ec2_smpl.c revision 656d9c7f52f88b3a3daccafa7655dec086c4756e
1/* crypto/ec/ec2_smpl.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16/* ====================================================================
17 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 *    notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 *    software must display the following acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 *    endorse or promote products derived from this software without
38 *    prior written permission. For written permission, please contact
39 *    openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 *    nor may "OpenSSL" appear in their names without prior written
43 *    permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 *    acknowledgment:
47 *    "This product includes software developed by the OpenSSL Project
48 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com).  This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/err.h>
71
72#include "ec_lcl.h"
73
74
75const EC_METHOD *EC_GF2m_simple_method(void)
76	{
77	static const EC_METHOD ret = {
78		NID_X9_62_characteristic_two_field,
79		ec_GF2m_simple_group_init,
80		ec_GF2m_simple_group_finish,
81		ec_GF2m_simple_group_clear_finish,
82		ec_GF2m_simple_group_copy,
83		ec_GF2m_simple_group_set_curve,
84		ec_GF2m_simple_group_get_curve,
85		ec_GF2m_simple_group_get_degree,
86		ec_GF2m_simple_group_check_discriminant,
87		ec_GF2m_simple_point_init,
88		ec_GF2m_simple_point_finish,
89		ec_GF2m_simple_point_clear_finish,
90		ec_GF2m_simple_point_copy,
91		ec_GF2m_simple_point_set_to_infinity,
92		0 /* set_Jprojective_coordinates_GFp */,
93		0 /* get_Jprojective_coordinates_GFp */,
94		ec_GF2m_simple_point_set_affine_coordinates,
95		ec_GF2m_simple_point_get_affine_coordinates,
96		ec_GF2m_simple_set_compressed_coordinates,
97		ec_GF2m_simple_point2oct,
98		ec_GF2m_simple_oct2point,
99		ec_GF2m_simple_add,
100		ec_GF2m_simple_dbl,
101		ec_GF2m_simple_invert,
102		ec_GF2m_simple_is_at_infinity,
103		ec_GF2m_simple_is_on_curve,
104		ec_GF2m_simple_cmp,
105		ec_GF2m_simple_make_affine,
106		ec_GF2m_simple_points_make_affine,
107
108		/* the following three method functions are defined in ec2_mult.c */
109		ec_GF2m_simple_mul,
110		ec_GF2m_precompute_mult,
111		ec_GF2m_have_precompute_mult,
112
113		ec_GF2m_simple_field_mul,
114		ec_GF2m_simple_field_sqr,
115		ec_GF2m_simple_field_div,
116		0 /* field_encode */,
117		0 /* field_decode */,
118		0 /* field_set_to_one */ };
119
120	return &ret;
121	}
122
123
124/* Initialize a GF(2^m)-based EC_GROUP structure.
125 * Note that all other members are handled by EC_GROUP_new.
126 */
127int ec_GF2m_simple_group_init(EC_GROUP *group)
128	{
129	BN_init(&group->field);
130	BN_init(&group->a);
131	BN_init(&group->b);
132	return 1;
133	}
134
135
136/* Free a GF(2^m)-based EC_GROUP structure.
137 * Note that all other members are handled by EC_GROUP_free.
138 */
139void ec_GF2m_simple_group_finish(EC_GROUP *group)
140	{
141	BN_free(&group->field);
142	BN_free(&group->a);
143	BN_free(&group->b);
144	}
145
146
147/* Clear and free a GF(2^m)-based EC_GROUP structure.
148 * Note that all other members are handled by EC_GROUP_clear_free.
149 */
150void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
151	{
152	BN_clear_free(&group->field);
153	BN_clear_free(&group->a);
154	BN_clear_free(&group->b);
155	group->poly[0] = 0;
156	group->poly[1] = 0;
157	group->poly[2] = 0;
158	group->poly[3] = 0;
159	group->poly[4] = 0;
160	}
161
162
163/* Copy a GF(2^m)-based EC_GROUP structure.
164 * Note that all other members are handled by EC_GROUP_copy.
165 */
166int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
167	{
168	int i;
169	if (!BN_copy(&dest->field, &src->field)) return 0;
170	if (!BN_copy(&dest->a, &src->a)) return 0;
171	if (!BN_copy(&dest->b, &src->b)) return 0;
172	dest->poly[0] = src->poly[0];
173	dest->poly[1] = src->poly[1];
174	dest->poly[2] = src->poly[2];
175	dest->poly[3] = src->poly[3];
176	dest->poly[4] = src->poly[4];
177	bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2);
178	bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2);
179	for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
180	for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
181	return 1;
182	}
183
184
185/* Set the curve parameters of an EC_GROUP structure. */
186int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
187	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
188	{
189	int ret = 0, i;
190
191	/* group->field */
192	if (!BN_copy(&group->field, p)) goto err;
193	i = BN_GF2m_poly2arr(&group->field, group->poly, 5);
194	if ((i != 5) && (i != 3))
195		{
196		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
197		goto err;
198		}
199
200	/* group->a */
201	if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
202	bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2);
203	for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
204
205	/* group->b */
206	if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
207	bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2);
208	for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
209
210	ret = 1;
211  err:
212	return ret;
213	}
214
215
216/* Get the curve parameters of an EC_GROUP structure.
217 * If p, a, or b are NULL then there values will not be set but the method will return with success.
218 */
219int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
220	{
221	int ret = 0;
222
223	if (p != NULL)
224		{
225		if (!BN_copy(p, &group->field)) return 0;
226		}
227
228	if (a != NULL)
229		{
230		if (!BN_copy(a, &group->a)) goto err;
231		}
232
233	if (b != NULL)
234		{
235		if (!BN_copy(b, &group->b)) goto err;
236		}
237
238	ret = 1;
239
240  err:
241	return ret;
242	}
243
244
245/* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
246int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
247	{
248	return BN_num_bits(&group->field)-1;
249	}
250
251
252/* Checks the discriminant of the curve.
253 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
254 */
255int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
256	{
257	int ret = 0;
258	BIGNUM *b;
259	BN_CTX *new_ctx = NULL;
260
261	if (ctx == NULL)
262		{
263		ctx = new_ctx = BN_CTX_new();
264		if (ctx == NULL)
265			{
266			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
267			goto err;
268			}
269		}
270	BN_CTX_start(ctx);
271	b = BN_CTX_get(ctx);
272	if (b == NULL) goto err;
273
274	if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
275
276	/* check the discriminant:
277	 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
278	 */
279	if (BN_is_zero(b)) goto err;
280
281	ret = 1;
282
283err:
284	if (ctx != NULL)
285		BN_CTX_end(ctx);
286	if (new_ctx != NULL)
287		BN_CTX_free(new_ctx);
288	return ret;
289	}
290
291
292/* Initializes an EC_POINT. */
293int ec_GF2m_simple_point_init(EC_POINT *point)
294	{
295	BN_init(&point->X);
296	BN_init(&point->Y);
297	BN_init(&point->Z);
298	return 1;
299	}
300
301
302/* Frees an EC_POINT. */
303void ec_GF2m_simple_point_finish(EC_POINT *point)
304	{
305	BN_free(&point->X);
306	BN_free(&point->Y);
307	BN_free(&point->Z);
308	}
309
310
311/* Clears and frees an EC_POINT. */
312void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
313	{
314	BN_clear_free(&point->X);
315	BN_clear_free(&point->Y);
316	BN_clear_free(&point->Z);
317	point->Z_is_one = 0;
318	}
319
320
321/* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
322int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
323	{
324	if (!BN_copy(&dest->X, &src->X)) return 0;
325	if (!BN_copy(&dest->Y, &src->Y)) return 0;
326	if (!BN_copy(&dest->Z, &src->Z)) return 0;
327	dest->Z_is_one = src->Z_is_one;
328
329	return 1;
330	}
331
332
333/* Set an EC_POINT to the point at infinity.
334 * A point at infinity is represented by having Z=0.
335 */
336int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
337	{
338	point->Z_is_one = 0;
339	BN_zero(&point->Z);
340	return 1;
341	}
342
343
344/* Set the coordinates of an EC_POINT using affine coordinates.
345 * Note that the simple implementation only uses affine coordinates.
346 */
347int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
348	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
349	{
350	int ret = 0;
351	if (x == NULL || y == NULL)
352		{
353		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
354		return 0;
355		}
356
357	if (!BN_copy(&point->X, x)) goto err;
358	BN_set_negative(&point->X, 0);
359	if (!BN_copy(&point->Y, y)) goto err;
360	BN_set_negative(&point->Y, 0);
361	if (!BN_copy(&point->Z, BN_value_one())) goto err;
362	BN_set_negative(&point->Z, 0);
363	point->Z_is_one = 1;
364	ret = 1;
365
366  err:
367	return ret;
368	}
369
370
371/* Gets the affine coordinates of an EC_POINT.
372 * Note that the simple implementation only uses affine coordinates.
373 */
374int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
375	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
376	{
377	int ret = 0;
378
379	if (EC_POINT_is_at_infinity(group, point))
380		{
381		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
382		return 0;
383		}
384
385	if (BN_cmp(&point->Z, BN_value_one()))
386		{
387		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
388		return 0;
389		}
390	if (x != NULL)
391		{
392		if (!BN_copy(x, &point->X)) goto err;
393		BN_set_negative(x, 0);
394		}
395	if (y != NULL)
396		{
397		if (!BN_copy(y, &point->Y)) goto err;
398		BN_set_negative(y, 0);
399		}
400	ret = 1;
401
402 err:
403	return ret;
404	}
405
406
407/* Include patented algorithms. */
408#include "ec2_smpt.c"
409
410
411/* Converts an EC_POINT to an octet string.
412 * If buf is NULL, the encoded length will be returned.
413 * If the length len of buf is smaller than required an error will be returned.
414 *
415 * The point compression section of this function is patented by Certicom Corp.
416 * under US Patent 6,141,420.  Point compression is disabled by default and can
417 * be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at
418 * Configure-time.
419 */
420size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form,
421	unsigned char *buf, size_t len, BN_CTX *ctx)
422	{
423	size_t ret;
424	BN_CTX *new_ctx = NULL;
425	int used_ctx = 0;
426	BIGNUM *x, *y, *yxi;
427	size_t field_len, i, skip;
428
429#ifndef OPENSSL_EC_BIN_PT_COMP
430	if ((form == POINT_CONVERSION_COMPRESSED) || (form == POINT_CONVERSION_HYBRID))
431		{
432		ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_DISABLED);
433		goto err;
434		}
435#endif
436
437	if ((form != POINT_CONVERSION_COMPRESSED)
438		&& (form != POINT_CONVERSION_UNCOMPRESSED)
439		&& (form != POINT_CONVERSION_HYBRID))
440		{
441		ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM);
442		goto err;
443		}
444
445	if (EC_POINT_is_at_infinity(group, point))
446		{
447		/* encodes to a single 0 octet */
448		if (buf != NULL)
449			{
450			if (len < 1)
451				{
452				ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
453				return 0;
454				}
455			buf[0] = 0;
456			}
457		return 1;
458		}
459
460
461	/* ret := required output buffer length */
462	field_len = (EC_GROUP_get_degree(group) + 7) / 8;
463	ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len;
464
465	/* if 'buf' is NULL, just return required length */
466	if (buf != NULL)
467		{
468		if (len < ret)
469			{
470			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
471			goto err;
472			}
473
474		if (ctx == NULL)
475			{
476			ctx = new_ctx = BN_CTX_new();
477			if (ctx == NULL)
478				return 0;
479			}
480
481		BN_CTX_start(ctx);
482		used_ctx = 1;
483		x = BN_CTX_get(ctx);
484		y = BN_CTX_get(ctx);
485		yxi = BN_CTX_get(ctx);
486		if (yxi == NULL) goto err;
487
488		if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
489
490		buf[0] = form;
491#ifdef OPENSSL_EC_BIN_PT_COMP
492		if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x))
493			{
494			if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err;
495			if (BN_is_odd(yxi)) buf[0]++;
496			}
497#endif
498
499		i = 1;
500
501		skip = field_len - BN_num_bytes(x);
502		if (skip > field_len)
503			{
504			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
505			goto err;
506			}
507		while (skip > 0)
508			{
509			buf[i++] = 0;
510			skip--;
511			}
512		skip = BN_bn2bin(x, buf + i);
513		i += skip;
514		if (i != 1 + field_len)
515			{
516			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
517			goto err;
518			}
519
520		if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID)
521			{
522			skip = field_len - BN_num_bytes(y);
523			if (skip > field_len)
524				{
525				ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
526				goto err;
527				}
528			while (skip > 0)
529				{
530				buf[i++] = 0;
531				skip--;
532				}
533			skip = BN_bn2bin(y, buf + i);
534			i += skip;
535			}
536
537		if (i != ret)
538			{
539			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
540			goto err;
541			}
542		}
543
544	if (used_ctx)
545		BN_CTX_end(ctx);
546	if (new_ctx != NULL)
547		BN_CTX_free(new_ctx);
548	return ret;
549
550 err:
551	if (used_ctx)
552		BN_CTX_end(ctx);
553	if (new_ctx != NULL)
554		BN_CTX_free(new_ctx);
555	return 0;
556	}
557
558
559/* Converts an octet string representation to an EC_POINT.
560 * Note that the simple implementation only uses affine coordinates.
561 */
562int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
563	const unsigned char *buf, size_t len, BN_CTX *ctx)
564	{
565	point_conversion_form_t form;
566	int y_bit;
567	BN_CTX *new_ctx = NULL;
568	BIGNUM *x, *y, *yxi;
569	size_t field_len, enc_len;
570	int ret = 0;
571
572	if (len == 0)
573		{
574		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL);
575		return 0;
576		}
577	form = buf[0];
578	y_bit = form & 1;
579	form = form & ~1U;
580	if ((form != 0)	&& (form != POINT_CONVERSION_COMPRESSED)
581		&& (form != POINT_CONVERSION_UNCOMPRESSED)
582		&& (form != POINT_CONVERSION_HYBRID))
583		{
584		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
585		return 0;
586		}
587	if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit)
588		{
589		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
590		return 0;
591		}
592
593	if (form == 0)
594		{
595		if (len != 1)
596			{
597			ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
598			return 0;
599			}
600
601		return EC_POINT_set_to_infinity(group, point);
602		}
603
604	field_len = (EC_GROUP_get_degree(group) + 7) / 8;
605	enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len;
606
607	if (len != enc_len)
608		{
609		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
610		return 0;
611		}
612
613	if (ctx == NULL)
614		{
615		ctx = new_ctx = BN_CTX_new();
616		if (ctx == NULL)
617			return 0;
618		}
619
620	BN_CTX_start(ctx);
621	x = BN_CTX_get(ctx);
622	y = BN_CTX_get(ctx);
623	yxi = BN_CTX_get(ctx);
624	if (yxi == NULL) goto err;
625
626	if (!BN_bin2bn(buf + 1, field_len, x)) goto err;
627	if (BN_ucmp(x, &group->field) >= 0)
628		{
629		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
630		goto err;
631		}
632
633	if (form == POINT_CONVERSION_COMPRESSED)
634		{
635		if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err;
636		}
637	else
638		{
639		if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err;
640		if (BN_ucmp(y, &group->field) >= 0)
641			{
642			ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
643			goto err;
644			}
645		if (form == POINT_CONVERSION_HYBRID)
646			{
647			if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err;
648			if (y_bit != BN_is_odd(yxi))
649				{
650				ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
651				goto err;
652				}
653			}
654
655		if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
656		}
657
658	if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */
659		{
660		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE);
661		goto err;
662		}
663
664	ret = 1;
665
666 err:
667	BN_CTX_end(ctx);
668	if (new_ctx != NULL)
669		BN_CTX_free(new_ctx);
670	return ret;
671	}
672
673
674/* Computes a + b and stores the result in r.  r could be a or b, a could be b.
675 * Uses algorithm A.10.2 of IEEE P1363.
676 */
677int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
678	{
679	BN_CTX *new_ctx = NULL;
680	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
681	int ret = 0;
682
683	if (EC_POINT_is_at_infinity(group, a))
684		{
685		if (!EC_POINT_copy(r, b)) return 0;
686		return 1;
687		}
688
689	if (EC_POINT_is_at_infinity(group, b))
690		{
691		if (!EC_POINT_copy(r, a)) return 0;
692		return 1;
693		}
694
695	if (ctx == NULL)
696		{
697		ctx = new_ctx = BN_CTX_new();
698		if (ctx == NULL)
699			return 0;
700		}
701
702	BN_CTX_start(ctx);
703	x0 = BN_CTX_get(ctx);
704	y0 = BN_CTX_get(ctx);
705	x1 = BN_CTX_get(ctx);
706	y1 = BN_CTX_get(ctx);
707	x2 = BN_CTX_get(ctx);
708	y2 = BN_CTX_get(ctx);
709	s = BN_CTX_get(ctx);
710	t = BN_CTX_get(ctx);
711	if (t == NULL) goto err;
712
713	if (a->Z_is_one)
714		{
715		if (!BN_copy(x0, &a->X)) goto err;
716		if (!BN_copy(y0, &a->Y)) goto err;
717		}
718	else
719		{
720		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
721		}
722	if (b->Z_is_one)
723		{
724		if (!BN_copy(x1, &b->X)) goto err;
725		if (!BN_copy(y1, &b->Y)) goto err;
726		}
727	else
728		{
729		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
730		}
731
732
733	if (BN_GF2m_cmp(x0, x1))
734		{
735		if (!BN_GF2m_add(t, x0, x1)) goto err;
736		if (!BN_GF2m_add(s, y0, y1)) goto err;
737		if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
738		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
739		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
740		if (!BN_GF2m_add(x2, x2, s)) goto err;
741		if (!BN_GF2m_add(x2, x2, t)) goto err;
742		}
743	else
744		{
745		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
746			{
747			if (!EC_POINT_set_to_infinity(group, r)) goto err;
748			ret = 1;
749			goto err;
750			}
751		if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
752		if (!BN_GF2m_add(s, s, x1)) goto err;
753
754		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
755		if (!BN_GF2m_add(x2, x2, s)) goto err;
756		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
757		}
758
759	if (!BN_GF2m_add(y2, x1, x2)) goto err;
760	if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
761	if (!BN_GF2m_add(y2, y2, x2)) goto err;
762	if (!BN_GF2m_add(y2, y2, y1)) goto err;
763
764	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
765
766	ret = 1;
767
768 err:
769	BN_CTX_end(ctx);
770	if (new_ctx != NULL)
771		BN_CTX_free(new_ctx);
772	return ret;
773	}
774
775
776/* Computes 2 * a and stores the result in r.  r could be a.
777 * Uses algorithm A.10.2 of IEEE P1363.
778 */
779int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
780	{
781	return ec_GF2m_simple_add(group, r, a, a, ctx);
782	}
783
784
785int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
786	{
787	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
788		/* point is its own inverse */
789		return 1;
790
791	if (!EC_POINT_make_affine(group, point, ctx)) return 0;
792	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
793	}
794
795
796/* Indicates whether the given point is the point at infinity. */
797int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
798	{
799	return BN_is_zero(&point->Z);
800	}
801
802
803/* Determines whether the given EC_POINT is an actual point on the curve defined
804 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
805 *      y^2 + x*y = x^3 + a*x^2 + b.
806 */
807int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
808	{
809	int ret = -1;
810	BN_CTX *new_ctx = NULL;
811	BIGNUM *lh, *y2;
812	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
813	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
814
815	if (EC_POINT_is_at_infinity(group, point))
816		return 1;
817
818	field_mul = group->meth->field_mul;
819	field_sqr = group->meth->field_sqr;
820
821	/* only support affine coordinates */
822	if (!point->Z_is_one) goto err;
823
824	if (ctx == NULL)
825		{
826		ctx = new_ctx = BN_CTX_new();
827		if (ctx == NULL)
828			return -1;
829		}
830
831	BN_CTX_start(ctx);
832	y2 = BN_CTX_get(ctx);
833	lh = BN_CTX_get(ctx);
834	if (lh == NULL) goto err;
835
836	/* We have a curve defined by a Weierstrass equation
837	 *      y^2 + x*y = x^3 + a*x^2 + b.
838	 *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
839	 *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
840	 */
841	if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
842	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
843	if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
844	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
845	if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
846	if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
847	if (!BN_GF2m_add(lh, lh, y2)) goto err;
848	ret = BN_is_zero(lh);
849 err:
850	if (ctx) BN_CTX_end(ctx);
851	if (new_ctx) BN_CTX_free(new_ctx);
852	return ret;
853	}
854
855
856/* Indicates whether two points are equal.
857 * Return values:
858 *  -1   error
859 *   0   equal (in affine coordinates)
860 *   1   not equal
861 */
862int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
863	{
864	BIGNUM *aX, *aY, *bX, *bY;
865	BN_CTX *new_ctx = NULL;
866	int ret = -1;
867
868	if (EC_POINT_is_at_infinity(group, a))
869		{
870		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
871		}
872
873	if (a->Z_is_one && b->Z_is_one)
874		{
875		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
876		}
877
878	if (ctx == NULL)
879		{
880		ctx = new_ctx = BN_CTX_new();
881		if (ctx == NULL)
882			return -1;
883		}
884
885	BN_CTX_start(ctx);
886	aX = BN_CTX_get(ctx);
887	aY = BN_CTX_get(ctx);
888	bX = BN_CTX_get(ctx);
889	bY = BN_CTX_get(ctx);
890	if (bY == NULL) goto err;
891
892	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
893	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
894	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
895
896  err:
897	if (ctx) BN_CTX_end(ctx);
898	if (new_ctx) BN_CTX_free(new_ctx);
899	return ret;
900	}
901
902
903/* Forces the given EC_POINT to internally use affine coordinates. */
904int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
905	{
906	BN_CTX *new_ctx = NULL;
907	BIGNUM *x, *y;
908	int ret = 0;
909
910	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
911		return 1;
912
913	if (ctx == NULL)
914		{
915		ctx = new_ctx = BN_CTX_new();
916		if (ctx == NULL)
917			return 0;
918		}
919
920	BN_CTX_start(ctx);
921	x = BN_CTX_get(ctx);
922	y = BN_CTX_get(ctx);
923	if (y == NULL) goto err;
924
925	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
926	if (!BN_copy(&point->X, x)) goto err;
927	if (!BN_copy(&point->Y, y)) goto err;
928	if (!BN_one(&point->Z)) goto err;
929
930	ret = 1;
931
932  err:
933	if (ctx) BN_CTX_end(ctx);
934	if (new_ctx) BN_CTX_free(new_ctx);
935	return ret;
936	}
937
938
939/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
940int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
941	{
942	size_t i;
943
944	for (i = 0; i < num; i++)
945		{
946		if (!group->meth->make_affine(group, points[i], ctx)) return 0;
947		}
948
949	return 1;
950	}
951
952
953/* Wrapper to simple binary polynomial field multiplication implementation. */
954int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
955	{
956	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
957	}
958
959
960/* Wrapper to simple binary polynomial field squaring implementation. */
961int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
962	{
963	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
964	}
965
966
967/* Wrapper to simple binary polynomial field division implementation. */
968int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
969	{
970	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
971	}
972