ec_mult.c revision bdfb8ad83da0647e9b9a32792598e8ce7ba3ef4d
1/* crypto/ec/ec_mult.c */
2/*
3 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4 */
5/* ====================================================================
6 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58/* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61 * and contributed to the OpenSSL project.
62 */
63
64#include <string.h>
65
66#include <openssl/err.h>
67
68#include "ec_lcl.h"
69
70
71/*
72 * This file implements the wNAF-based interleaving multi-exponentation method
73 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74 * for multiplication with precomputation, we use wNAF splitting
75 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76 */
77
78
79
80
81/* structure for precomputed multiples of the generator */
82typedef struct ec_pre_comp_st {
83	const EC_GROUP *group; /* parent EC_GROUP object */
84	size_t blocksize;      /* block size for wNAF splitting */
85	size_t numblocks;      /* max. number of blocks for which we have precomputation */
86	size_t w;              /* window size */
87	EC_POINT **points;     /* array with pre-calculated multiples of generator:
88	                        * 'num' pointers to EC_POINT objects followed by a NULL */
89	size_t num;            /* numblocks * 2^(w-1) */
90	int references;
91} EC_PRE_COMP;
92
93/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
94static void *ec_pre_comp_dup(void *);
95static void ec_pre_comp_free(void *);
96static void ec_pre_comp_clear_free(void *);
97
98static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
99	{
100	EC_PRE_COMP *ret = NULL;
101
102	if (!group)
103		return NULL;
104
105	ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
106	if (!ret)
107		{
108		ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
109		return ret;
110		}
111	ret->group = group;
112	ret->blocksize = 8; /* default */
113	ret->numblocks = 0;
114	ret->w = 4; /* default */
115	ret->points = NULL;
116	ret->num = 0;
117	ret->references = 1;
118	return ret;
119	}
120
121static void *ec_pre_comp_dup(void *src_)
122	{
123	EC_PRE_COMP *src = src_;
124
125	/* no need to actually copy, these objects never change! */
126
127	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
128
129	return src_;
130	}
131
132static void ec_pre_comp_free(void *pre_)
133	{
134	int i;
135	EC_PRE_COMP *pre = pre_;
136
137	if (!pre)
138		return;
139
140	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
141	if (i > 0)
142		return;
143
144	if (pre->points)
145		{
146		EC_POINT **p;
147
148		for (p = pre->points; *p != NULL; p++)
149			EC_POINT_free(*p);
150		OPENSSL_free(pre->points);
151		}
152	OPENSSL_free(pre);
153	}
154
155static void ec_pre_comp_clear_free(void *pre_)
156	{
157	int i;
158	EC_PRE_COMP *pre = pre_;
159
160	if (!pre)
161		return;
162
163	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
164	if (i > 0)
165		return;
166
167	if (pre->points)
168		{
169		EC_POINT **p;
170
171		for (p = pre->points; *p != NULL; p++)
172			EC_POINT_clear_free(*p);
173		OPENSSL_cleanse(pre->points, sizeof pre->points);
174		OPENSSL_free(pre->points);
175		}
176	OPENSSL_cleanse(pre, sizeof pre);
177	OPENSSL_free(pre);
178	}
179
180
181
182
183/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
184 * This is an array  r[]  of values that are either zero or odd with an
185 * absolute value less than  2^w  satisfying
186 *     scalar = \sum_j r[j]*2^j
187 * where at most one of any  w+1  consecutive digits is non-zero
188 * with the exception that the most significant digit may be only
189 * w-1 zeros away from that next non-zero digit.
190 */
191static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
192	{
193	int window_val;
194	int ok = 0;
195	signed char *r = NULL;
196	int sign = 1;
197	int bit, next_bit, mask;
198	size_t len = 0, j;
199
200	if (BN_is_zero(scalar))
201		{
202		r = OPENSSL_malloc(1);
203		if (!r)
204			{
205			ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
206			goto err;
207			}
208		r[0] = 0;
209		*ret_len = 1;
210		return r;
211		}
212
213	if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
214		{
215		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
216		goto err;
217		}
218	bit = 1 << w; /* at most 128 */
219	next_bit = bit << 1; /* at most 256 */
220	mask = next_bit - 1; /* at most 255 */
221
222	if (BN_is_negative(scalar))
223		{
224		sign = -1;
225		}
226
227	len = BN_num_bits(scalar);
228	r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
229	                              * (*ret_len will be set to the actual length, i.e. at most
230	                              * BN_num_bits(scalar) + 1) */
231	if (r == NULL)
232		{
233		ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
234		goto err;
235		}
236
237	if (scalar->d == NULL || scalar->top == 0)
238		{
239		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
240		goto err;
241		}
242	window_val = scalar->d[0] & mask;
243	j = 0;
244	while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
245		{
246		int digit = 0;
247
248		/* 0 <= window_val <= 2^(w+1) */
249
250		if (window_val & 1)
251			{
252			/* 0 < window_val < 2^(w+1) */
253
254			if (window_val & bit)
255				{
256				digit = window_val - next_bit; /* -2^w < digit < 0 */
257
258#if 1 /* modified wNAF */
259				if (j + w + 1 >= len)
260					{
261					/* special case for generating modified wNAFs:
262					 * no new bits will be added into window_val,
263					 * so using a positive digit here will decrease
264					 * the total length of the representation */
265
266					digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
267					}
268#endif
269				}
270			else
271				{
272				digit = window_val; /* 0 < digit < 2^w */
273				}
274
275			if (digit <= -bit || digit >= bit || !(digit & 1))
276				{
277				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
278				goto err;
279				}
280
281			window_val -= digit;
282
283			/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
284			 * for modified window NAFs, it may also be 2^w
285			 */
286			if (window_val != 0 && window_val != next_bit && window_val != bit)
287				{
288				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
289				goto err;
290				}
291			}
292
293		r[j++] = sign * digit;
294
295		window_val >>= 1;
296		window_val += bit * BN_is_bit_set(scalar, j + w);
297
298		if (window_val > next_bit)
299			{
300			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
301			goto err;
302			}
303		}
304
305	if (j > len + 1)
306		{
307		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
308		goto err;
309		}
310	len = j;
311	ok = 1;
312
313 err:
314	if (!ok)
315		{
316		OPENSSL_free(r);
317		r = NULL;
318		}
319	if (ok)
320		*ret_len = len;
321	return r;
322	}
323
324
325/* TODO: table should be optimised for the wNAF-based implementation,
326 *       sometimes smaller windows will give better performance
327 *       (thus the boundaries should be increased)
328 */
329#define EC_window_bits_for_scalar_size(b) \
330		((size_t) \
331		 ((b) >= 2000 ? 6 : \
332		  (b) >=  800 ? 5 : \
333		  (b) >=  300 ? 4 : \
334		  (b) >=   70 ? 3 : \
335		  (b) >=   20 ? 2 : \
336		  1))
337
338/* Compute
339 *      \sum scalars[i]*points[i],
340 * also including
341 *      scalar*generator
342 * in the addition if scalar != NULL
343 */
344int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
345	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
346	{
347	BN_CTX *new_ctx = NULL;
348	const EC_POINT *generator = NULL;
349	EC_POINT *tmp = NULL;
350	size_t totalnum;
351	size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
352	size_t pre_points_per_block = 0;
353	size_t i, j;
354	int k;
355	int r_is_inverted = 0;
356	int r_is_at_infinity = 1;
357	size_t *wsize = NULL; /* individual window sizes */
358	signed char **wNAF = NULL; /* individual wNAFs */
359	size_t *wNAF_len = NULL;
360	size_t max_len = 0;
361	size_t num_val;
362	EC_POINT **val = NULL; /* precomputation */
363	EC_POINT **v;
364	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
365	const EC_PRE_COMP *pre_comp = NULL;
366	int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
367	                     * i.e. precomputation is not available */
368	int ret = 0;
369
370	if (group->meth != r->meth)
371		{
372		ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
373		return 0;
374		}
375
376	if ((scalar == NULL) && (num == 0))
377		{
378		return EC_POINT_set_to_infinity(group, r);
379		}
380
381	for (i = 0; i < num; i++)
382		{
383		if (group->meth != points[i]->meth)
384			{
385			ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
386			return 0;
387			}
388		}
389
390	if (ctx == NULL)
391		{
392		ctx = new_ctx = BN_CTX_new();
393		if (ctx == NULL)
394			goto err;
395		}
396
397	if (scalar != NULL)
398		{
399		generator = EC_GROUP_get0_generator(group);
400		if (generator == NULL)
401			{
402			ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
403			goto err;
404			}
405
406		/* look if we can use precomputed multiples of generator */
407
408		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
409
410		if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
411			{
412			blocksize = pre_comp->blocksize;
413
414			/* determine maximum number of blocks that wNAF splitting may yield
415			 * (NB: maximum wNAF length is bit length plus one) */
416			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
417
418			/* we cannot use more blocks than we have precomputation for */
419			if (numblocks > pre_comp->numblocks)
420				numblocks = pre_comp->numblocks;
421
422			pre_points_per_block = 1u << (pre_comp->w - 1);
423
424			/* check that pre_comp looks sane */
425			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
426				{
427				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
428				goto err;
429				}
430			}
431		else
432			{
433			/* can't use precomputation */
434			pre_comp = NULL;
435			numblocks = 1;
436			num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
437			}
438		}
439
440	totalnum = num + numblocks;
441
442	wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
443	wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
444	wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
445	val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
446
447	if (!wsize || !wNAF_len || !wNAF || !val_sub)
448		{
449		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
450		goto err;
451		}
452
453	wNAF[0] = NULL;	/* preliminary pivot */
454
455	/* num_val will be the total number of temporarily precomputed points */
456	num_val = 0;
457
458	for (i = 0; i < num + num_scalar; i++)
459		{
460		size_t bits;
461
462		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
463		wsize[i] = EC_window_bits_for_scalar_size(bits);
464		num_val += 1u << (wsize[i] - 1);
465		wNAF[i + 1] = NULL; /* make sure we always have a pivot */
466		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
467		if (wNAF[i] == NULL)
468			goto err;
469		if (wNAF_len[i] > max_len)
470			max_len = wNAF_len[i];
471		}
472
473	if (numblocks)
474		{
475		/* we go here iff scalar != NULL */
476
477		if (pre_comp == NULL)
478			{
479			if (num_scalar != 1)
480				{
481				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
482				goto err;
483				}
484			/* we have already generated a wNAF for 'scalar' */
485			}
486		else
487			{
488			signed char *tmp_wNAF = NULL;
489			size_t tmp_len = 0;
490
491			if (num_scalar != 0)
492				{
493				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
494				goto err;
495				}
496
497			/* use the window size for which we have precomputation */
498			wsize[num] = pre_comp->w;
499			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
500			if (!tmp_wNAF)
501				goto err;
502
503			if (tmp_len <= max_len)
504				{
505				/* One of the other wNAFs is at least as long
506				 * as the wNAF belonging to the generator,
507				 * so wNAF splitting will not buy us anything. */
508
509				numblocks = 1;
510				totalnum = num + 1; /* don't use wNAF splitting */
511				wNAF[num] = tmp_wNAF;
512				wNAF[num + 1] = NULL;
513				wNAF_len[num] = tmp_len;
514				if (tmp_len > max_len)
515					max_len = tmp_len;
516				/* pre_comp->points starts with the points that we need here: */
517				val_sub[num] = pre_comp->points;
518				}
519			else
520				{
521				/* don't include tmp_wNAF directly into wNAF array
522				 * - use wNAF splitting and include the blocks */
523
524				signed char *pp;
525				EC_POINT **tmp_points;
526
527				if (tmp_len < numblocks * blocksize)
528					{
529					/* possibly we can do with fewer blocks than estimated */
530					numblocks = (tmp_len + blocksize - 1) / blocksize;
531					if (numblocks > pre_comp->numblocks)
532						{
533						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
534						goto err;
535						}
536					totalnum = num + numblocks;
537					}
538
539				/* split wNAF in 'numblocks' parts */
540				pp = tmp_wNAF;
541				tmp_points = pre_comp->points;
542
543				for (i = num; i < totalnum; i++)
544					{
545					if (i < totalnum - 1)
546						{
547						wNAF_len[i] = blocksize;
548						if (tmp_len < blocksize)
549							{
550							ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
551							goto err;
552							}
553						tmp_len -= blocksize;
554						}
555					else
556						/* last block gets whatever is left
557						 * (this could be more or less than 'blocksize'!) */
558						wNAF_len[i] = tmp_len;
559
560					wNAF[i + 1] = NULL;
561					wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
562					if (wNAF[i] == NULL)
563						{
564						ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
565						OPENSSL_free(tmp_wNAF);
566						goto err;
567						}
568					memcpy(wNAF[i], pp, wNAF_len[i]);
569					if (wNAF_len[i] > max_len)
570						max_len = wNAF_len[i];
571
572					if (*tmp_points == NULL)
573						{
574						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
575						OPENSSL_free(tmp_wNAF);
576						goto err;
577						}
578					val_sub[i] = tmp_points;
579					tmp_points += pre_points_per_block;
580					pp += blocksize;
581					}
582				OPENSSL_free(tmp_wNAF);
583				}
584			}
585		}
586
587	/* All points we precompute now go into a single array 'val'.
588	 * 'val_sub[i]' is a pointer to the subarray for the i-th point,
589	 * or to a subarray of 'pre_comp->points' if we already have precomputation. */
590	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
591	if (val == NULL)
592		{
593		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
594		goto err;
595		}
596	val[num_val] = NULL; /* pivot element */
597
598	/* allocate points for precomputation */
599	v = val;
600	for (i = 0; i < num + num_scalar; i++)
601		{
602		val_sub[i] = v;
603		for (j = 0; j < (1u << (wsize[i] - 1)); j++)
604			{
605			*v = EC_POINT_new(group);
606			if (*v == NULL) goto err;
607			v++;
608			}
609		}
610	if (!(v == val + num_val))
611		{
612		ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
613		goto err;
614		}
615
616	if (!(tmp = EC_POINT_new(group)))
617		goto err;
618
619	/* prepare precomputed values:
620	 *    val_sub[i][0] :=     points[i]
621	 *    val_sub[i][1] := 3 * points[i]
622	 *    val_sub[i][2] := 5 * points[i]
623	 *    ...
624	 */
625	for (i = 0; i < num + num_scalar; i++)
626		{
627		if (i < num)
628			{
629			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
630			}
631		else
632			{
633			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
634			}
635
636		if (wsize[i] > 1)
637			{
638			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
639			for (j = 1; j < (1u << (wsize[i] - 1)); j++)
640				{
641				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
642				}
643			}
644		}
645
646#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
647	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
648		goto err;
649#endif
650
651	r_is_at_infinity = 1;
652
653	for (k = max_len - 1; k >= 0; k--)
654		{
655		if (!r_is_at_infinity)
656			{
657			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
658			}
659
660		for (i = 0; i < totalnum; i++)
661			{
662			if (wNAF_len[i] > (size_t)k)
663				{
664				int digit = wNAF[i][k];
665				int is_neg;
666
667				if (digit)
668					{
669					is_neg = digit < 0;
670
671					if (is_neg)
672						digit = -digit;
673
674					if (is_neg != r_is_inverted)
675						{
676						if (!r_is_at_infinity)
677							{
678							if (!EC_POINT_invert(group, r, ctx)) goto err;
679							}
680						r_is_inverted = !r_is_inverted;
681						}
682
683					/* digit > 0 */
684
685					if (r_is_at_infinity)
686						{
687						if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
688						r_is_at_infinity = 0;
689						}
690					else
691						{
692						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
693						}
694					}
695				}
696			}
697		}
698
699	if (r_is_at_infinity)
700		{
701		if (!EC_POINT_set_to_infinity(group, r)) goto err;
702		}
703	else
704		{
705		if (r_is_inverted)
706			if (!EC_POINT_invert(group, r, ctx)) goto err;
707		}
708
709	ret = 1;
710
711 err:
712	if (new_ctx != NULL)
713		BN_CTX_free(new_ctx);
714	if (tmp != NULL)
715		EC_POINT_free(tmp);
716	if (wsize != NULL)
717		OPENSSL_free(wsize);
718	if (wNAF_len != NULL)
719		OPENSSL_free(wNAF_len);
720	if (wNAF != NULL)
721		{
722		signed char **w;
723
724		for (w = wNAF; *w != NULL; w++)
725			OPENSSL_free(*w);
726
727		OPENSSL_free(wNAF);
728		}
729	if (val != NULL)
730		{
731		for (v = val; *v != NULL; v++)
732			EC_POINT_clear_free(*v);
733
734		OPENSSL_free(val);
735		}
736	if (val_sub != NULL)
737		{
738		OPENSSL_free(val_sub);
739		}
740	return ret;
741	}
742
743
744/* ec_wNAF_precompute_mult()
745 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
746 * for use with wNAF splitting as implemented in ec_wNAF_mul().
747 *
748 * 'pre_comp->points' is an array of multiples of the generator
749 * of the following form:
750 * points[0] =     generator;
751 * points[1] = 3 * generator;
752 * ...
753 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
754 * points[2^(w-1)]   =     2^blocksize * generator;
755 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
756 * ...
757 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
758 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
759 * ...
760 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
761 * points[2^(w-1)*numblocks]       = NULL
762 */
763int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
764	{
765	const EC_POINT *generator;
766	EC_POINT *tmp_point = NULL, *base = NULL, **var;
767	BN_CTX *new_ctx = NULL;
768	BIGNUM *order;
769	size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
770	EC_POINT **points = NULL;
771	EC_PRE_COMP *pre_comp;
772	int ret = 0;
773
774	/* if there is an old EC_PRE_COMP object, throw it away */
775	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
776
777	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
778		return 0;
779
780	generator = EC_GROUP_get0_generator(group);
781	if (generator == NULL)
782		{
783		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
784		goto err;
785		}
786
787	if (ctx == NULL)
788		{
789		ctx = new_ctx = BN_CTX_new();
790		if (ctx == NULL)
791			goto err;
792		}
793
794	BN_CTX_start(ctx);
795	order = BN_CTX_get(ctx);
796	if (order == NULL) goto err;
797
798	if (!EC_GROUP_get_order(group, order, ctx)) goto err;
799	if (BN_is_zero(order))
800		{
801		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
802		goto err;
803		}
804
805	bits = BN_num_bits(order);
806	/* The following parameters mean we precompute (approximately)
807	 * one point per bit.
808	 *
809	 * TBD: The combination  8, 4  is perfect for 160 bits; for other
810	 * bit lengths, other parameter combinations might provide better
811	 * efficiency.
812	 */
813	blocksize = 8;
814	w = 4;
815	if (EC_window_bits_for_scalar_size(bits) > w)
816		{
817		/* let's not make the window too small ... */
818		w = EC_window_bits_for_scalar_size(bits);
819		}
820
821	numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
822
823	pre_points_per_block = 1u << (w - 1);
824	num = pre_points_per_block * numblocks; /* number of points to compute and store */
825
826	points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
827	if (!points)
828		{
829		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
830		goto err;
831		}
832
833	var = points;
834	var[num] = NULL; /* pivot */
835	for (i = 0; i < num; i++)
836		{
837		if ((var[i] = EC_POINT_new(group)) == NULL)
838			{
839			ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
840			goto err;
841			}
842		}
843
844	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
845		{
846		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
847		goto err;
848		}
849
850	if (!EC_POINT_copy(base, generator))
851		goto err;
852
853	/* do the precomputation */
854	for (i = 0; i < numblocks; i++)
855		{
856		size_t j;
857
858		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
859			goto err;
860
861		if (!EC_POINT_copy(*var++, base))
862			goto err;
863
864		for (j = 1; j < pre_points_per_block; j++, var++)
865			{
866			/* calculate odd multiples of the current base point */
867			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
868				goto err;
869			}
870
871		if (i < numblocks - 1)
872			{
873			/* get the next base (multiply current one by 2^blocksize) */
874			size_t k;
875
876			if (blocksize <= 2)
877				{
878				ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
879				goto err;
880				}
881
882			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
883				goto err;
884			for (k = 2; k < blocksize; k++)
885				{
886				if (!EC_POINT_dbl(group,base,base,ctx))
887					goto err;
888				}
889			}
890 		}
891
892	if (!EC_POINTs_make_affine(group, num, points, ctx))
893		goto err;
894
895	pre_comp->group = group;
896	pre_comp->blocksize = blocksize;
897	pre_comp->numblocks = numblocks;
898	pre_comp->w = w;
899	pre_comp->points = points;
900	points = NULL;
901	pre_comp->num = num;
902
903	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
904		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
905		goto err;
906	pre_comp = NULL;
907
908	ret = 1;
909 err:
910	if (ctx != NULL)
911		BN_CTX_end(ctx);
912	if (new_ctx != NULL)
913		BN_CTX_free(new_ctx);
914	if (pre_comp)
915		ec_pre_comp_free(pre_comp);
916	if (points)
917		{
918		EC_POINT **p;
919
920		for (p = points; *p != NULL; p++)
921			EC_POINT_free(*p);
922		OPENSSL_free(points);
923		}
924	if (tmp_point)
925		EC_POINT_free(tmp_point);
926	if (base)
927		EC_POINT_free(base);
928	return ret;
929	}
930
931
932int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
933	{
934	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
935		return 1;
936	else
937		return 0;
938	}
939