1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2002, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistributions of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistributions in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#include "_cvaux.h"
43
44#if _MSC_VER >= 1200
45#pragma warning(disable:4786) // Disable MSVC warnings in the standard library.
46#pragma warning(disable:4100)
47#pragma warning(disable:4512)
48#endif
49#include <stdio.h>
50#include <map>
51#include <algorithm>
52#if _MSC_VER >= 1200
53#pragma warning(default:4100)
54#pragma warning(default:4512)
55#endif
56
57#define ARRAY_SIZEOF(a) (sizeof(a)/sizeof((a)[0]))
58
59static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size);
60static void DrawEtalon(IplImage *img, CvPoint2D32f *corners,
61                       int corner_count, CvSize etalon_size, int draw_ordered);
62static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]);
63static void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]);
64static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p);
65static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1,
66                         CvPoint3D32f o2, CvPoint3D32f p2,
67                         CvPoint3D32f &r1, CvPoint3D32f &r2);
68
69/////////////////////////////////
70// cv3dTrackerCalibrateCameras //
71/////////////////////////////////
72CV_IMPL CvBool cv3dTrackerCalibrateCameras(int num_cameras,
73                   const Cv3dTrackerCameraIntrinsics camera_intrinsics[], // size is num_cameras
74                   CvSize etalon_size,
75                   float square_size,
76                   IplImage *samples[],                                   // size is num_cameras
77                   Cv3dTrackerCameraInfo camera_info[])                   // size is num_cameras
78{
79    CV_FUNCNAME("cv3dTrackerCalibrateCameras");
80    const int num_points = etalon_size.width * etalon_size.height;
81    int cameras_done = 0;        // the number of cameras whose positions have been determined
82    CvPoint3D32f *object_points = NULL; // real-world coordinates of checkerboard points
83    CvPoint2D32f *points = NULL; // 2d coordinates of checkerboard points as seen by a camera
84    IplImage *gray_img = NULL;   // temporary image for color conversion
85    IplImage *tmp_img = NULL;    // temporary image used by FindChessboardCornerGuesses
86    int c, i, j;
87
88    if (etalon_size.width < 3 || etalon_size.height < 3)
89        CV_ERROR(CV_StsBadArg, "Chess board size is invalid");
90
91    for (c = 0; c < num_cameras; c++)
92    {
93        // CV_CHECK_IMAGE is not available in the cvaux library
94        // so perform the checks inline.
95
96        //CV_CALL(CV_CHECK_IMAGE(samples[c]));
97
98        if( samples[c] == NULL )
99            CV_ERROR( CV_HeaderIsNull, "Null image" );
100
101        if( samples[c]->dataOrder != IPL_DATA_ORDER_PIXEL && samples[c]->nChannels > 1 )
102            CV_ERROR( CV_BadOrder, "Unsupported image format" );
103
104        if( samples[c]->maskROI != 0 || samples[c]->tileInfo != 0 )
105            CV_ERROR( CV_StsBadArg, "Unsupported image format" );
106
107        if( samples[c]->imageData == 0 )
108            CV_ERROR( CV_BadDataPtr, "Null image data" );
109
110        if( samples[c]->roi &&
111            ((samples[c]->roi->xOffset | samples[c]->roi->yOffset
112              | samples[c]->roi->width | samples[c]->roi->height) < 0 ||
113             samples[c]->roi->xOffset + samples[c]->roi->width > samples[c]->width ||
114             samples[c]->roi->yOffset + samples[c]->roi->height > samples[c]->height ||
115             (unsigned) (samples[c]->roi->coi) > (unsigned) (samples[c]->nChannels)))
116            CV_ERROR( CV_BadROISize, "Invalid ROI" );
117
118        // End of CV_CHECK_IMAGE inline expansion
119
120        if (samples[c]->depth != IPL_DEPTH_8U)
121            CV_ERROR(CV_BadDepth, "Channel depth of source image must be 8");
122
123        if (samples[c]->nChannels != 3 && samples[c]->nChannels != 1)
124            CV_ERROR(CV_BadNumChannels, "Source image must have 1 or 3 channels");
125    }
126
127    CV_CALL(object_points = (CvPoint3D32f *)cvAlloc(num_points * sizeof(CvPoint3D32f)));
128    CV_CALL(points = (CvPoint2D32f *)cvAlloc(num_points * sizeof(CvPoint2D32f)));
129
130    // fill in the real-world coordinates of the checkerboard points
131    FillObjectPoints(object_points, etalon_size, square_size);
132
133    for (c = 0; c < num_cameras; c++)
134    {
135        CvSize image_size = cvSize(samples[c]->width, samples[c]->height);
136        IplImage *img;
137
138        // The input samples are not required to all have the same size or color
139        // format. If they have different sizes, the temporary images are
140        // reallocated as necessary.
141        if (samples[c]->nChannels == 3)
142        {
143            // convert to gray
144            if (gray_img == NULL || gray_img->width != samples[c]->width ||
145                gray_img->height != samples[c]->height )
146            {
147                if (gray_img != NULL)
148                    cvReleaseImage(&gray_img);
149                CV_CALL(gray_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1));
150            }
151
152            CV_CALL(cvCvtColor(samples[c], gray_img, CV_BGR2GRAY));
153
154            img = gray_img;
155        }
156        else
157        {
158            // no color conversion required
159            img = samples[c];
160        }
161
162        if (tmp_img == NULL || tmp_img->width != samples[c]->width ||
163            tmp_img->height != samples[c]->height )
164        {
165            if (tmp_img != NULL)
166                cvReleaseImage(&tmp_img);
167            CV_CALL(tmp_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1));
168        }
169
170        int count = num_points;
171        bool found = cvFindChessBoardCornerGuesses(img, tmp_img, 0,
172                                                   etalon_size, points, &count) != 0;
173        if (count == 0)
174            continue;
175
176        // If found is true, it means all the points were found (count = num_points).
177        // If found is false but count is non-zero, it means that not all points were found.
178
179        cvFindCornerSubPix(img, points, count, cvSize(5,5), cvSize(-1,-1),
180                    cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.01f));
181
182        // If the image origin is BL (bottom-left), fix the y coordinates
183        // so they are relative to the true top of the image.
184        if (samples[c]->origin == IPL_ORIGIN_BL)
185        {
186            for (i = 0; i < count; i++)
187                points[i].y = samples[c]->height - 1 - points[i].y;
188        }
189
190        if (found)
191        {
192            // Make sure x coordinates are increasing and y coordinates are decreasing.
193            // (The y coordinate of point (0,0) should be the greatest, because the point
194            // on the checkerboard that is the origin is nearest the bottom of the image.)
195            // This is done after adjusting the y coordinates according to the image origin.
196            if (points[0].x > points[1].x)
197            {
198                // reverse points in each row
199                for (j = 0; j < etalon_size.height; j++)
200                {
201                    CvPoint2D32f *row = &points[j*etalon_size.width];
202                    for (i = 0; i < etalon_size.width/2; i++)
203                        std::swap(row[i], row[etalon_size.width-i-1]);
204                }
205            }
206
207            if (points[0].y < points[etalon_size.width].y)
208            {
209                // reverse points in each column
210                for (i = 0; i < etalon_size.width; i++)
211                {
212                    for (j = 0; j < etalon_size.height/2; j++)
213                        std::swap(points[i+j*etalon_size.width],
214                                  points[i+(etalon_size.height-j-1)*etalon_size.width]);
215                }
216            }
217        }
218
219        DrawEtalon(samples[c], points, count, etalon_size, found);
220
221        if (!found)
222            continue;
223
224        float rotVect[3];
225        float rotMatr[9];
226        float transVect[3];
227
228        cvFindExtrinsicCameraParams(count,
229                                    image_size,
230                                    points,
231                                    object_points,
232                                    const_cast<float *>(camera_intrinsics[c].focal_length),
233                                    camera_intrinsics[c].principal_point,
234                                    const_cast<float *>(camera_intrinsics[c].distortion),
235                                    rotVect,
236                                    transVect);
237
238        // Check result against an arbitrary limit to eliminate impossible values.
239        // (If the chess board were truly that far away, the camera wouldn't be able to
240        // see the squares.)
241        if (transVect[0] > 1000*square_size
242            || transVect[1] > 1000*square_size
243            || transVect[2] > 1000*square_size)
244        {
245            // ignore impossible results
246            continue;
247        }
248
249        CvMat rotMatrDescr = cvMat(3, 3, CV_32FC1, rotMatr);
250        CvMat rotVectDescr = cvMat(3, 1, CV_32FC1, rotVect);
251
252        /* Calc rotation matrix by Rodrigues Transform */
253        cvRodrigues2( &rotVectDescr, &rotMatrDescr );
254
255        //combine the two transformations into one matrix
256        //order is important! rotations are not commutative
257        float tmat[4][4] = { { 1.f, 0.f, 0.f, 0.f },
258                             { 0.f, 1.f, 0.f, 0.f },
259                             { 0.f, 0.f, 1.f, 0.f },
260                             { transVect[0], transVect[1], transVect[2], 1.f } };
261
262        float rmat[4][4] = { { rotMatr[0], rotMatr[1], rotMatr[2], 0.f },
263                             { rotMatr[3], rotMatr[4], rotMatr[5], 0.f },
264                             { rotMatr[6], rotMatr[7], rotMatr[8], 0.f },
265                             { 0.f, 0.f, 0.f, 1.f } };
266
267
268        MultMatrix(camera_info[c].mat, tmat, rmat);
269
270        // change the transformation of the cameras to put them in the world coordinate
271        // system we want to work with.
272
273        // Start with an identity matrix; then fill in the values to accomplish
274        // the desired transformation.
275        float smat[4][4] = { { 1.f, 0.f, 0.f, 0.f },
276                             { 0.f, 1.f, 0.f, 0.f },
277                             { 0.f, 0.f, 1.f, 0.f },
278                             { 0.f, 0.f, 0.f, 1.f } };
279
280        // First, reflect through the origin by inverting all three axes.
281        smat[0][0] = -1.f;
282        smat[1][1] = -1.f;
283        smat[2][2] = -1.f;
284        MultMatrix(tmat, camera_info[c].mat, smat);
285
286        // Scale x and y coordinates by the focal length (allowing for non-square pixels
287        // and/or non-symmetrical lenses).
288        smat[0][0] = 1.0f / camera_intrinsics[c].focal_length[0];
289        smat[1][1] = 1.0f / camera_intrinsics[c].focal_length[1];
290        smat[2][2] = 1.0f;
291        MultMatrix(camera_info[c].mat, smat, tmat);
292
293        camera_info[c].principal_point = camera_intrinsics[c].principal_point;
294        camera_info[c].valid = true;
295
296        cameras_done++;
297    }
298
299exit:
300    cvReleaseImage(&gray_img);
301    cvReleaseImage(&tmp_img);
302    cvFree(&object_points);
303    cvFree(&points);
304
305    return cameras_done == num_cameras;
306}
307
308// fill in the real-world coordinates of the checkerboard points
309static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size)
310{
311    int x, y, i;
312
313    for (y = 0, i = 0; y < etalon_size.height; y++)
314    {
315        for (x = 0; x < etalon_size.width; x++, i++)
316        {
317            obj_points[i].x = square_size * x;
318            obj_points[i].y = square_size * y;
319            obj_points[i].z = 0;
320        }
321    }
322}
323
324
325// Mark the points found on the input image
326// The marks are drawn multi-colored if all the points were found.
327static void DrawEtalon(IplImage *img, CvPoint2D32f *corners,
328                       int corner_count, CvSize etalon_size, int draw_ordered)
329{
330    const int r = 4;
331    int i;
332    int x, y;
333    CvPoint prev_pt = { 0, 0 };
334    static const CvScalar rgb_colors[] = {
335        {{0,0,255}},
336        {{0,128,255}},
337        {{0,200,200}},
338        {{0,255,0}},
339        {{200,200,0}},
340        {{255,0,0}},
341        {{255,0,255}} };
342    static const CvScalar gray_colors[] = {
343        {{80}}, {{120}}, {{160}}, {{200}}, {{100}}, {{140}}, {{180}}
344    };
345    const CvScalar* colors = img->nChannels == 3 ? rgb_colors : gray_colors;
346
347    CvScalar color = colors[0];
348    for (y = 0, i = 0; y < etalon_size.height; y++)
349    {
350        if (draw_ordered)
351            color = colors[y % ARRAY_SIZEOF(rgb_colors)];
352
353        for (x = 0; x < etalon_size.width && i < corner_count; x++, i++)
354        {
355            CvPoint pt;
356            pt.x = cvRound(corners[i].x);
357            pt.y = cvRound(corners[i].y);
358            if (img->origin == IPL_ORIGIN_BL)
359                pt.y = img->height - 1 - pt.y;
360
361            if (draw_ordered)
362            {
363                if (i != 0)
364                   cvLine(img, prev_pt, pt, color, 1, CV_AA);
365                prev_pt = pt;
366            }
367
368            cvLine( img, cvPoint(pt.x - r, pt.y - r),
369                    cvPoint(pt.x + r, pt.y + r), color, 1, CV_AA );
370            cvLine( img, cvPoint(pt.x - r, pt.y + r),
371                    cvPoint(pt.x + r, pt.y - r), color, 1, CV_AA );
372            cvCircle( img, pt, r+1, color, 1, CV_AA );
373        }
374    }
375}
376
377// Find the midpoint of the line segment between two points.
378static CvPoint3D32f midpoint(const CvPoint3D32f &p1, const CvPoint3D32f &p2)
379{
380    return cvPoint3D32f((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2);
381}
382
383static void operator +=(CvPoint3D32f &p1, const CvPoint3D32f &p2)
384{
385    p1.x += p2.x;
386    p1.y += p2.y;
387    p1.z += p2.z;
388}
389
390static CvPoint3D32f operator /(const CvPoint3D32f &p, int d)
391{
392    return cvPoint3D32f(p.x/d, p.y/d, p.z/d);
393}
394
395static const Cv3dTracker2dTrackedObject *find(const Cv3dTracker2dTrackedObject v[], int num_objects, int id)
396{
397    for (int i = 0; i < num_objects; i++)
398    {
399        if (v[i].id == id)
400            return &v[i];
401    }
402    return NULL;
403}
404
405#define CAMERA_POS(c) (cvPoint3D32f((c).mat[3][0], (c).mat[3][1], (c).mat[3][2]))
406
407//////////////////////////////
408// cv3dTrackerLocateObjects //
409//////////////////////////////
410CV_IMPL int  cv3dTrackerLocateObjects(int num_cameras, int num_objects,
411                 const Cv3dTrackerCameraInfo camera_info[],      // size is num_cameras
412                 const Cv3dTracker2dTrackedObject tracking_info[], // size is num_objects*num_cameras
413                 Cv3dTrackerTrackedObject tracked_objects[])     // size is num_objects
414{
415    /*CV_FUNCNAME("cv3dTrackerLocateObjects");*/
416    int found_objects = 0;
417
418    // count how many cameras could see each object
419    std::map<int, int> count;
420    for (int c = 0; c < num_cameras; c++)
421    {
422        if (!camera_info[c].valid)
423            continue;
424
425        for (int i = 0; i < num_objects; i++)
426        {
427            const Cv3dTracker2dTrackedObject *o = &tracking_info[c*num_objects+i];
428            if (o->id != -1)
429                count[o->id]++;
430        }
431    }
432
433    // process each object that was seen by at least two cameras
434    for (std::map<int, int>::iterator i = count.begin(); i != count.end(); i++)
435    {
436        if (i->second < 2)
437            continue; // ignore object seen by only one camera
438        int id = i->first;
439
440        // find an approximation of the objects location for each pair of cameras that
441        // could see this object, and average them
442        CvPoint3D32f total = cvPoint3D32f(0, 0, 0);
443        int weight = 0;
444
445        for (int c1 = 0; c1 < num_cameras-1; c1++)
446        {
447            if (!camera_info[c1].valid)
448                continue;
449
450            const Cv3dTracker2dTrackedObject *o1 = find(&tracking_info[c1*num_objects],
451                                                        num_objects, id);
452            if (o1 == NULL)
453                continue; // this camera didn't see this object
454
455            CvPoint3D32f p1a = CAMERA_POS(camera_info[c1]);
456            CvPoint3D32f p1b = ImageCStoWorldCS(camera_info[c1], o1->p);
457
458            for (int c2 = c1 + 1; c2 < num_cameras; c2++)
459            {
460                if (!camera_info[c2].valid)
461                    continue;
462
463                const Cv3dTracker2dTrackedObject *o2 = find(&tracking_info[c2*num_objects],
464                                                            num_objects, id);
465                if (o2 == NULL)
466                    continue; // this camera didn't see this object
467
468                CvPoint3D32f p2a = CAMERA_POS(camera_info[c2]);
469                CvPoint3D32f p2b = ImageCStoWorldCS(camera_info[c2], o2->p);
470
471                // these variables are initialized simply to avoid erroneous error messages
472                // from the compiler
473                CvPoint3D32f r1 = cvPoint3D32f(0, 0, 0);
474                CvPoint3D32f r2 = cvPoint3D32f(0, 0, 0);
475
476                // find the intersection of the two lines (or the points of closest
477                // approach, if they don't intersect)
478                if (!intersection(p1a, p1b, p2a, p2b, r1, r2))
479                    continue;
480
481                total += midpoint(r1, r2);
482                weight++;
483            }
484        }
485
486        CvPoint3D32f center = total/weight;
487        tracked_objects[found_objects++] = cv3dTrackerTrackedObject(id, center);
488    }
489
490    return found_objects;
491}
492
493#define EPS 1e-9
494
495// Compute the determinant of the 3x3 matrix represented by 3 row vectors.
496static inline double det(CvPoint3D32f v1, CvPoint3D32f v2, CvPoint3D32f v3)
497{
498    return v1.x*v2.y*v3.z + v1.z*v2.x*v3.y + v1.y*v2.z*v3.x
499           - v1.z*v2.y*v3.x - v1.x*v2.z*v3.y - v1.y*v2.x*v3.z;
500}
501
502static CvPoint3D32f operator +(CvPoint3D32f a, CvPoint3D32f b)
503{
504    return cvPoint3D32f(a.x + b.x, a.y + b.y, a.z + b.z);
505}
506
507static CvPoint3D32f operator -(CvPoint3D32f a, CvPoint3D32f b)
508{
509    return cvPoint3D32f(a.x - b.x, a.y - b.y, a.z - b.z);
510}
511
512static CvPoint3D32f operator *(CvPoint3D32f v, double f)
513{
514    return cvPoint3D32f(f*v.x, f*v.y, f*v.z);
515}
516
517
518// Find the intersection of two lines, or if they don't intersect,
519// the points of closest approach.
520// The lines are defined by (o1,p1) and (o2, p2).
521// If they intersect, r1 and r2 will be the same.
522// Returns false on error.
523static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1,
524                         CvPoint3D32f o2, CvPoint3D32f p2,
525                         CvPoint3D32f &r1, CvPoint3D32f &r2)
526{
527    CvPoint3D32f x = o2 - o1;
528    CvPoint3D32f d1 = p1 - o1;
529    CvPoint3D32f d2 = p2 - o2;
530
531    CvPoint3D32f cross = cvPoint3D32f(d1.y*d2.z - d1.z*d2.y,
532                                      d1.z*d2.x - d1.x*d2.z,
533                                      d1.x*d2.y - d1.y*d2.x);
534    double den = cross.x*cross.x + cross.y*cross.y + cross.z*cross.z;
535
536    if (den < EPS)
537        return false;
538
539    double t1 = det(x, d2, cross) / den;
540    double t2 = det(x, d1, cross) / den;
541
542    r1 = o1 + d1 * t1;
543    r2 = o2 + d2 * t2;
544
545    return true;
546}
547
548// Convert from image to camera space by transforming point p in
549// the image plane by the camera matrix.
550static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p)
551{
552    float tp[4];
553    tp[0] = (float)p.x - camera_info.principal_point.x;
554    tp[1] = (float)p.y - camera_info.principal_point.y;
555    tp[2] = 1.f;
556    tp[3] = 1.f;
557
558    float tr[4];
559    //multiply tp by mat to get tr
560    MultVectorMatrix(tr, tp, camera_info.mat);
561
562    return cvPoint3D32f(tr[0]/tr[3], tr[1]/tr[3], tr[2]/tr[3]);
563}
564
565// Multiply affine transformation m1 by the affine transformation m2 and
566// return the result in rm.
567static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4])
568{
569    for (int i=0; i<=3; i++)
570        for (int j=0; j<=3; j++)
571        {
572            rm[i][j]= 0.0;
573            for (int k=0; k <= 3; k++)
574                rm[i][j] += m1[i][k]*m2[k][j];
575        }
576}
577
578// Multiply the vector v by the affine transformation matrix m and return the
579// result in rv.
580void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4])
581{
582    for (int i=0; i<=3; i++)
583    {
584        rv[i] = 0.f;
585        for (int j=0;j<=3;j++)
586            rv[i] += v[j] * m[j][i];
587    }
588}
589