1/* crypto/bn/bn_asm.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#ifndef BN_DEBUG
60# undef NDEBUG /* avoid conflicting definitions */
61# define NDEBUG
62#endif
63
64#include <stdio.h>
65#include <assert.h>
66#include "cryptlib.h"
67#include "bn_lcl.h"
68
69#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70
71BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72	{
73	BN_ULONG c1=0;
74
75	assert(num >= 0);
76	if (num <= 0) return(c1);
77
78#ifndef OPENSSL_SMALL_FOOTPRINT
79	while (num&~3)
80		{
81		mul_add(rp[0],ap[0],w,c1);
82		mul_add(rp[1],ap[1],w,c1);
83		mul_add(rp[2],ap[2],w,c1);
84		mul_add(rp[3],ap[3],w,c1);
85		ap+=4; rp+=4; num-=4;
86		}
87#endif
88	while (num)
89		{
90		mul_add(rp[0],ap[0],w,c1);
91		ap++; rp++; num--;
92		}
93
94	return(c1);
95	}
96
97BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98	{
99	BN_ULONG c1=0;
100
101	assert(num >= 0);
102	if (num <= 0) return(c1);
103
104#ifndef OPENSSL_SMALL_FOOTPRINT
105	while (num&~3)
106		{
107		mul(rp[0],ap[0],w,c1);
108		mul(rp[1],ap[1],w,c1);
109		mul(rp[2],ap[2],w,c1);
110		mul(rp[3],ap[3],w,c1);
111		ap+=4; rp+=4; num-=4;
112		}
113#endif
114	while (num)
115		{
116		mul(rp[0],ap[0],w,c1);
117		ap++; rp++; num--;
118		}
119	return(c1);
120	}
121
122void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123        {
124	assert(n >= 0);
125	if (n <= 0) return;
126
127#ifndef OPENSSL_SMALL_FOOTPRINT
128	while (n&~3)
129		{
130		sqr(r[0],r[1],a[0]);
131		sqr(r[2],r[3],a[1]);
132		sqr(r[4],r[5],a[2]);
133		sqr(r[6],r[7],a[3]);
134		a+=4; r+=8; n-=4;
135		}
136#endif
137	while (n)
138		{
139		sqr(r[0],r[1],a[0]);
140		a++; r+=2; n--;
141		}
142	}
143
144#else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145
146BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147	{
148	BN_ULONG c=0;
149	BN_ULONG bl,bh;
150
151	assert(num >= 0);
152	if (num <= 0) return((BN_ULONG)0);
153
154	bl=LBITS(w);
155	bh=HBITS(w);
156
157#ifndef OPENSSL_SMALL_FOOTPRINT
158	while (num&~3)
159		{
160		mul_add(rp[0],ap[0],bl,bh,c);
161		mul_add(rp[1],ap[1],bl,bh,c);
162		mul_add(rp[2],ap[2],bl,bh,c);
163		mul_add(rp[3],ap[3],bl,bh,c);
164		ap+=4; rp+=4; num-=4;
165		}
166#endif
167	while (num)
168		{
169		mul_add(rp[0],ap[0],bl,bh,c);
170		ap++; rp++; num--;
171		}
172	return(c);
173	}
174
175BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176	{
177	BN_ULONG carry=0;
178	BN_ULONG bl,bh;
179
180	assert(num >= 0);
181	if (num <= 0) return((BN_ULONG)0);
182
183	bl=LBITS(w);
184	bh=HBITS(w);
185
186#ifndef OPENSSL_SMALL_FOOTPRINT
187	while (num&~3)
188		{
189		mul(rp[0],ap[0],bl,bh,carry);
190		mul(rp[1],ap[1],bl,bh,carry);
191		mul(rp[2],ap[2],bl,bh,carry);
192		mul(rp[3],ap[3],bl,bh,carry);
193		ap+=4; rp+=4; num-=4;
194		}
195#endif
196	while (num)
197		{
198		mul(rp[0],ap[0],bl,bh,carry);
199		ap++; rp++; num--;
200		}
201	return(carry);
202	}
203
204void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205        {
206	assert(n >= 0);
207	if (n <= 0) return;
208
209#ifndef OPENSSL_SMALL_FOOTPRINT
210	while (n&~3)
211		{
212		sqr64(r[0],r[1],a[0]);
213		sqr64(r[2],r[3],a[1]);
214		sqr64(r[4],r[5],a[2]);
215		sqr64(r[6],r[7],a[3]);
216		a+=4; r+=8; n-=4;
217		}
218#endif
219	while (n)
220		{
221		sqr64(r[0],r[1],a[0]);
222		a++; r+=2; n--;
223		}
224	}
225
226#endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227
228#if defined(BN_LLONG) && defined(BN_DIV2W)
229
230BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231	{
232	return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233	}
234
235#else
236
237/* Divide h,l by d and return the result. */
238/* I need to test this some more :-( */
239BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240	{
241	BN_ULONG dh,dl,q,ret=0,th,tl,t;
242	int i,count=2;
243
244	if (d == 0) return(BN_MASK2);
245
246	i=BN_num_bits_word(d);
247	assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248
249	i=BN_BITS2-i;
250	if (h >= d) h-=d;
251
252	if (i)
253		{
254		d<<=i;
255		h=(h<<i)|(l>>(BN_BITS2-i));
256		l<<=i;
257		}
258	dh=(d&BN_MASK2h)>>BN_BITS4;
259	dl=(d&BN_MASK2l);
260	for (;;)
261		{
262		if ((h>>BN_BITS4) == dh)
263			q=BN_MASK2l;
264		else
265			q=h/dh;
266
267		th=q*dh;
268		tl=dl*q;
269		for (;;)
270			{
271			t=h-th;
272			if ((t&BN_MASK2h) ||
273				((tl) <= (
274					(t<<BN_BITS4)|
275					((l&BN_MASK2h)>>BN_BITS4))))
276				break;
277			q--;
278			th-=dh;
279			tl-=dl;
280			}
281		t=(tl>>BN_BITS4);
282		tl=(tl<<BN_BITS4)&BN_MASK2h;
283		th+=t;
284
285		if (l < tl) th++;
286		l-=tl;
287		if (h < th)
288			{
289			h+=d;
290			q--;
291			}
292		h-=th;
293
294		if (--count == 0) break;
295
296		ret=q<<BN_BITS4;
297		h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298		l=(l&BN_MASK2l)<<BN_BITS4;
299		}
300	ret|=q;
301	return(ret);
302	}
303#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304
305#ifdef BN_LLONG
306BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307        {
308	BN_ULLONG ll=0;
309
310	assert(n >= 0);
311	if (n <= 0) return((BN_ULONG)0);
312
313#ifndef OPENSSL_SMALL_FOOTPRINT
314	while (n&~3)
315		{
316		ll+=(BN_ULLONG)a[0]+b[0];
317		r[0]=(BN_ULONG)ll&BN_MASK2;
318		ll>>=BN_BITS2;
319		ll+=(BN_ULLONG)a[1]+b[1];
320		r[1]=(BN_ULONG)ll&BN_MASK2;
321		ll>>=BN_BITS2;
322		ll+=(BN_ULLONG)a[2]+b[2];
323		r[2]=(BN_ULONG)ll&BN_MASK2;
324		ll>>=BN_BITS2;
325		ll+=(BN_ULLONG)a[3]+b[3];
326		r[3]=(BN_ULONG)ll&BN_MASK2;
327		ll>>=BN_BITS2;
328		a+=4; b+=4; r+=4; n-=4;
329		}
330#endif
331	while (n)
332		{
333		ll+=(BN_ULLONG)a[0]+b[0];
334		r[0]=(BN_ULONG)ll&BN_MASK2;
335		ll>>=BN_BITS2;
336		a++; b++; r++; n--;
337		}
338	return((BN_ULONG)ll);
339	}
340#else /* !BN_LLONG */
341BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342        {
343	BN_ULONG c,l,t;
344
345	assert(n >= 0);
346	if (n <= 0) return((BN_ULONG)0);
347
348	c=0;
349#ifndef OPENSSL_SMALL_FOOTPRINT
350	while (n&~3)
351		{
352		t=a[0];
353		t=(t+c)&BN_MASK2;
354		c=(t < c);
355		l=(t+b[0])&BN_MASK2;
356		c+=(l < t);
357		r[0]=l;
358		t=a[1];
359		t=(t+c)&BN_MASK2;
360		c=(t < c);
361		l=(t+b[1])&BN_MASK2;
362		c+=(l < t);
363		r[1]=l;
364		t=a[2];
365		t=(t+c)&BN_MASK2;
366		c=(t < c);
367		l=(t+b[2])&BN_MASK2;
368		c+=(l < t);
369		r[2]=l;
370		t=a[3];
371		t=(t+c)&BN_MASK2;
372		c=(t < c);
373		l=(t+b[3])&BN_MASK2;
374		c+=(l < t);
375		r[3]=l;
376		a+=4; b+=4; r+=4; n-=4;
377		}
378#endif
379	while(n)
380		{
381		t=a[0];
382		t=(t+c)&BN_MASK2;
383		c=(t < c);
384		l=(t+b[0])&BN_MASK2;
385		c+=(l < t);
386		r[0]=l;
387		a++; b++; r++; n--;
388		}
389	return((BN_ULONG)c);
390	}
391#endif /* !BN_LLONG */
392
393BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394        {
395	BN_ULONG t1,t2;
396	int c=0;
397
398	assert(n >= 0);
399	if (n <= 0) return((BN_ULONG)0);
400
401#ifndef OPENSSL_SMALL_FOOTPRINT
402	while (n&~3)
403		{
404		t1=a[0]; t2=b[0];
405		r[0]=(t1-t2-c)&BN_MASK2;
406		if (t1 != t2) c=(t1 < t2);
407		t1=a[1]; t2=b[1];
408		r[1]=(t1-t2-c)&BN_MASK2;
409		if (t1 != t2) c=(t1 < t2);
410		t1=a[2]; t2=b[2];
411		r[2]=(t1-t2-c)&BN_MASK2;
412		if (t1 != t2) c=(t1 < t2);
413		t1=a[3]; t2=b[3];
414		r[3]=(t1-t2-c)&BN_MASK2;
415		if (t1 != t2) c=(t1 < t2);
416		a+=4; b+=4; r+=4; n-=4;
417		}
418#endif
419	while (n)
420		{
421		t1=a[0]; t2=b[0];
422		r[0]=(t1-t2-c)&BN_MASK2;
423		if (t1 != t2) c=(t1 < t2);
424		a++; b++; r++; n--;
425		}
426	return(c);
427	}
428
429#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430
431#undef bn_mul_comba8
432#undef bn_mul_comba4
433#undef bn_sqr_comba8
434#undef bn_sqr_comba4
435
436/* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
437/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438/* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440
441#ifdef BN_LLONG
442#define mul_add_c(a,b,c0,c1,c2) \
443	t=(BN_ULLONG)a*b; \
444	t1=(BN_ULONG)Lw(t); \
445	t2=(BN_ULONG)Hw(t); \
446	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
447	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
448
449#define mul_add_c2(a,b,c0,c1,c2) \
450	t=(BN_ULLONG)a*b; \
451	tt=(t+t)&BN_MASK; \
452	if (tt < t) c2++; \
453	t1=(BN_ULONG)Lw(tt); \
454	t2=(BN_ULONG)Hw(tt); \
455	c0=(c0+t1)&BN_MASK2;  \
456	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
457	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
458
459#define sqr_add_c(a,i,c0,c1,c2) \
460	t=(BN_ULLONG)a[i]*a[i]; \
461	t1=(BN_ULONG)Lw(t); \
462	t2=(BN_ULONG)Hw(t); \
463	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
464	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
465
466#define sqr_add_c2(a,i,j,c0,c1,c2) \
467	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
468
469#elif defined(BN_UMULT_LOHI)
470
471#define mul_add_c(a,b,c0,c1,c2)	{	\
472	BN_ULONG ta=(a),tb=(b);		\
473	BN_UMULT_LOHI(t1,t2,ta,tb);	\
474	c0 += t1; t2 += (c0<t1)?1:0;	\
475	c1 += t2; c2 += (c1<t2)?1:0;	\
476	}
477
478#define mul_add_c2(a,b,c0,c1,c2) {	\
479	BN_ULONG ta=(a),tb=(b),t0;	\
480	BN_UMULT_LOHI(t0,t1,ta,tb);	\
481	t2 = t1+t1; c2 += (t2<t1)?1:0;	\
482	t1 = t0+t0; t2 += (t1<t0)?1:0;	\
483	c0 += t1; t2 += (c0<t1)?1:0;	\
484	c1 += t2; c2 += (c1<t2)?1:0;	\
485	}
486
487#define sqr_add_c(a,i,c0,c1,c2)	{	\
488	BN_ULONG ta=(a)[i];		\
489	BN_UMULT_LOHI(t1,t2,ta,ta);	\
490	c0 += t1; t2 += (c0<t1)?1:0;	\
491	c1 += t2; c2 += (c1<t2)?1:0;	\
492	}
493
494#define sqr_add_c2(a,i,j,c0,c1,c2)	\
495	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
496
497#elif defined(BN_UMULT_HIGH)
498
499#define mul_add_c(a,b,c0,c1,c2)	{	\
500	BN_ULONG ta=(a),tb=(b);		\
501	t1 = ta * tb;			\
502	t2 = BN_UMULT_HIGH(ta,tb);	\
503	c0 += t1; t2 += (c0<t1)?1:0;	\
504	c1 += t2; c2 += (c1<t2)?1:0;	\
505	}
506
507#define mul_add_c2(a,b,c0,c1,c2) {	\
508	BN_ULONG ta=(a),tb=(b),t0;	\
509	t1 = BN_UMULT_HIGH(ta,tb);	\
510	t0 = ta * tb;			\
511	t2 = t1+t1; c2 += (t2<t1)?1:0;	\
512	t1 = t0+t0; t2 += (t1<t0)?1:0;	\
513	c0 += t1; t2 += (c0<t1)?1:0;	\
514	c1 += t2; c2 += (c1<t2)?1:0;	\
515	}
516
517#define sqr_add_c(a,i,c0,c1,c2)	{	\
518	BN_ULONG ta=(a)[i];		\
519	t1 = ta * ta;			\
520	t2 = BN_UMULT_HIGH(ta,ta);	\
521	c0 += t1; t2 += (c0<t1)?1:0;	\
522	c1 += t2; c2 += (c1<t2)?1:0;	\
523	}
524
525#define sqr_add_c2(a,i,j,c0,c1,c2)	\
526	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
527
528#else /* !BN_LLONG */
529#define mul_add_c(a,b,c0,c1,c2) \
530	t1=LBITS(a); t2=HBITS(a); \
531	bl=LBITS(b); bh=HBITS(b); \
532	mul64(t1,t2,bl,bh); \
533	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
534	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
535
536#define mul_add_c2(a,b,c0,c1,c2) \
537	t1=LBITS(a); t2=HBITS(a); \
538	bl=LBITS(b); bh=HBITS(b); \
539	mul64(t1,t2,bl,bh); \
540	if (t2 & BN_TBIT) c2++; \
541	t2=(t2+t2)&BN_MASK2; \
542	if (t1 & BN_TBIT) t2++; \
543	t1=(t1+t1)&BN_MASK2; \
544	c0=(c0+t1)&BN_MASK2;  \
545	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
546	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
547
548#define sqr_add_c(a,i,c0,c1,c2) \
549	sqr64(t1,t2,(a)[i]); \
550	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
551	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
552
553#define sqr_add_c2(a,i,j,c0,c1,c2) \
554	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
555#endif /* !BN_LLONG */
556
557void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
558	{
559#ifdef BN_LLONG
560	BN_ULLONG t;
561#else
562	BN_ULONG bl,bh;
563#endif
564	BN_ULONG t1,t2;
565	BN_ULONG c1,c2,c3;
566
567	c1=0;
568	c2=0;
569	c3=0;
570	mul_add_c(a[0],b[0],c1,c2,c3);
571	r[0]=c1;
572	c1=0;
573	mul_add_c(a[0],b[1],c2,c3,c1);
574	mul_add_c(a[1],b[0],c2,c3,c1);
575	r[1]=c2;
576	c2=0;
577	mul_add_c(a[2],b[0],c3,c1,c2);
578	mul_add_c(a[1],b[1],c3,c1,c2);
579	mul_add_c(a[0],b[2],c3,c1,c2);
580	r[2]=c3;
581	c3=0;
582	mul_add_c(a[0],b[3],c1,c2,c3);
583	mul_add_c(a[1],b[2],c1,c2,c3);
584	mul_add_c(a[2],b[1],c1,c2,c3);
585	mul_add_c(a[3],b[0],c1,c2,c3);
586	r[3]=c1;
587	c1=0;
588	mul_add_c(a[4],b[0],c2,c3,c1);
589	mul_add_c(a[3],b[1],c2,c3,c1);
590	mul_add_c(a[2],b[2],c2,c3,c1);
591	mul_add_c(a[1],b[3],c2,c3,c1);
592	mul_add_c(a[0],b[4],c2,c3,c1);
593	r[4]=c2;
594	c2=0;
595	mul_add_c(a[0],b[5],c3,c1,c2);
596	mul_add_c(a[1],b[4],c3,c1,c2);
597	mul_add_c(a[2],b[3],c3,c1,c2);
598	mul_add_c(a[3],b[2],c3,c1,c2);
599	mul_add_c(a[4],b[1],c3,c1,c2);
600	mul_add_c(a[5],b[0],c3,c1,c2);
601	r[5]=c3;
602	c3=0;
603	mul_add_c(a[6],b[0],c1,c2,c3);
604	mul_add_c(a[5],b[1],c1,c2,c3);
605	mul_add_c(a[4],b[2],c1,c2,c3);
606	mul_add_c(a[3],b[3],c1,c2,c3);
607	mul_add_c(a[2],b[4],c1,c2,c3);
608	mul_add_c(a[1],b[5],c1,c2,c3);
609	mul_add_c(a[0],b[6],c1,c2,c3);
610	r[6]=c1;
611	c1=0;
612	mul_add_c(a[0],b[7],c2,c3,c1);
613	mul_add_c(a[1],b[6],c2,c3,c1);
614	mul_add_c(a[2],b[5],c2,c3,c1);
615	mul_add_c(a[3],b[4],c2,c3,c1);
616	mul_add_c(a[4],b[3],c2,c3,c1);
617	mul_add_c(a[5],b[2],c2,c3,c1);
618	mul_add_c(a[6],b[1],c2,c3,c1);
619	mul_add_c(a[7],b[0],c2,c3,c1);
620	r[7]=c2;
621	c2=0;
622	mul_add_c(a[7],b[1],c3,c1,c2);
623	mul_add_c(a[6],b[2],c3,c1,c2);
624	mul_add_c(a[5],b[3],c3,c1,c2);
625	mul_add_c(a[4],b[4],c3,c1,c2);
626	mul_add_c(a[3],b[5],c3,c1,c2);
627	mul_add_c(a[2],b[6],c3,c1,c2);
628	mul_add_c(a[1],b[7],c3,c1,c2);
629	r[8]=c3;
630	c3=0;
631	mul_add_c(a[2],b[7],c1,c2,c3);
632	mul_add_c(a[3],b[6],c1,c2,c3);
633	mul_add_c(a[4],b[5],c1,c2,c3);
634	mul_add_c(a[5],b[4],c1,c2,c3);
635	mul_add_c(a[6],b[3],c1,c2,c3);
636	mul_add_c(a[7],b[2],c1,c2,c3);
637	r[9]=c1;
638	c1=0;
639	mul_add_c(a[7],b[3],c2,c3,c1);
640	mul_add_c(a[6],b[4],c2,c3,c1);
641	mul_add_c(a[5],b[5],c2,c3,c1);
642	mul_add_c(a[4],b[6],c2,c3,c1);
643	mul_add_c(a[3],b[7],c2,c3,c1);
644	r[10]=c2;
645	c2=0;
646	mul_add_c(a[4],b[7],c3,c1,c2);
647	mul_add_c(a[5],b[6],c3,c1,c2);
648	mul_add_c(a[6],b[5],c3,c1,c2);
649	mul_add_c(a[7],b[4],c3,c1,c2);
650	r[11]=c3;
651	c3=0;
652	mul_add_c(a[7],b[5],c1,c2,c3);
653	mul_add_c(a[6],b[6],c1,c2,c3);
654	mul_add_c(a[5],b[7],c1,c2,c3);
655	r[12]=c1;
656	c1=0;
657	mul_add_c(a[6],b[7],c2,c3,c1);
658	mul_add_c(a[7],b[6],c2,c3,c1);
659	r[13]=c2;
660	c2=0;
661	mul_add_c(a[7],b[7],c3,c1,c2);
662	r[14]=c3;
663	r[15]=c1;
664	}
665
666void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
667	{
668#ifdef BN_LLONG
669	BN_ULLONG t;
670#else
671	BN_ULONG bl,bh;
672#endif
673	BN_ULONG t1,t2;
674	BN_ULONG c1,c2,c3;
675
676	c1=0;
677	c2=0;
678	c3=0;
679	mul_add_c(a[0],b[0],c1,c2,c3);
680	r[0]=c1;
681	c1=0;
682	mul_add_c(a[0],b[1],c2,c3,c1);
683	mul_add_c(a[1],b[0],c2,c3,c1);
684	r[1]=c2;
685	c2=0;
686	mul_add_c(a[2],b[0],c3,c1,c2);
687	mul_add_c(a[1],b[1],c3,c1,c2);
688	mul_add_c(a[0],b[2],c3,c1,c2);
689	r[2]=c3;
690	c3=0;
691	mul_add_c(a[0],b[3],c1,c2,c3);
692	mul_add_c(a[1],b[2],c1,c2,c3);
693	mul_add_c(a[2],b[1],c1,c2,c3);
694	mul_add_c(a[3],b[0],c1,c2,c3);
695	r[3]=c1;
696	c1=0;
697	mul_add_c(a[3],b[1],c2,c3,c1);
698	mul_add_c(a[2],b[2],c2,c3,c1);
699	mul_add_c(a[1],b[3],c2,c3,c1);
700	r[4]=c2;
701	c2=0;
702	mul_add_c(a[2],b[3],c3,c1,c2);
703	mul_add_c(a[3],b[2],c3,c1,c2);
704	r[5]=c3;
705	c3=0;
706	mul_add_c(a[3],b[3],c1,c2,c3);
707	r[6]=c1;
708	r[7]=c2;
709	}
710
711void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
712	{
713#ifdef BN_LLONG
714	BN_ULLONG t,tt;
715#else
716	BN_ULONG bl,bh;
717#endif
718	BN_ULONG t1,t2;
719	BN_ULONG c1,c2,c3;
720
721	c1=0;
722	c2=0;
723	c3=0;
724	sqr_add_c(a,0,c1,c2,c3);
725	r[0]=c1;
726	c1=0;
727	sqr_add_c2(a,1,0,c2,c3,c1);
728	r[1]=c2;
729	c2=0;
730	sqr_add_c(a,1,c3,c1,c2);
731	sqr_add_c2(a,2,0,c3,c1,c2);
732	r[2]=c3;
733	c3=0;
734	sqr_add_c2(a,3,0,c1,c2,c3);
735	sqr_add_c2(a,2,1,c1,c2,c3);
736	r[3]=c1;
737	c1=0;
738	sqr_add_c(a,2,c2,c3,c1);
739	sqr_add_c2(a,3,1,c2,c3,c1);
740	sqr_add_c2(a,4,0,c2,c3,c1);
741	r[4]=c2;
742	c2=0;
743	sqr_add_c2(a,5,0,c3,c1,c2);
744	sqr_add_c2(a,4,1,c3,c1,c2);
745	sqr_add_c2(a,3,2,c3,c1,c2);
746	r[5]=c3;
747	c3=0;
748	sqr_add_c(a,3,c1,c2,c3);
749	sqr_add_c2(a,4,2,c1,c2,c3);
750	sqr_add_c2(a,5,1,c1,c2,c3);
751	sqr_add_c2(a,6,0,c1,c2,c3);
752	r[6]=c1;
753	c1=0;
754	sqr_add_c2(a,7,0,c2,c3,c1);
755	sqr_add_c2(a,6,1,c2,c3,c1);
756	sqr_add_c2(a,5,2,c2,c3,c1);
757	sqr_add_c2(a,4,3,c2,c3,c1);
758	r[7]=c2;
759	c2=0;
760	sqr_add_c(a,4,c3,c1,c2);
761	sqr_add_c2(a,5,3,c3,c1,c2);
762	sqr_add_c2(a,6,2,c3,c1,c2);
763	sqr_add_c2(a,7,1,c3,c1,c2);
764	r[8]=c3;
765	c3=0;
766	sqr_add_c2(a,7,2,c1,c2,c3);
767	sqr_add_c2(a,6,3,c1,c2,c3);
768	sqr_add_c2(a,5,4,c1,c2,c3);
769	r[9]=c1;
770	c1=0;
771	sqr_add_c(a,5,c2,c3,c1);
772	sqr_add_c2(a,6,4,c2,c3,c1);
773	sqr_add_c2(a,7,3,c2,c3,c1);
774	r[10]=c2;
775	c2=0;
776	sqr_add_c2(a,7,4,c3,c1,c2);
777	sqr_add_c2(a,6,5,c3,c1,c2);
778	r[11]=c3;
779	c3=0;
780	sqr_add_c(a,6,c1,c2,c3);
781	sqr_add_c2(a,7,5,c1,c2,c3);
782	r[12]=c1;
783	c1=0;
784	sqr_add_c2(a,7,6,c2,c3,c1);
785	r[13]=c2;
786	c2=0;
787	sqr_add_c(a,7,c3,c1,c2);
788	r[14]=c3;
789	r[15]=c1;
790	}
791
792void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
793	{
794#ifdef BN_LLONG
795	BN_ULLONG t,tt;
796#else
797	BN_ULONG bl,bh;
798#endif
799	BN_ULONG t1,t2;
800	BN_ULONG c1,c2,c3;
801
802	c1=0;
803	c2=0;
804	c3=0;
805	sqr_add_c(a,0,c1,c2,c3);
806	r[0]=c1;
807	c1=0;
808	sqr_add_c2(a,1,0,c2,c3,c1);
809	r[1]=c2;
810	c2=0;
811	sqr_add_c(a,1,c3,c1,c2);
812	sqr_add_c2(a,2,0,c3,c1,c2);
813	r[2]=c3;
814	c3=0;
815	sqr_add_c2(a,3,0,c1,c2,c3);
816	sqr_add_c2(a,2,1,c1,c2,c3);
817	r[3]=c1;
818	c1=0;
819	sqr_add_c(a,2,c2,c3,c1);
820	sqr_add_c2(a,3,1,c2,c3,c1);
821	r[4]=c2;
822	c2=0;
823	sqr_add_c2(a,3,2,c3,c1,c2);
824	r[5]=c3;
825	c3=0;
826	sqr_add_c(a,3,c1,c2,c3);
827	r[6]=c1;
828	r[7]=c2;
829	}
830
831#ifdef OPENSSL_NO_ASM
832#ifdef OPENSSL_BN_ASM_MONT
833#include <alloca.h>
834/*
835 * This is essentially reference implementation, which may or may not
836 * result in performance improvement. E.g. on IA-32 this routine was
837 * observed to give 40% faster rsa1024 private key operations and 10%
838 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
840 * reference implementation, one to be used as starting point for
841 * platform-specific assembler. Mentioned numbers apply to compiler
842 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843 * can vary not only from platform to platform, but even for compiler
844 * versions. Assembler vs. assembler improvement coefficients can
845 * [and are known to] differ and are to be documented elsewhere.
846 */
847int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
848	{
849	BN_ULONG c0,c1,ml,*tp,n0;
850#ifdef mul64
851	BN_ULONG mh;
852#endif
853	volatile BN_ULONG *vp;
854	int i=0,j;
855
856#if 0	/* template for platform-specific implementation */
857	if (ap==bp)	return bn_sqr_mont(rp,ap,np,n0p,num);
858#endif
859	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
860
861	n0 = *n0p;
862
863	c0 = 0;
864	ml = bp[0];
865#ifdef mul64
866	mh = HBITS(ml);
867	ml = LBITS(ml);
868	for (j=0;j<num;++j)
869		mul(tp[j],ap[j],ml,mh,c0);
870#else
871	for (j=0;j<num;++j)
872		mul(tp[j],ap[j],ml,c0);
873#endif
874
875	tp[num]   = c0;
876	tp[num+1] = 0;
877	goto enter;
878
879	for(i=0;i<num;i++)
880		{
881		c0 = 0;
882		ml = bp[i];
883#ifdef mul64
884		mh = HBITS(ml);
885		ml = LBITS(ml);
886		for (j=0;j<num;++j)
887			mul_add(tp[j],ap[j],ml,mh,c0);
888#else
889		for (j=0;j<num;++j)
890			mul_add(tp[j],ap[j],ml,c0);
891#endif
892		c1 = (tp[num] + c0)&BN_MASK2;
893		tp[num]   = c1;
894		tp[num+1] = (c1<c0?1:0);
895	enter:
896		c1  = tp[0];
897		ml = (c1*n0)&BN_MASK2;
898		c0 = 0;
899#ifdef mul64
900		mh = HBITS(ml);
901		ml = LBITS(ml);
902		mul_add(c1,np[0],ml,mh,c0);
903#else
904		mul_add(c1,ml,np[0],c0);
905#endif
906		for(j=1;j<num;j++)
907			{
908			c1 = tp[j];
909#ifdef mul64
910			mul_add(c1,np[j],ml,mh,c0);
911#else
912			mul_add(c1,ml,np[j],c0);
913#endif
914			tp[j-1] = c1&BN_MASK2;
915			}
916		c1        = (tp[num] + c0)&BN_MASK2;
917		tp[num-1] = c1;
918		tp[num]   = tp[num+1] + (c1<c0?1:0);
919		}
920
921	if (tp[num]!=0 || tp[num-1]>=np[num-1])
922		{
923		c0 = bn_sub_words(rp,tp,np,num);
924		if (tp[num]!=0 || c0==0)
925			{
926			for(i=0;i<num+2;i++)	vp[i] = 0;
927			return 1;
928			}
929		}
930	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
931	vp[num]   = 0;
932	vp[num+1] = 0;
933	return 1;
934	}
935#else
936/*
937 * Return value of 0 indicates that multiplication/convolution was not
938 * performed to signal the caller to fall down to alternative/original
939 * code-path.
940 */
941int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
942{	return 0;	}
943#endif /* OPENSSL_BN_ASM_MONT */
944#endif
945
946#else /* !BN_MUL_COMBA */
947
948/* hmm... is it faster just to do a multiply? */
949#undef bn_sqr_comba4
950void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
951	{
952	BN_ULONG t[8];
953	bn_sqr_normal(r,a,4,t);
954	}
955
956#undef bn_sqr_comba8
957void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
958	{
959	BN_ULONG t[16];
960	bn_sqr_normal(r,a,8,t);
961	}
962
963void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
964	{
965	r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
966	r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
967	r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
968	r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
969	}
970
971void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
972	{
973	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
974	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
975	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
976	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
977	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
978	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
979	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
980	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
981	}
982
983#ifdef OPENSSL_NO_ASM
984#ifdef OPENSSL_BN_ASM_MONT
985#include <alloca.h>
986int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
987	{
988	BN_ULONG c0,c1,*tp,n0=*n0p;
989	volatile BN_ULONG *vp;
990	int i=0,j;
991
992	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
993
994	for(i=0;i<=num;i++)	tp[i]=0;
995
996	for(i=0;i<num;i++)
997		{
998		c0         = bn_mul_add_words(tp,ap,num,bp[i]);
999		c1         = (tp[num] + c0)&BN_MASK2;
1000		tp[num]    = c1;
1001		tp[num+1]  = (c1<c0?1:0);
1002
1003		c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
1004		c1         = (tp[num] + c0)&BN_MASK2;
1005		tp[num]    = c1;
1006		tp[num+1] += (c1<c0?1:0);
1007		for(j=0;j<=num;j++)	tp[j]=tp[j+1];
1008		}
1009
1010	if (tp[num]!=0 || tp[num-1]>=np[num-1])
1011		{
1012		c0 = bn_sub_words(rp,tp,np,num);
1013		if (tp[num]!=0 || c0==0)
1014			{
1015			for(i=0;i<num+2;i++)	vp[i] = 0;
1016			return 1;
1017			}
1018		}
1019	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
1020	vp[num]   = 0;
1021	vp[num+1] = 0;
1022	return 1;
1023	}
1024#else
1025int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1026{	return 0;	}
1027#endif /* OPENSSL_BN_ASM_MONT */
1028#endif
1029
1030#endif /* !BN_MUL_COMBA */
1031