1/* crypto/ec/ec2_mult.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16/* ====================================================================
17 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 *    notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 *    software must display the following acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 *    endorse or promote products derived from this software without
38 *    prior written permission. For written permission, please contact
39 *    openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 *    nor may "OpenSSL" appear in their names without prior written
43 *    permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 *    acknowledgment:
47 *    "This product includes software developed by the OpenSSL Project
48 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com).  This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/err.h>
71
72#include "ec_lcl.h"
73
74#ifndef OPENSSL_NO_EC2M
75
76
77/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
78 * coordinates.
79 * Uses algorithm Mdouble in appendix of
80 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
81 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
82 * modified to not require precomputation of c=b^{2^{m-1}}.
83 */
84static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
85	{
86	BIGNUM *t1;
87	int ret = 0;
88
89	/* Since Mdouble is static we can guarantee that ctx != NULL. */
90	BN_CTX_start(ctx);
91	t1 = BN_CTX_get(ctx);
92	if (t1 == NULL) goto err;
93
94	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
95	if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
96	if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
97	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
98	if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
99	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
100	if (!BN_GF2m_add(x, x, t1)) goto err;
101
102	ret = 1;
103
104 err:
105	BN_CTX_end(ctx);
106	return ret;
107	}
108
109/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
110 * projective coordinates.
111 * Uses algorithm Madd in appendix of
112 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
113 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
114 */
115static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
116	const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
117	{
118	BIGNUM *t1, *t2;
119	int ret = 0;
120
121	/* Since Madd is static we can guarantee that ctx != NULL. */
122	BN_CTX_start(ctx);
123	t1 = BN_CTX_get(ctx);
124	t2 = BN_CTX_get(ctx);
125	if (t2 == NULL) goto err;
126
127	if (!BN_copy(t1, x)) goto err;
128	if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
129	if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
130	if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
131	if (!BN_GF2m_add(z1, z1, x1)) goto err;
132	if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
133	if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
134	if (!BN_GF2m_add(x1, x1, t2)) goto err;
135
136	ret = 1;
137
138 err:
139	BN_CTX_end(ctx);
140	return ret;
141	}
142
143/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
144 * using Montgomery point multiplication algorithm Mxy() in appendix of
145 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
146 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
147 * Returns:
148 *     0 on error
149 *     1 if return value should be the point at infinity
150 *     2 otherwise
151 */
152static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
153	BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
154	{
155	BIGNUM *t3, *t4, *t5;
156	int ret = 0;
157
158	if (BN_is_zero(z1))
159		{
160		BN_zero(x2);
161		BN_zero(z2);
162		return 1;
163		}
164
165	if (BN_is_zero(z2))
166		{
167		if (!BN_copy(x2, x)) return 0;
168		if (!BN_GF2m_add(z2, x, y)) return 0;
169		return 2;
170		}
171
172	/* Since Mxy is static we can guarantee that ctx != NULL. */
173	BN_CTX_start(ctx);
174	t3 = BN_CTX_get(ctx);
175	t4 = BN_CTX_get(ctx);
176	t5 = BN_CTX_get(ctx);
177	if (t5 == NULL) goto err;
178
179	if (!BN_one(t5)) goto err;
180
181	if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
182
183	if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
184	if (!BN_GF2m_add(z1, z1, x1)) goto err;
185	if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
186	if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
187	if (!BN_GF2m_add(z2, z2, x2)) goto err;
188
189	if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
190	if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
191	if (!BN_GF2m_add(t4, t4, y)) goto err;
192	if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
193	if (!BN_GF2m_add(t4, t4, z2)) goto err;
194
195	if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
196	if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
197	if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
198	if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
199	if (!BN_GF2m_add(z2, x2, x)) goto err;
200
201	if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
202	if (!BN_GF2m_add(z2, z2, y)) goto err;
203
204	ret = 2;
205
206 err:
207	BN_CTX_end(ctx);
208	return ret;
209	}
210
211
212/* Computes scalar*point and stores the result in r.
213 * point can not equal r.
214 * Uses a modified algorithm 2P of
215 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
216 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
217 *
218 * To protect against side-channel attack the function uses constant time swap,
219 * avoiding conditional branches.
220 */
221static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
222	const EC_POINT *point, BN_CTX *ctx)
223	{
224	BIGNUM *x1, *x2, *z1, *z2;
225	int ret = 0, i;
226	BN_ULONG mask,word;
227
228	if (r == point)
229		{
230		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
231		return 0;
232		}
233
234	/* if result should be point at infinity */
235	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
236		EC_POINT_is_at_infinity(group, point))
237		{
238		return EC_POINT_set_to_infinity(group, r);
239		}
240
241	/* only support affine coordinates */
242	if (!point->Z_is_one) return 0;
243
244	/* Since point_multiply is static we can guarantee that ctx != NULL. */
245	BN_CTX_start(ctx);
246	x1 = BN_CTX_get(ctx);
247	z1 = BN_CTX_get(ctx);
248	if (z1 == NULL) goto err;
249
250	x2 = &r->X;
251	z2 = &r->Y;
252
253	bn_wexpand(x1, group->field.top);
254	bn_wexpand(z1, group->field.top);
255	bn_wexpand(x2, group->field.top);
256	bn_wexpand(z2, group->field.top);
257
258	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
259	if (!BN_one(z1)) goto err; /* z1 = 1 */
260	if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
261	if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
262	if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
263
264	/* find top most bit and go one past it */
265	i = scalar->top - 1;
266	mask = BN_TBIT;
267	word = scalar->d[i];
268	while (!(word & mask)) mask >>= 1;
269	mask >>= 1;
270	/* if top most bit was at word break, go to next word */
271	if (!mask)
272		{
273		i--;
274		mask = BN_TBIT;
275		}
276
277	for (; i >= 0; i--)
278		{
279		word = scalar->d[i];
280		while (mask)
281			{
282			BN_consttime_swap(word & mask, x1, x2, group->field.top);
283			BN_consttime_swap(word & mask, z1, z2, group->field.top);
284			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
285			if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
286			BN_consttime_swap(word & mask, x1, x2, group->field.top);
287			BN_consttime_swap(word & mask, z1, z2, group->field.top);
288			mask >>= 1;
289			}
290		mask = BN_TBIT;
291		}
292
293	/* convert out of "projective" coordinates */
294	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
295	if (i == 0) goto err;
296	else if (i == 1)
297		{
298		if (!EC_POINT_set_to_infinity(group, r)) goto err;
299		}
300	else
301		{
302		if (!BN_one(&r->Z)) goto err;
303		r->Z_is_one = 1;
304		}
305
306	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
307	BN_set_negative(&r->X, 0);
308	BN_set_negative(&r->Y, 0);
309
310	ret = 1;
311
312 err:
313	BN_CTX_end(ctx);
314	return ret;
315	}
316
317
318/* Computes the sum
319 *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
320 * gracefully ignoring NULL scalar values.
321 */
322int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
323	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
324	{
325	BN_CTX *new_ctx = NULL;
326	int ret = 0;
327	size_t i;
328	EC_POINT *p=NULL;
329	EC_POINT *acc = NULL;
330
331	if (ctx == NULL)
332		{
333		ctx = new_ctx = BN_CTX_new();
334		if (ctx == NULL)
335			return 0;
336		}
337
338	/* This implementation is more efficient than the wNAF implementation for 2
339	 * or fewer points.  Use the ec_wNAF_mul implementation for 3 or more points,
340	 * or if we can perform a fast multiplication based on precomputation.
341	 */
342	if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
343		{
344		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
345		goto err;
346		}
347
348	if ((p = EC_POINT_new(group)) == NULL) goto err;
349	if ((acc = EC_POINT_new(group)) == NULL) goto err;
350
351	if (!EC_POINT_set_to_infinity(group, acc)) goto err;
352
353	if (scalar)
354		{
355		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
356		if (BN_is_negative(scalar))
357			if (!group->meth->invert(group, p, ctx)) goto err;
358		if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
359		}
360
361	for (i = 0; i < num; i++)
362		{
363		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
364		if (BN_is_negative(scalars[i]))
365			if (!group->meth->invert(group, p, ctx)) goto err;
366		if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
367		}
368
369	if (!EC_POINT_copy(r, acc)) goto err;
370
371	ret = 1;
372
373  err:
374	if (p) EC_POINT_free(p);
375	if (acc) EC_POINT_free(acc);
376	if (new_ctx != NULL)
377		BN_CTX_free(new_ctx);
378	return ret;
379	}
380
381
382/* Precomputation for point multiplication: fall back to wNAF methods
383 * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
384
385int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
386	{
387	return ec_wNAF_precompute_mult(group, ctx);
388 	}
389
390int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
391	{
392	return ec_wNAF_have_precompute_mult(group);
393 	}
394
395#endif
396