1/* crypto/bn/bn_gcd.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118	{
119	BIGNUM *a,*b,*t;
120	int ret=0;
121
122	bn_check_top(in_a);
123	bn_check_top(in_b);
124
125	BN_CTX_start(ctx);
126	a = BN_CTX_get(ctx);
127	b = BN_CTX_get(ctx);
128	if (a == NULL || b == NULL) goto err;
129
130	if (BN_copy(a,in_a) == NULL) goto err;
131	if (BN_copy(b,in_b) == NULL) goto err;
132	a->neg = 0;
133	b->neg = 0;
134
135	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136	t=euclid(a,b);
137	if (t == NULL) goto err;
138
139	if (BN_copy(r,t) == NULL) goto err;
140	ret=1;
141err:
142	BN_CTX_end(ctx);
143	bn_check_top(r);
144	return(ret);
145	}
146
147static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148	{
149	BIGNUM *t;
150	int shifts=0;
151
152	bn_check_top(a);
153	bn_check_top(b);
154
155	/* 0 <= b <= a */
156	while (!BN_is_zero(b))
157		{
158		/* 0 < b <= a */
159
160		if (BN_is_odd(a))
161			{
162			if (BN_is_odd(b))
163				{
164				if (!BN_sub(a,a,b)) goto err;
165				if (!BN_rshift1(a,a)) goto err;
166				if (BN_cmp(a,b) < 0)
167					{ t=a; a=b; b=t; }
168				}
169			else		/* a odd - b even */
170				{
171				if (!BN_rshift1(b,b)) goto err;
172				if (BN_cmp(a,b) < 0)
173					{ t=a; a=b; b=t; }
174				}
175			}
176		else			/* a is even */
177			{
178			if (BN_is_odd(b))
179				{
180				if (!BN_rshift1(a,a)) goto err;
181				if (BN_cmp(a,b) < 0)
182					{ t=a; a=b; b=t; }
183				}
184			else		/* a even - b even */
185				{
186				if (!BN_rshift1(a,a)) goto err;
187				if (!BN_rshift1(b,b)) goto err;
188				shifts++;
189				}
190			}
191		/* 0 <= b <= a */
192		}
193
194	if (shifts)
195		{
196		if (!BN_lshift(a,a,shifts)) goto err;
197		}
198	bn_check_top(a);
199	return(a);
200err:
201	return(NULL);
202	}
203
204
205/* solves ax == 1 (mod n) */
206static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
207        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
208
209BIGNUM *BN_mod_inverse(BIGNUM *in,
210	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
211	{
212	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
213	BIGNUM *ret=NULL;
214	int sign;
215
216	if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
217		{
218		return BN_mod_inverse_no_branch(in, a, n, ctx);
219		}
220
221	bn_check_top(a);
222	bn_check_top(n);
223
224	BN_CTX_start(ctx);
225	A = BN_CTX_get(ctx);
226	B = BN_CTX_get(ctx);
227	X = BN_CTX_get(ctx);
228	D = BN_CTX_get(ctx);
229	M = BN_CTX_get(ctx);
230	Y = BN_CTX_get(ctx);
231	T = BN_CTX_get(ctx);
232	if (T == NULL) goto err;
233
234	if (in == NULL)
235		R=BN_new();
236	else
237		R=in;
238	if (R == NULL) goto err;
239
240	BN_one(X);
241	BN_zero(Y);
242	if (BN_copy(B,a) == NULL) goto err;
243	if (BN_copy(A,n) == NULL) goto err;
244	A->neg = 0;
245	if (B->neg || (BN_ucmp(B, A) >= 0))
246		{
247		if (!BN_nnmod(B, B, A, ctx)) goto err;
248		}
249	sign = -1;
250	/* From  B = a mod |n|,  A = |n|  it follows that
251	 *
252	 *      0 <= B < A,
253	 *     -sign*X*a  ==  B   (mod |n|),
254	 *      sign*Y*a  ==  A   (mod |n|).
255	 */
256
257	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
258		{
259		/* Binary inversion algorithm; requires odd modulus.
260		 * This is faster than the general algorithm if the modulus
261		 * is sufficiently small (about 400 .. 500 bits on 32-bit
262		 * sytems, but much more on 64-bit systems) */
263		int shift;
264
265		while (!BN_is_zero(B))
266			{
267			/*
268			 *      0 < B < |n|,
269			 *      0 < A <= |n|,
270			 * (1) -sign*X*a  ==  B   (mod |n|),
271			 * (2)  sign*Y*a  ==  A   (mod |n|)
272			 */
273
274			/* Now divide  B  by the maximum possible power of two in the integers,
275			 * and divide  X  by the same value mod |n|.
276			 * When we're done, (1) still holds. */
277			shift = 0;
278			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
279				{
280				shift++;
281
282				if (BN_is_odd(X))
283					{
284					if (!BN_uadd(X, X, n)) goto err;
285					}
286				/* now X is even, so we can easily divide it by two */
287				if (!BN_rshift1(X, X)) goto err;
288				}
289			if (shift > 0)
290				{
291				if (!BN_rshift(B, B, shift)) goto err;
292				}
293
294
295			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
296			shift = 0;
297			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
298				{
299				shift++;
300
301				if (BN_is_odd(Y))
302					{
303					if (!BN_uadd(Y, Y, n)) goto err;
304					}
305				/* now Y is even */
306				if (!BN_rshift1(Y, Y)) goto err;
307				}
308			if (shift > 0)
309				{
310				if (!BN_rshift(A, A, shift)) goto err;
311				}
312
313
314			/* We still have (1) and (2).
315			 * Both  A  and  B  are odd.
316			 * The following computations ensure that
317			 *
318			 *     0 <= B < |n|,
319			 *      0 < A < |n|,
320			 * (1) -sign*X*a  ==  B   (mod |n|),
321			 * (2)  sign*Y*a  ==  A   (mod |n|),
322			 *
323			 * and that either  A  or  B  is even in the next iteration.
324			 */
325			if (BN_ucmp(B, A) >= 0)
326				{
327				/* -sign*(X + Y)*a == B - A  (mod |n|) */
328				if (!BN_uadd(X, X, Y)) goto err;
329				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
330				 * actually makes the algorithm slower */
331				if (!BN_usub(B, B, A)) goto err;
332				}
333			else
334				{
335				/*  sign*(X + Y)*a == A - B  (mod |n|) */
336				if (!BN_uadd(Y, Y, X)) goto err;
337				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
338				if (!BN_usub(A, A, B)) goto err;
339				}
340			}
341		}
342	else
343		{
344		/* general inversion algorithm */
345
346		while (!BN_is_zero(B))
347			{
348			BIGNUM *tmp;
349
350			/*
351			 *      0 < B < A,
352			 * (*) -sign*X*a  ==  B   (mod |n|),
353			 *      sign*Y*a  ==  A   (mod |n|)
354			 */
355
356			/* (D, M) := (A/B, A%B) ... */
357			if (BN_num_bits(A) == BN_num_bits(B))
358				{
359				if (!BN_one(D)) goto err;
360				if (!BN_sub(M,A,B)) goto err;
361				}
362			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
363				{
364				/* A/B is 1, 2, or 3 */
365				if (!BN_lshift1(T,B)) goto err;
366				if (BN_ucmp(A,T) < 0)
367					{
368					/* A < 2*B, so D=1 */
369					if (!BN_one(D)) goto err;
370					if (!BN_sub(M,A,B)) goto err;
371					}
372				else
373					{
374					/* A >= 2*B, so D=2 or D=3 */
375					if (!BN_sub(M,A,T)) goto err;
376					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
377					if (BN_ucmp(A,D) < 0)
378						{
379						/* A < 3*B, so D=2 */
380						if (!BN_set_word(D,2)) goto err;
381						/* M (= A - 2*B) already has the correct value */
382						}
383					else
384						{
385						/* only D=3 remains */
386						if (!BN_set_word(D,3)) goto err;
387						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
388						if (!BN_sub(M,M,B)) goto err;
389						}
390					}
391				}
392			else
393				{
394				if (!BN_div(D,M,A,B,ctx)) goto err;
395				}
396
397			/* Now
398			 *      A = D*B + M;
399			 * thus we have
400			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
401			 */
402
403			tmp=A; /* keep the BIGNUM object, the value does not matter */
404
405			/* (A, B) := (B, A mod B) ... */
406			A=B;
407			B=M;
408			/* ... so we have  0 <= B < A  again */
409
410			/* Since the former  M  is now  B  and the former  B  is now  A,
411			 * (**) translates into
412			 *       sign*Y*a  ==  D*A + B    (mod |n|),
413			 * i.e.
414			 *       sign*Y*a - D*A  ==  B    (mod |n|).
415			 * Similarly, (*) translates into
416			 *      -sign*X*a  ==  A          (mod |n|).
417			 *
418			 * Thus,
419			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
420			 * i.e.
421			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
422			 *
423			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
424			 *      -sign*X*a  ==  B   (mod |n|),
425			 *       sign*Y*a  ==  A   (mod |n|).
426			 * Note that  X  and  Y  stay non-negative all the time.
427			 */
428
429			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
430			if (BN_is_one(D))
431				{
432				if (!BN_add(tmp,X,Y)) goto err;
433				}
434			else
435				{
436				if (BN_is_word(D,2))
437					{
438					if (!BN_lshift1(tmp,X)) goto err;
439					}
440				else if (BN_is_word(D,4))
441					{
442					if (!BN_lshift(tmp,X,2)) goto err;
443					}
444				else if (D->top == 1)
445					{
446					if (!BN_copy(tmp,X)) goto err;
447					if (!BN_mul_word(tmp,D->d[0])) goto err;
448					}
449				else
450					{
451					if (!BN_mul(tmp,D,X,ctx)) goto err;
452					}
453				if (!BN_add(tmp,tmp,Y)) goto err;
454				}
455
456			M=Y; /* keep the BIGNUM object, the value does not matter */
457			Y=X;
458			X=tmp;
459			sign = -sign;
460			}
461		}
462
463	/*
464	 * The while loop (Euclid's algorithm) ends when
465	 *      A == gcd(a,n);
466	 * we have
467	 *       sign*Y*a  ==  A  (mod |n|),
468	 * where  Y  is non-negative.
469	 */
470
471	if (sign < 0)
472		{
473		if (!BN_sub(Y,n,Y)) goto err;
474		}
475	/* Now  Y*a  ==  A  (mod |n|).  */
476
477
478	if (BN_is_one(A))
479		{
480		/* Y*a == 1  (mod |n|) */
481		if (!Y->neg && BN_ucmp(Y,n) < 0)
482			{
483			if (!BN_copy(R,Y)) goto err;
484			}
485		else
486			{
487			if (!BN_nnmod(R,Y,n,ctx)) goto err;
488			}
489		}
490	else
491		{
492		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
493		goto err;
494		}
495	ret=R;
496err:
497	if ((ret == NULL) && (in == NULL)) BN_free(R);
498	BN_CTX_end(ctx);
499	bn_check_top(ret);
500	return(ret);
501	}
502
503
504/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
505 * It does not contain branches that may leak sensitive information.
506 */
507static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
508	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
509	{
510	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
511	BIGNUM local_A, local_B;
512	BIGNUM *pA, *pB;
513	BIGNUM *ret=NULL;
514	int sign;
515
516	bn_check_top(a);
517	bn_check_top(n);
518
519	BN_CTX_start(ctx);
520	A = BN_CTX_get(ctx);
521	B = BN_CTX_get(ctx);
522	X = BN_CTX_get(ctx);
523	D = BN_CTX_get(ctx);
524	M = BN_CTX_get(ctx);
525	Y = BN_CTX_get(ctx);
526	T = BN_CTX_get(ctx);
527	if (T == NULL) goto err;
528
529	if (in == NULL)
530		R=BN_new();
531	else
532		R=in;
533	if (R == NULL) goto err;
534
535	BN_one(X);
536	BN_zero(Y);
537	if (BN_copy(B,a) == NULL) goto err;
538	if (BN_copy(A,n) == NULL) goto err;
539	A->neg = 0;
540
541	if (B->neg || (BN_ucmp(B, A) >= 0))
542		{
543		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
544	 	 * BN_div_no_branch will be called eventually.
545	 	 */
546		pB = &local_B;
547		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
548		if (!BN_nnmod(B, pB, A, ctx)) goto err;
549		}
550	sign = -1;
551	/* From  B = a mod |n|,  A = |n|  it follows that
552	 *
553	 *      0 <= B < A,
554	 *     -sign*X*a  ==  B   (mod |n|),
555	 *      sign*Y*a  ==  A   (mod |n|).
556	 */
557
558	while (!BN_is_zero(B))
559		{
560		BIGNUM *tmp;
561
562		/*
563		 *      0 < B < A,
564		 * (*) -sign*X*a  ==  B   (mod |n|),
565		 *      sign*Y*a  ==  A   (mod |n|)
566		 */
567
568		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
569	 	 * BN_div_no_branch will be called eventually.
570	 	 */
571		pA = &local_A;
572		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
573
574		/* (D, M) := (A/B, A%B) ... */
575		if (!BN_div(D,M,pA,B,ctx)) goto err;
576
577		/* Now
578		 *      A = D*B + M;
579		 * thus we have
580		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
581		 */
582
583		tmp=A; /* keep the BIGNUM object, the value does not matter */
584
585		/* (A, B) := (B, A mod B) ... */
586		A=B;
587		B=M;
588		/* ... so we have  0 <= B < A  again */
589
590		/* Since the former  M  is now  B  and the former  B  is now  A,
591		 * (**) translates into
592		 *       sign*Y*a  ==  D*A + B    (mod |n|),
593		 * i.e.
594		 *       sign*Y*a - D*A  ==  B    (mod |n|).
595		 * Similarly, (*) translates into
596		 *      -sign*X*a  ==  A          (mod |n|).
597		 *
598		 * Thus,
599		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
600		 * i.e.
601		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
602		 *
603		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
604		 *      -sign*X*a  ==  B   (mod |n|),
605		 *       sign*Y*a  ==  A   (mod |n|).
606		 * Note that  X  and  Y  stay non-negative all the time.
607		 */
608
609		if (!BN_mul(tmp,D,X,ctx)) goto err;
610		if (!BN_add(tmp,tmp,Y)) goto err;
611
612		M=Y; /* keep the BIGNUM object, the value does not matter */
613		Y=X;
614		X=tmp;
615		sign = -sign;
616		}
617
618	/*
619	 * The while loop (Euclid's algorithm) ends when
620	 *      A == gcd(a,n);
621	 * we have
622	 *       sign*Y*a  ==  A  (mod |n|),
623	 * where  Y  is non-negative.
624	 */
625
626	if (sign < 0)
627		{
628		if (!BN_sub(Y,n,Y)) goto err;
629		}
630	/* Now  Y*a  ==  A  (mod |n|).  */
631
632	if (BN_is_one(A))
633		{
634		/* Y*a == 1  (mod |n|) */
635		if (!Y->neg && BN_ucmp(Y,n) < 0)
636			{
637			if (!BN_copy(R,Y)) goto err;
638			}
639		else
640			{
641			if (!BN_nnmod(R,Y,n,ctx)) goto err;
642			}
643		}
644	else
645		{
646		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
647		goto err;
648		}
649	ret=R;
650err:
651	if ((ret == NULL) && (in == NULL)) BN_free(R);
652	BN_CTX_end(ctx);
653	bn_check_top(ret);
654	return(ret);
655	}
656