1/* crypto/ec/ec2_smpl.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16/* ====================================================================
17 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 *    notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 *    software must display the following acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 *    endorse or promote products derived from this software without
38 *    prior written permission. For written permission, please contact
39 *    openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 *    nor may "OpenSSL" appear in their names without prior written
43 *    permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 *    acknowledgment:
47 *    "This product includes software developed by the OpenSSL Project
48 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com).  This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/err.h>
71
72#include "ec_lcl.h"
73
74#ifndef OPENSSL_NO_EC2M
75
76#ifdef OPENSSL_FIPS
77#include <openssl/fips.h>
78#endif
79
80
81const EC_METHOD *EC_GF2m_simple_method(void)
82	{
83	static const EC_METHOD ret = {
84		EC_FLAGS_DEFAULT_OCT,
85		NID_X9_62_characteristic_two_field,
86		ec_GF2m_simple_group_init,
87		ec_GF2m_simple_group_finish,
88		ec_GF2m_simple_group_clear_finish,
89		ec_GF2m_simple_group_copy,
90		ec_GF2m_simple_group_set_curve,
91		ec_GF2m_simple_group_get_curve,
92		ec_GF2m_simple_group_get_degree,
93		ec_GF2m_simple_group_check_discriminant,
94		ec_GF2m_simple_point_init,
95		ec_GF2m_simple_point_finish,
96		ec_GF2m_simple_point_clear_finish,
97		ec_GF2m_simple_point_copy,
98		ec_GF2m_simple_point_set_to_infinity,
99		0 /* set_Jprojective_coordinates_GFp */,
100		0 /* get_Jprojective_coordinates_GFp */,
101		ec_GF2m_simple_point_set_affine_coordinates,
102		ec_GF2m_simple_point_get_affine_coordinates,
103		0,0,0,
104		ec_GF2m_simple_add,
105		ec_GF2m_simple_dbl,
106		ec_GF2m_simple_invert,
107		ec_GF2m_simple_is_at_infinity,
108		ec_GF2m_simple_is_on_curve,
109		ec_GF2m_simple_cmp,
110		ec_GF2m_simple_make_affine,
111		ec_GF2m_simple_points_make_affine,
112
113		/* the following three method functions are defined in ec2_mult.c */
114		ec_GF2m_simple_mul,
115		ec_GF2m_precompute_mult,
116		ec_GF2m_have_precompute_mult,
117
118		ec_GF2m_simple_field_mul,
119		ec_GF2m_simple_field_sqr,
120		ec_GF2m_simple_field_div,
121		0 /* field_encode */,
122		0 /* field_decode */,
123		0 /* field_set_to_one */ };
124
125#ifdef OPENSSL_FIPS
126	if (FIPS_mode())
127		return fips_ec_gf2m_simple_method();
128#endif
129
130	return &ret;
131	}
132
133
134/* Initialize a GF(2^m)-based EC_GROUP structure.
135 * Note that all other members are handled by EC_GROUP_new.
136 */
137int ec_GF2m_simple_group_init(EC_GROUP *group)
138	{
139	BN_init(&group->field);
140	BN_init(&group->a);
141	BN_init(&group->b);
142	return 1;
143	}
144
145
146/* Free a GF(2^m)-based EC_GROUP structure.
147 * Note that all other members are handled by EC_GROUP_free.
148 */
149void ec_GF2m_simple_group_finish(EC_GROUP *group)
150	{
151	BN_free(&group->field);
152	BN_free(&group->a);
153	BN_free(&group->b);
154	}
155
156
157/* Clear and free a GF(2^m)-based EC_GROUP structure.
158 * Note that all other members are handled by EC_GROUP_clear_free.
159 */
160void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
161	{
162	BN_clear_free(&group->field);
163	BN_clear_free(&group->a);
164	BN_clear_free(&group->b);
165	group->poly[0] = 0;
166	group->poly[1] = 0;
167	group->poly[2] = 0;
168	group->poly[3] = 0;
169	group->poly[4] = 0;
170	group->poly[5] = -1;
171	}
172
173
174/* Copy a GF(2^m)-based EC_GROUP structure.
175 * Note that all other members are handled by EC_GROUP_copy.
176 */
177int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
178	{
179	int i;
180	if (!BN_copy(&dest->field, &src->field)) return 0;
181	if (!BN_copy(&dest->a, &src->a)) return 0;
182	if (!BN_copy(&dest->b, &src->b)) return 0;
183	dest->poly[0] = src->poly[0];
184	dest->poly[1] = src->poly[1];
185	dest->poly[2] = src->poly[2];
186	dest->poly[3] = src->poly[3];
187	dest->poly[4] = src->poly[4];
188	dest->poly[5] = src->poly[5];
189	if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
190	if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
191	for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
192	for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
193	return 1;
194	}
195
196
197/* Set the curve parameters of an EC_GROUP structure. */
198int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
199	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
200	{
201	int ret = 0, i;
202
203	/* group->field */
204	if (!BN_copy(&group->field, p)) goto err;
205	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
206	if ((i != 5) && (i != 3))
207		{
208		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
209		goto err;
210		}
211
212	/* group->a */
213	if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
214	if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
215	for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
216
217	/* group->b */
218	if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
219	if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
220	for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
221
222	ret = 1;
223  err:
224	return ret;
225	}
226
227
228/* Get the curve parameters of an EC_GROUP structure.
229 * If p, a, or b are NULL then there values will not be set but the method will return with success.
230 */
231int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
232	{
233	int ret = 0;
234
235	if (p != NULL)
236		{
237		if (!BN_copy(p, &group->field)) return 0;
238		}
239
240	if (a != NULL)
241		{
242		if (!BN_copy(a, &group->a)) goto err;
243		}
244
245	if (b != NULL)
246		{
247		if (!BN_copy(b, &group->b)) goto err;
248		}
249
250	ret = 1;
251
252  err:
253	return ret;
254	}
255
256
257/* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
258int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
259	{
260	return BN_num_bits(&group->field)-1;
261	}
262
263
264/* Checks the discriminant of the curve.
265 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
266 */
267int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
268	{
269	int ret = 0;
270	BIGNUM *b;
271	BN_CTX *new_ctx = NULL;
272
273	if (ctx == NULL)
274		{
275		ctx = new_ctx = BN_CTX_new();
276		if (ctx == NULL)
277			{
278			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
279			goto err;
280			}
281		}
282	BN_CTX_start(ctx);
283	b = BN_CTX_get(ctx);
284	if (b == NULL) goto err;
285
286	if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
287
288	/* check the discriminant:
289	 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
290	 */
291	if (BN_is_zero(b)) goto err;
292
293	ret = 1;
294
295err:
296	if (ctx != NULL)
297		BN_CTX_end(ctx);
298	if (new_ctx != NULL)
299		BN_CTX_free(new_ctx);
300	return ret;
301	}
302
303
304/* Initializes an EC_POINT. */
305int ec_GF2m_simple_point_init(EC_POINT *point)
306	{
307	BN_init(&point->X);
308	BN_init(&point->Y);
309	BN_init(&point->Z);
310	return 1;
311	}
312
313
314/* Frees an EC_POINT. */
315void ec_GF2m_simple_point_finish(EC_POINT *point)
316	{
317	BN_free(&point->X);
318	BN_free(&point->Y);
319	BN_free(&point->Z);
320	}
321
322
323/* Clears and frees an EC_POINT. */
324void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
325	{
326	BN_clear_free(&point->X);
327	BN_clear_free(&point->Y);
328	BN_clear_free(&point->Z);
329	point->Z_is_one = 0;
330	}
331
332
333/* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
334int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
335	{
336	if (!BN_copy(&dest->X, &src->X)) return 0;
337	if (!BN_copy(&dest->Y, &src->Y)) return 0;
338	if (!BN_copy(&dest->Z, &src->Z)) return 0;
339	dest->Z_is_one = src->Z_is_one;
340
341	return 1;
342	}
343
344
345/* Set an EC_POINT to the point at infinity.
346 * A point at infinity is represented by having Z=0.
347 */
348int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
349	{
350	point->Z_is_one = 0;
351	BN_zero(&point->Z);
352	return 1;
353	}
354
355
356/* Set the coordinates of an EC_POINT using affine coordinates.
357 * Note that the simple implementation only uses affine coordinates.
358 */
359int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
360	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
361	{
362	int ret = 0;
363	if (x == NULL || y == NULL)
364		{
365		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
366		return 0;
367		}
368
369	if (!BN_copy(&point->X, x)) goto err;
370	BN_set_negative(&point->X, 0);
371	if (!BN_copy(&point->Y, y)) goto err;
372	BN_set_negative(&point->Y, 0);
373	if (!BN_copy(&point->Z, BN_value_one())) goto err;
374	BN_set_negative(&point->Z, 0);
375	point->Z_is_one = 1;
376	ret = 1;
377
378  err:
379	return ret;
380	}
381
382
383/* Gets the affine coordinates of an EC_POINT.
384 * Note that the simple implementation only uses affine coordinates.
385 */
386int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
387	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
388	{
389	int ret = 0;
390
391	if (EC_POINT_is_at_infinity(group, point))
392		{
393		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
394		return 0;
395		}
396
397	if (BN_cmp(&point->Z, BN_value_one()))
398		{
399		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
400		return 0;
401		}
402	if (x != NULL)
403		{
404		if (!BN_copy(x, &point->X)) goto err;
405		BN_set_negative(x, 0);
406		}
407	if (y != NULL)
408		{
409		if (!BN_copy(y, &point->Y)) goto err;
410		BN_set_negative(y, 0);
411		}
412	ret = 1;
413
414 err:
415	return ret;
416	}
417
418/* Computes a + b and stores the result in r.  r could be a or b, a could be b.
419 * Uses algorithm A.10.2 of IEEE P1363.
420 */
421int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
422	{
423	BN_CTX *new_ctx = NULL;
424	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
425	int ret = 0;
426
427	if (EC_POINT_is_at_infinity(group, a))
428		{
429		if (!EC_POINT_copy(r, b)) return 0;
430		return 1;
431		}
432
433	if (EC_POINT_is_at_infinity(group, b))
434		{
435		if (!EC_POINT_copy(r, a)) return 0;
436		return 1;
437		}
438
439	if (ctx == NULL)
440		{
441		ctx = new_ctx = BN_CTX_new();
442		if (ctx == NULL)
443			return 0;
444		}
445
446	BN_CTX_start(ctx);
447	x0 = BN_CTX_get(ctx);
448	y0 = BN_CTX_get(ctx);
449	x1 = BN_CTX_get(ctx);
450	y1 = BN_CTX_get(ctx);
451	x2 = BN_CTX_get(ctx);
452	y2 = BN_CTX_get(ctx);
453	s = BN_CTX_get(ctx);
454	t = BN_CTX_get(ctx);
455	if (t == NULL) goto err;
456
457	if (a->Z_is_one)
458		{
459		if (!BN_copy(x0, &a->X)) goto err;
460		if (!BN_copy(y0, &a->Y)) goto err;
461		}
462	else
463		{
464		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
465		}
466	if (b->Z_is_one)
467		{
468		if (!BN_copy(x1, &b->X)) goto err;
469		if (!BN_copy(y1, &b->Y)) goto err;
470		}
471	else
472		{
473		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
474		}
475
476
477	if (BN_GF2m_cmp(x0, x1))
478		{
479		if (!BN_GF2m_add(t, x0, x1)) goto err;
480		if (!BN_GF2m_add(s, y0, y1)) goto err;
481		if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
482		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
483		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
484		if (!BN_GF2m_add(x2, x2, s)) goto err;
485		if (!BN_GF2m_add(x2, x2, t)) goto err;
486		}
487	else
488		{
489		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
490			{
491			if (!EC_POINT_set_to_infinity(group, r)) goto err;
492			ret = 1;
493			goto err;
494			}
495		if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
496		if (!BN_GF2m_add(s, s, x1)) goto err;
497
498		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
499		if (!BN_GF2m_add(x2, x2, s)) goto err;
500		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
501		}
502
503	if (!BN_GF2m_add(y2, x1, x2)) goto err;
504	if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
505	if (!BN_GF2m_add(y2, y2, x2)) goto err;
506	if (!BN_GF2m_add(y2, y2, y1)) goto err;
507
508	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
509
510	ret = 1;
511
512 err:
513	BN_CTX_end(ctx);
514	if (new_ctx != NULL)
515		BN_CTX_free(new_ctx);
516	return ret;
517	}
518
519
520/* Computes 2 * a and stores the result in r.  r could be a.
521 * Uses algorithm A.10.2 of IEEE P1363.
522 */
523int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
524	{
525	return ec_GF2m_simple_add(group, r, a, a, ctx);
526	}
527
528
529int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
530	{
531	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
532		/* point is its own inverse */
533		return 1;
534
535	if (!EC_POINT_make_affine(group, point, ctx)) return 0;
536	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
537	}
538
539
540/* Indicates whether the given point is the point at infinity. */
541int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
542	{
543	return BN_is_zero(&point->Z);
544	}
545
546
547/* Determines whether the given EC_POINT is an actual point on the curve defined
548 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
549 *      y^2 + x*y = x^3 + a*x^2 + b.
550 */
551int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
552	{
553	int ret = -1;
554	BN_CTX *new_ctx = NULL;
555	BIGNUM *lh, *y2;
556	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
557	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
558
559	if (EC_POINT_is_at_infinity(group, point))
560		return 1;
561
562	field_mul = group->meth->field_mul;
563	field_sqr = group->meth->field_sqr;
564
565	/* only support affine coordinates */
566	if (!point->Z_is_one) return -1;
567
568	if (ctx == NULL)
569		{
570		ctx = new_ctx = BN_CTX_new();
571		if (ctx == NULL)
572			return -1;
573		}
574
575	BN_CTX_start(ctx);
576	y2 = BN_CTX_get(ctx);
577	lh = BN_CTX_get(ctx);
578	if (lh == NULL) goto err;
579
580	/* We have a curve defined by a Weierstrass equation
581	 *      y^2 + x*y = x^3 + a*x^2 + b.
582	 *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
583	 *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
584	 */
585	if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
586	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
587	if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
588	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
589	if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
590	if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
591	if (!BN_GF2m_add(lh, lh, y2)) goto err;
592	ret = BN_is_zero(lh);
593 err:
594	if (ctx) BN_CTX_end(ctx);
595	if (new_ctx) BN_CTX_free(new_ctx);
596	return ret;
597	}
598
599
600/* Indicates whether two points are equal.
601 * Return values:
602 *  -1   error
603 *   0   equal (in affine coordinates)
604 *   1   not equal
605 */
606int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
607	{
608	BIGNUM *aX, *aY, *bX, *bY;
609	BN_CTX *new_ctx = NULL;
610	int ret = -1;
611
612	if (EC_POINT_is_at_infinity(group, a))
613		{
614		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
615		}
616
617	if (EC_POINT_is_at_infinity(group, b))
618		return 1;
619
620	if (a->Z_is_one && b->Z_is_one)
621		{
622		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
623		}
624
625	if (ctx == NULL)
626		{
627		ctx = new_ctx = BN_CTX_new();
628		if (ctx == NULL)
629			return -1;
630		}
631
632	BN_CTX_start(ctx);
633	aX = BN_CTX_get(ctx);
634	aY = BN_CTX_get(ctx);
635	bX = BN_CTX_get(ctx);
636	bY = BN_CTX_get(ctx);
637	if (bY == NULL) goto err;
638
639	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
640	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
641	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
642
643  err:
644	if (ctx) BN_CTX_end(ctx);
645	if (new_ctx) BN_CTX_free(new_ctx);
646	return ret;
647	}
648
649
650/* Forces the given EC_POINT to internally use affine coordinates. */
651int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
652	{
653	BN_CTX *new_ctx = NULL;
654	BIGNUM *x, *y;
655	int ret = 0;
656
657	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
658		return 1;
659
660	if (ctx == NULL)
661		{
662		ctx = new_ctx = BN_CTX_new();
663		if (ctx == NULL)
664			return 0;
665		}
666
667	BN_CTX_start(ctx);
668	x = BN_CTX_get(ctx);
669	y = BN_CTX_get(ctx);
670	if (y == NULL) goto err;
671
672	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
673	if (!BN_copy(&point->X, x)) goto err;
674	if (!BN_copy(&point->Y, y)) goto err;
675	if (!BN_one(&point->Z)) goto err;
676
677	ret = 1;
678
679  err:
680	if (ctx) BN_CTX_end(ctx);
681	if (new_ctx) BN_CTX_free(new_ctx);
682	return ret;
683	}
684
685
686/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
687int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
688	{
689	size_t i;
690
691	for (i = 0; i < num; i++)
692		{
693		if (!group->meth->make_affine(group, points[i], ctx)) return 0;
694		}
695
696	return 1;
697	}
698
699
700/* Wrapper to simple binary polynomial field multiplication implementation. */
701int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
702	{
703	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
704	}
705
706
707/* Wrapper to simple binary polynomial field squaring implementation. */
708int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
709	{
710	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
711	}
712
713
714/* Wrapper to simple binary polynomial field division implementation. */
715int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
716	{
717	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
718	}
719
720#endif
721