps );
1532
1533	 if (ctx->Driver.ProgramStringNotify)
1534	    ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1535                                       &ctx->VertexProgram._TnlProgram->Base );
1536
1537	 cache_item(tnl->vp_cache, hash, key, ctx->VertexProgram._TnlProgram );
1538      }
1539      else {
1540	 FREE(key);
1541	 if (0)
1542	    _mesa_printf("Found existing TNL program for key %x\n", hash);
1543      }
1544      ctx->VertexProgram._Current = ctx->VertexProgram._TnlProgram;
1545   }
1546
1547   /* Tell the driver about the change.  Could define a new target for
1548    * this?
1549    */
1550   if (ctx->VertexProgram._Current != prev && ctx->Driver.BindProgram) {
1551      ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB,
1552                            (struct gl_program *) ctx->VertexProgram._Current);
1553   }
1554}
1555
1556void _tnl_ProgramCacheInit( GLcontext *ctx )
1557{
1558   TNLcontext *tnl = TNL_CONTEXT(ctx);
1559
1560   tnl->vp_cache = (struct tnl_cache *) MALLOC(sizeof(*tnl->vp_cache));
1561   tnl->vp_cache->size = 17;
1562   tnl->vp_cache->n_items = 0;
1563   tnl->vp_cache->items = (struct tnl_cache_item**)
1564      _mesa_calloc(tnl->vp_cache->size * sizeof(*tnl->vp_cache->items));
1565}
1566
1567void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1568{
1569   TNLcontext *tnl = TNL_CONTEXT(ctx);
1570   struct tnl_cache_item *c, *next;
1571   GLuint i;
1572
1573   for (i = 0; i < tnl->vp_cache->size; i++)
1574      for (c = tnl->vp_cache->items[i]; c; c = next) {
1575	 next = c->next;
1576	 FREE(c->key);
1577	 FREE(c->data);
1578	 FREE(c);
1579      }
1580
1581   FREE(tnl->vp_cache->items);
1582   FREE(tnl->vp_cache);
1583}
1584