ecp_smpl.c revision 392aa7cc7d2b122614c5393c3e357da07fd07af3
1/* crypto/ec/ecp_smpl.c */
2/* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * for the OpenSSL project.
4 * Includes code written by Bodo Moeller for the OpenSSL project.
5*/
6/* ====================================================================
7 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in
18 *    the documentation and/or other materials provided with the
19 *    distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 *    software must display the following acknowledgment:
23 *    "This product includes software developed by the OpenSSL Project
24 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 *    endorse or promote products derived from this software without
28 *    prior written permission. For written permission, please contact
29 *    openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 *    nor may "OpenSSL" appear in their names without prior written
33 *    permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 *    acknowledgment:
37 *    "This product includes software developed by the OpenSSL Project
38 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ====================================================================
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com).  This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59/* ====================================================================
60 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
61 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
62 * and contributed to the OpenSSL project.
63 */
64
65#include <openssl/err.h>
66#include <openssl/symhacks.h>
67
68#ifdef OPENSSL_FIPS
69#include <openssl/fips.h>
70#endif
71
72#include "ec_lcl.h"
73
74const EC_METHOD *EC_GFp_simple_method(void)
75	{
76#ifdef OPENSSL_FIPS
77	return fips_ec_gfp_simple_method();
78#else
79	static const EC_METHOD ret = {
80		EC_FLAGS_DEFAULT_OCT,
81		NID_X9_62_prime_field,
82		ec_GFp_simple_group_init,
83		ec_GFp_simple_group_finish,
84		ec_GFp_simple_group_clear_finish,
85		ec_GFp_simple_group_copy,
86		ec_GFp_simple_group_set_curve,
87		ec_GFp_simple_group_get_curve,
88		ec_GFp_simple_group_get_degree,
89		ec_GFp_simple_group_check_discriminant,
90		ec_GFp_simple_point_init,
91		ec_GFp_simple_point_finish,
92		ec_GFp_simple_point_clear_finish,
93		ec_GFp_simple_point_copy,
94		ec_GFp_simple_point_set_to_infinity,
95		ec_GFp_simple_set_Jprojective_coordinates_GFp,
96		ec_GFp_simple_get_Jprojective_coordinates_GFp,
97		ec_GFp_simple_point_set_affine_coordinates,
98		ec_GFp_simple_point_get_affine_coordinates,
99		0,0,0,
100		ec_GFp_simple_add,
101		ec_GFp_simple_dbl,
102		ec_GFp_simple_invert,
103		ec_GFp_simple_is_at_infinity,
104		ec_GFp_simple_is_on_curve,
105		ec_GFp_simple_cmp,
106		ec_GFp_simple_make_affine,
107		ec_GFp_simple_points_make_affine,
108		0 /* mul */,
109		0 /* precompute_mult */,
110		0 /* have_precompute_mult */,
111		ec_GFp_simple_field_mul,
112		ec_GFp_simple_field_sqr,
113		0 /* field_div */,
114		0 /* field_encode */,
115		0 /* field_decode */,
116		0 /* field_set_to_one */ };
117
118	return &ret;
119#endif
120	}
121
122
123/* Most method functions in this file are designed to work with
124 * non-trivial representations of field elements if necessary
125 * (see ecp_mont.c): while standard modular addition and subtraction
126 * are used, the field_mul and field_sqr methods will be used for
127 * multiplication, and field_encode and field_decode (if defined)
128 * will be used for converting between representations.
129
130 * Functions ec_GFp_simple_points_make_affine() and
131 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
132 * that if a non-trivial representation is used, it is a Montgomery
133 * representation (i.e. 'encoding' means multiplying by some factor R).
134 */
135
136
137int ec_GFp_simple_group_init(EC_GROUP *group)
138	{
139	BN_init(&group->field);
140	BN_init(&group->a);
141	BN_init(&group->b);
142	group->a_is_minus3 = 0;
143	return 1;
144	}
145
146
147void ec_GFp_simple_group_finish(EC_GROUP *group)
148	{
149	BN_free(&group->field);
150	BN_free(&group->a);
151	BN_free(&group->b);
152	}
153
154
155void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
156	{
157	BN_clear_free(&group->field);
158	BN_clear_free(&group->a);
159	BN_clear_free(&group->b);
160	}
161
162
163int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
164	{
165	if (!BN_copy(&dest->field, &src->field)) return 0;
166	if (!BN_copy(&dest->a, &src->a)) return 0;
167	if (!BN_copy(&dest->b, &src->b)) return 0;
168
169	dest->a_is_minus3 = src->a_is_minus3;
170
171	return 1;
172	}
173
174
175int ec_GFp_simple_group_set_curve(EC_GROUP *group,
176	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
177	{
178	int ret = 0;
179	BN_CTX *new_ctx = NULL;
180	BIGNUM *tmp_a;
181
182	/* p must be a prime > 3 */
183	if (BN_num_bits(p) <= 2 || !BN_is_odd(p))
184		{
185		ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
186		return 0;
187		}
188
189	if (ctx == NULL)
190		{
191		ctx = new_ctx = BN_CTX_new();
192		if (ctx == NULL)
193			return 0;
194		}
195
196	BN_CTX_start(ctx);
197	tmp_a = BN_CTX_get(ctx);
198	if (tmp_a == NULL) goto err;
199
200	/* group->field */
201	if (!BN_copy(&group->field, p)) goto err;
202	BN_set_negative(&group->field, 0);
203
204	/* group->a */
205	if (!BN_nnmod(tmp_a, a, p, ctx)) goto err;
206	if (group->meth->field_encode)
207		{ if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; }
208	else
209		if (!BN_copy(&group->a, tmp_a)) goto err;
210
211	/* group->b */
212	if (!BN_nnmod(&group->b, b, p, ctx)) goto err;
213	if (group->meth->field_encode)
214		if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err;
215
216	/* group->a_is_minus3 */
217	if (!BN_add_word(tmp_a, 3)) goto err;
218	group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
219
220	ret = 1;
221
222 err:
223	BN_CTX_end(ctx);
224	if (new_ctx != NULL)
225		BN_CTX_free(new_ctx);
226	return ret;
227	}
228
229
230int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
231	{
232	int ret = 0;
233	BN_CTX *new_ctx = NULL;
234
235	if (p != NULL)
236		{
237		if (!BN_copy(p, &group->field)) return 0;
238		}
239
240	if (a != NULL || b != NULL)
241		{
242		if (group->meth->field_decode)
243			{
244			if (ctx == NULL)
245				{
246				ctx = new_ctx = BN_CTX_new();
247				if (ctx == NULL)
248					return 0;
249				}
250			if (a != NULL)
251				{
252				if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
253				}
254			if (b != NULL)
255				{
256				if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
257				}
258			}
259		else
260			{
261			if (a != NULL)
262				{
263				if (!BN_copy(a, &group->a)) goto err;
264				}
265			if (b != NULL)
266				{
267				if (!BN_copy(b, &group->b)) goto err;
268				}
269			}
270		}
271
272	ret = 1;
273
274 err:
275	if (new_ctx)
276		BN_CTX_free(new_ctx);
277	return ret;
278	}
279
280
281int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
282	{
283	return BN_num_bits(&group->field);
284	}
285
286
287int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
288	{
289	int ret = 0;
290	BIGNUM *a,*b,*order,*tmp_1,*tmp_2;
291	const BIGNUM *p = &group->field;
292	BN_CTX *new_ctx = NULL;
293
294	if (ctx == NULL)
295		{
296		ctx = new_ctx = BN_CTX_new();
297		if (ctx == NULL)
298			{
299			ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
300			goto err;
301			}
302		}
303	BN_CTX_start(ctx);
304	a = BN_CTX_get(ctx);
305	b = BN_CTX_get(ctx);
306	tmp_1 = BN_CTX_get(ctx);
307	tmp_2 = BN_CTX_get(ctx);
308	order = BN_CTX_get(ctx);
309	if (order == NULL) goto err;
310
311	if (group->meth->field_decode)
312		{
313		if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
314		if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
315		}
316	else
317		{
318		if (!BN_copy(a, &group->a)) goto err;
319		if (!BN_copy(b, &group->b)) goto err;
320		}
321
322	/* check the discriminant:
323	 * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
324         * 0 =< a, b < p */
325	if (BN_is_zero(a))
326		{
327		if (BN_is_zero(b)) goto err;
328		}
329	else if (!BN_is_zero(b))
330		{
331		if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err;
332		if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err;
333		if (!BN_lshift(tmp_1, tmp_2, 2)) goto err;
334		/* tmp_1 = 4*a^3 */
335
336		if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err;
337		if (!BN_mul_word(tmp_2, 27)) goto err;
338		/* tmp_2 = 27*b^2 */
339
340		if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err;
341		if (BN_is_zero(a)) goto err;
342		}
343	ret = 1;
344
345err:
346	if (ctx != NULL)
347		BN_CTX_end(ctx);
348	if (new_ctx != NULL)
349		BN_CTX_free(new_ctx);
350	return ret;
351	}
352
353
354int ec_GFp_simple_point_init(EC_POINT *point)
355	{
356	BN_init(&point->X);
357	BN_init(&point->Y);
358	BN_init(&point->Z);
359	point->Z_is_one = 0;
360
361	return 1;
362	}
363
364
365void ec_GFp_simple_point_finish(EC_POINT *point)
366	{
367	BN_free(&point->X);
368	BN_free(&point->Y);
369	BN_free(&point->Z);
370	}
371
372
373void ec_GFp_simple_point_clear_finish(EC_POINT *point)
374	{
375	BN_clear_free(&point->X);
376	BN_clear_free(&point->Y);
377	BN_clear_free(&point->Z);
378	point->Z_is_one = 0;
379	}
380
381
382int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
383	{
384	if (!BN_copy(&dest->X, &src->X)) return 0;
385	if (!BN_copy(&dest->Y, &src->Y)) return 0;
386	if (!BN_copy(&dest->Z, &src->Z)) return 0;
387	dest->Z_is_one = src->Z_is_one;
388
389	return 1;
390	}
391
392
393int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
394	{
395	point->Z_is_one = 0;
396	BN_zero(&point->Z);
397	return 1;
398	}
399
400
401int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
402	const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx)
403	{
404	BN_CTX *new_ctx = NULL;
405	int ret = 0;
406
407	if (ctx == NULL)
408		{
409		ctx = new_ctx = BN_CTX_new();
410		if (ctx == NULL)
411			return 0;
412		}
413
414	if (x != NULL)
415		{
416		if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err;
417		if (group->meth->field_encode)
418			{
419			if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err;
420			}
421		}
422
423	if (y != NULL)
424		{
425		if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err;
426		if (group->meth->field_encode)
427			{
428			if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err;
429			}
430		}
431
432	if (z != NULL)
433		{
434		int Z_is_one;
435
436		if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err;
437		Z_is_one = BN_is_one(&point->Z);
438		if (group->meth->field_encode)
439			{
440			if (Z_is_one && (group->meth->field_set_to_one != 0))
441				{
442				if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err;
443				}
444			else
445				{
446				if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err;
447				}
448			}
449		point->Z_is_one = Z_is_one;
450		}
451
452	ret = 1;
453
454 err:
455	if (new_ctx != NULL)
456		BN_CTX_free(new_ctx);
457	return ret;
458	}
459
460
461int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point,
462	BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
463	{
464	BN_CTX *new_ctx = NULL;
465	int ret = 0;
466
467	if (group->meth->field_decode != 0)
468		{
469		if (ctx == NULL)
470			{
471			ctx = new_ctx = BN_CTX_new();
472			if (ctx == NULL)
473				return 0;
474			}
475
476		if (x != NULL)
477			{
478			if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
479			}
480		if (y != NULL)
481			{
482			if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
483			}
484		if (z != NULL)
485			{
486			if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err;
487			}
488		}
489	else
490		{
491		if (x != NULL)
492			{
493			if (!BN_copy(x, &point->X)) goto err;
494			}
495		if (y != NULL)
496			{
497			if (!BN_copy(y, &point->Y)) goto err;
498			}
499		if (z != NULL)
500			{
501			if (!BN_copy(z, &point->Z)) goto err;
502			}
503		}
504
505	ret = 1;
506
507 err:
508	if (new_ctx != NULL)
509		BN_CTX_free(new_ctx);
510	return ret;
511	}
512
513
514int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
515	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
516	{
517	if (x == NULL || y == NULL)
518		{
519		/* unlike for projective coordinates, we do not tolerate this */
520		ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
521		return 0;
522		}
523
524	return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx);
525	}
526
527
528int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
529	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
530	{
531	BN_CTX *new_ctx = NULL;
532	BIGNUM *Z, *Z_1, *Z_2, *Z_3;
533	const BIGNUM *Z_;
534	int ret = 0;
535
536	if (EC_POINT_is_at_infinity(group, point))
537		{
538		ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
539		return 0;
540		}
541
542	if (ctx == NULL)
543		{
544		ctx = new_ctx = BN_CTX_new();
545		if (ctx == NULL)
546			return 0;
547		}
548
549	BN_CTX_start(ctx);
550	Z = BN_CTX_get(ctx);
551	Z_1 = BN_CTX_get(ctx);
552	Z_2 = BN_CTX_get(ctx);
553	Z_3 = BN_CTX_get(ctx);
554	if (Z_3 == NULL) goto err;
555
556	/* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
557
558	if (group->meth->field_decode)
559		{
560		if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err;
561		Z_ = Z;
562		}
563	else
564		{
565		Z_ = &point->Z;
566		}
567
568	if (BN_is_one(Z_))
569		{
570		if (group->meth->field_decode)
571			{
572			if (x != NULL)
573				{
574				if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
575				}
576			if (y != NULL)
577				{
578				if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
579				}
580			}
581		else
582			{
583			if (x != NULL)
584				{
585				if (!BN_copy(x, &point->X)) goto err;
586				}
587			if (y != NULL)
588				{
589				if (!BN_copy(y, &point->Y)) goto err;
590				}
591			}
592		}
593	else
594		{
595		if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx))
596			{
597			ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB);
598			goto err;
599			}
600
601		if (group->meth->field_encode == 0)
602			{
603			/* field_sqr works on standard representation */
604			if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err;
605			}
606		else
607			{
608			if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err;
609			}
610
611		if (x != NULL)
612			{
613			/* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */
614			if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err;
615			}
616
617		if (y != NULL)
618			{
619			if (group->meth->field_encode == 0)
620				{
621				/* field_mul works on standard representation */
622				if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err;
623				}
624			else
625				{
626				if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err;
627				}
628
629			/* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */
630			if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err;
631			}
632		}
633
634	ret = 1;
635
636 err:
637	BN_CTX_end(ctx);
638	if (new_ctx != NULL)
639		BN_CTX_free(new_ctx);
640	return ret;
641	}
642
643int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
644	{
645	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
646	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
647	const BIGNUM *p;
648	BN_CTX *new_ctx = NULL;
649	BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
650	int ret = 0;
651
652	if (a == b)
653		return EC_POINT_dbl(group, r, a, ctx);
654	if (EC_POINT_is_at_infinity(group, a))
655		return EC_POINT_copy(r, b);
656	if (EC_POINT_is_at_infinity(group, b))
657		return EC_POINT_copy(r, a);
658
659	field_mul = group->meth->field_mul;
660	field_sqr = group->meth->field_sqr;
661	p = &group->field;
662
663	if (ctx == NULL)
664		{
665		ctx = new_ctx = BN_CTX_new();
666		if (ctx == NULL)
667			return 0;
668		}
669
670	BN_CTX_start(ctx);
671	n0 = BN_CTX_get(ctx);
672	n1 = BN_CTX_get(ctx);
673	n2 = BN_CTX_get(ctx);
674	n3 = BN_CTX_get(ctx);
675	n4 = BN_CTX_get(ctx);
676	n5 = BN_CTX_get(ctx);
677	n6 = BN_CTX_get(ctx);
678	if (n6 == NULL) goto end;
679
680	/* Note that in this function we must not read components of 'a' or 'b'
681	 * once we have written the corresponding components of 'r'.
682	 * ('r' might be one of 'a' or 'b'.)
683	 */
684
685	/* n1, n2 */
686	if (b->Z_is_one)
687		{
688		if (!BN_copy(n1, &a->X)) goto end;
689		if (!BN_copy(n2, &a->Y)) goto end;
690		/* n1 = X_a */
691		/* n2 = Y_a */
692		}
693	else
694		{
695		if (!field_sqr(group, n0, &b->Z, ctx)) goto end;
696		if (!field_mul(group, n1, &a->X, n0, ctx)) goto end;
697		/* n1 = X_a * Z_b^2 */
698
699		if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end;
700		if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end;
701		/* n2 = Y_a * Z_b^3 */
702		}
703
704	/* n3, n4 */
705	if (a->Z_is_one)
706		{
707		if (!BN_copy(n3, &b->X)) goto end;
708		if (!BN_copy(n4, &b->Y)) goto end;
709		/* n3 = X_b */
710		/* n4 = Y_b */
711		}
712	else
713		{
714		if (!field_sqr(group, n0, &a->Z, ctx)) goto end;
715		if (!field_mul(group, n3, &b->X, n0, ctx)) goto end;
716		/* n3 = X_b * Z_a^2 */
717
718		if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end;
719		if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end;
720		/* n4 = Y_b * Z_a^3 */
721		}
722
723	/* n5, n6 */
724	if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end;
725	if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end;
726	/* n5 = n1 - n3 */
727	/* n6 = n2 - n4 */
728
729	if (BN_is_zero(n5))
730		{
731		if (BN_is_zero(n6))
732			{
733			/* a is the same point as b */
734			BN_CTX_end(ctx);
735			ret = EC_POINT_dbl(group, r, a, ctx);
736			ctx = NULL;
737			goto end;
738			}
739		else
740			{
741			/* a is the inverse of b */
742			BN_zero(&r->Z);
743			r->Z_is_one = 0;
744			ret = 1;
745			goto end;
746			}
747		}
748
749	/* 'n7', 'n8' */
750	if (!BN_mod_add_quick(n1, n1, n3, p)) goto end;
751	if (!BN_mod_add_quick(n2, n2, n4, p)) goto end;
752	/* 'n7' = n1 + n3 */
753	/* 'n8' = n2 + n4 */
754
755	/* Z_r */
756	if (a->Z_is_one && b->Z_is_one)
757		{
758		if (!BN_copy(&r->Z, n5)) goto end;
759		}
760	else
761		{
762		if (a->Z_is_one)
763			{ if (!BN_copy(n0, &b->Z)) goto end; }
764		else if (b->Z_is_one)
765			{ if (!BN_copy(n0, &a->Z)) goto end; }
766		else
767			{ if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; }
768		if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end;
769		}
770	r->Z_is_one = 0;
771	/* Z_r = Z_a * Z_b * n5 */
772
773	/* X_r */
774	if (!field_sqr(group, n0, n6, ctx)) goto end;
775	if (!field_sqr(group, n4, n5, ctx)) goto end;
776	if (!field_mul(group, n3, n1, n4, ctx)) goto end;
777	if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end;
778	/* X_r = n6^2 - n5^2 * 'n7' */
779
780	/* 'n9' */
781	if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end;
782	if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end;
783	/* n9 = n5^2 * 'n7' - 2 * X_r */
784
785	/* Y_r */
786	if (!field_mul(group, n0, n0, n6, ctx)) goto end;
787	if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */
788	if (!field_mul(group, n1, n2, n5, ctx)) goto end;
789	if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end;
790	if (BN_is_odd(n0))
791		if (!BN_add(n0, n0, p)) goto end;
792	/* now  0 <= n0 < 2*p,  and n0 is even */
793	if (!BN_rshift1(&r->Y, n0)) goto end;
794	/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
795
796	ret = 1;
797
798 end:
799	if (ctx) /* otherwise we already called BN_CTX_end */
800		BN_CTX_end(ctx);
801	if (new_ctx != NULL)
802		BN_CTX_free(new_ctx);
803	return ret;
804	}
805
806
807int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
808	{
809	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
810	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
811	const BIGNUM *p;
812	BN_CTX *new_ctx = NULL;
813	BIGNUM *n0, *n1, *n2, *n3;
814	int ret = 0;
815
816	if (EC_POINT_is_at_infinity(group, a))
817		{
818		BN_zero(&r->Z);
819		r->Z_is_one = 0;
820		return 1;
821		}
822
823	field_mul = group->meth->field_mul;
824	field_sqr = group->meth->field_sqr;
825	p = &group->field;
826
827	if (ctx == NULL)
828		{
829		ctx = new_ctx = BN_CTX_new();
830		if (ctx == NULL)
831			return 0;
832		}
833
834	BN_CTX_start(ctx);
835	n0 = BN_CTX_get(ctx);
836	n1 = BN_CTX_get(ctx);
837	n2 = BN_CTX_get(ctx);
838	n3 = BN_CTX_get(ctx);
839	if (n3 == NULL) goto err;
840
841	/* Note that in this function we must not read components of 'a'
842	 * once we have written the corresponding components of 'r'.
843	 * ('r' might the same as 'a'.)
844	 */
845
846	/* n1 */
847	if (a->Z_is_one)
848		{
849		if (!field_sqr(group, n0, &a->X, ctx)) goto err;
850		if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
851		if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
852		if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err;
853		/* n1 = 3 * X_a^2 + a_curve */
854		}
855	else if (group->a_is_minus3)
856		{
857		if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
858		if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err;
859		if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err;
860		if (!field_mul(group, n1, n0, n2, ctx)) goto err;
861		if (!BN_mod_lshift1_quick(n0, n1, p)) goto err;
862		if (!BN_mod_add_quick(n1, n0, n1, p)) goto err;
863		/* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
864		 *    = 3 * X_a^2 - 3 * Z_a^4 */
865		}
866	else
867		{
868		if (!field_sqr(group, n0, &a->X, ctx)) goto err;
869		if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
870		if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
871		if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
872		if (!field_sqr(group, n1, n1, ctx)) goto err;
873		if (!field_mul(group, n1, n1, &group->a, ctx)) goto err;
874		if (!BN_mod_add_quick(n1, n1, n0, p)) goto err;
875		/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
876		}
877
878	/* Z_r */
879	if (a->Z_is_one)
880		{
881		if (!BN_copy(n0, &a->Y)) goto err;
882		}
883	else
884		{
885		if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err;
886		}
887	if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err;
888	r->Z_is_one = 0;
889	/* Z_r = 2 * Y_a * Z_a */
890
891	/* n2 */
892	if (!field_sqr(group, n3, &a->Y, ctx)) goto err;
893	if (!field_mul(group, n2, &a->X, n3, ctx)) goto err;
894	if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err;
895	/* n2 = 4 * X_a * Y_a^2 */
896
897	/* X_r */
898	if (!BN_mod_lshift1_quick(n0, n2, p)) goto err;
899	if (!field_sqr(group, &r->X, n1, ctx)) goto err;
900	if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err;
901	/* X_r = n1^2 - 2 * n2 */
902
903	/* n3 */
904	if (!field_sqr(group, n0, n3, ctx)) goto err;
905	if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err;
906	/* n3 = 8 * Y_a^4 */
907
908	/* Y_r */
909	if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err;
910	if (!field_mul(group, n0, n1, n0, ctx)) goto err;
911	if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err;
912	/* Y_r = n1 * (n2 - X_r) - n3 */
913
914	ret = 1;
915
916 err:
917	BN_CTX_end(ctx);
918	if (new_ctx != NULL)
919		BN_CTX_free(new_ctx);
920	return ret;
921	}
922
923
924int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
925	{
926	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
927		/* point is its own inverse */
928		return 1;
929
930	return BN_usub(&point->Y, &group->field, &point->Y);
931	}
932
933
934int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
935	{
936	return BN_is_zero(&point->Z);
937	}
938
939
940int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
941	{
942	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
943	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
944	const BIGNUM *p;
945	BN_CTX *new_ctx = NULL;
946	BIGNUM *rh, *tmp, *Z4, *Z6;
947	int ret = -1;
948
949	if (EC_POINT_is_at_infinity(group, point))
950		return 1;
951
952	field_mul = group->meth->field_mul;
953	field_sqr = group->meth->field_sqr;
954	p = &group->field;
955
956	if (ctx == NULL)
957		{
958		ctx = new_ctx = BN_CTX_new();
959		if (ctx == NULL)
960			return -1;
961		}
962
963	BN_CTX_start(ctx);
964	rh = BN_CTX_get(ctx);
965	tmp = BN_CTX_get(ctx);
966	Z4 = BN_CTX_get(ctx);
967	Z6 = BN_CTX_get(ctx);
968	if (Z6 == NULL) goto err;
969
970	/* We have a curve defined by a Weierstrass equation
971	 *      y^2 = x^3 + a*x + b.
972	 * The point to consider is given in Jacobian projective coordinates
973	 * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
974	 * Substituting this and multiplying by  Z^6  transforms the above equation into
975	 *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
976	 * To test this, we add up the right-hand side in 'rh'.
977	 */
978
979	/* rh := X^2 */
980	if (!field_sqr(group, rh, &point->X, ctx)) goto err;
981
982	if (!point->Z_is_one)
983		{
984		if (!field_sqr(group, tmp, &point->Z, ctx)) goto err;
985		if (!field_sqr(group, Z4, tmp, ctx)) goto err;
986		if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err;
987
988		/* rh := (rh + a*Z^4)*X */
989		if (group->a_is_minus3)
990			{
991			if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err;
992			if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err;
993			if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err;
994			if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
995			}
996		else
997			{
998			if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err;
999			if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
1000			if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
1001			}
1002
1003		/* rh := rh + b*Z^6 */
1004		if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err;
1005		if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
1006		}
1007	else
1008		{
1009		/* point->Z_is_one */
1010
1011		/* rh := (rh + a)*X */
1012		if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err;
1013		if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
1014		/* rh := rh + b */
1015		if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err;
1016		}
1017
1018	/* 'lh' := Y^2 */
1019	if (!field_sqr(group, tmp, &point->Y, ctx)) goto err;
1020
1021	ret = (0 == BN_ucmp(tmp, rh));
1022
1023 err:
1024	BN_CTX_end(ctx);
1025	if (new_ctx != NULL)
1026		BN_CTX_free(new_ctx);
1027	return ret;
1028	}
1029
1030
1031int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
1032	{
1033	/* return values:
1034	 *  -1   error
1035	 *   0   equal (in affine coordinates)
1036	 *   1   not equal
1037	 */
1038
1039	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
1040	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1041	BN_CTX *new_ctx = NULL;
1042	BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1043	const BIGNUM *tmp1_, *tmp2_;
1044	int ret = -1;
1045
1046	if (EC_POINT_is_at_infinity(group, a))
1047		{
1048		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1049		}
1050
1051	if (EC_POINT_is_at_infinity(group, b))
1052		return 1;
1053
1054	if (a->Z_is_one && b->Z_is_one)
1055		{
1056		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
1057		}
1058
1059	field_mul = group->meth->field_mul;
1060	field_sqr = group->meth->field_sqr;
1061
1062	if (ctx == NULL)
1063		{
1064		ctx = new_ctx = BN_CTX_new();
1065		if (ctx == NULL)
1066			return -1;
1067		}
1068
1069	BN_CTX_start(ctx);
1070	tmp1 = BN_CTX_get(ctx);
1071	tmp2 = BN_CTX_get(ctx);
1072	Za23 = BN_CTX_get(ctx);
1073	Zb23 = BN_CTX_get(ctx);
1074	if (Zb23 == NULL) goto end;
1075
1076	/* We have to decide whether
1077	 *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1078	 * or equivalently, whether
1079	 *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1080	 */
1081
1082	if (!b->Z_is_one)
1083		{
1084		if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end;
1085		if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end;
1086		tmp1_ = tmp1;
1087		}
1088	else
1089		tmp1_ = &a->X;
1090	if (!a->Z_is_one)
1091		{
1092		if (!field_sqr(group, Za23, &a->Z, ctx)) goto end;
1093		if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end;
1094		tmp2_ = tmp2;
1095		}
1096	else
1097		tmp2_ = &b->X;
1098
1099	/* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1100	if (BN_cmp(tmp1_, tmp2_) != 0)
1101		{
1102		ret = 1; /* points differ */
1103		goto end;
1104		}
1105
1106
1107	if (!b->Z_is_one)
1108		{
1109		if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end;
1110		if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end;
1111		/* tmp1_ = tmp1 */
1112		}
1113	else
1114		tmp1_ = &a->Y;
1115	if (!a->Z_is_one)
1116		{
1117		if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end;
1118		if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end;
1119		/* tmp2_ = tmp2 */
1120		}
1121	else
1122		tmp2_ = &b->Y;
1123
1124	/* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1125	if (BN_cmp(tmp1_, tmp2_) != 0)
1126		{
1127		ret = 1; /* points differ */
1128		goto end;
1129		}
1130
1131	/* points are equal */
1132	ret = 0;
1133
1134 end:
1135	BN_CTX_end(ctx);
1136	if (new_ctx != NULL)
1137		BN_CTX_free(new_ctx);
1138	return ret;
1139	}
1140
1141
1142int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
1143	{
1144	BN_CTX *new_ctx = NULL;
1145	BIGNUM *x, *y;
1146	int ret = 0;
1147
1148	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1149		return 1;
1150
1151	if (ctx == NULL)
1152		{
1153		ctx = new_ctx = BN_CTX_new();
1154		if (ctx == NULL)
1155			return 0;
1156		}
1157
1158	BN_CTX_start(ctx);
1159	x = BN_CTX_get(ctx);
1160	y = BN_CTX_get(ctx);
1161	if (y == NULL) goto err;
1162
1163	if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
1164	if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
1165	if (!point->Z_is_one)
1166		{
1167		ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
1168		goto err;
1169		}
1170
1171	ret = 1;
1172
1173 err:
1174	BN_CTX_end(ctx);
1175	if (new_ctx != NULL)
1176		BN_CTX_free(new_ctx);
1177	return ret;
1178	}
1179
1180
1181int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
1182	{
1183	BN_CTX *new_ctx = NULL;
1184	BIGNUM *tmp0, *tmp1;
1185	size_t pow2 = 0;
1186	BIGNUM **heap = NULL;
1187	size_t i;
1188	int ret = 0;
1189
1190	if (num == 0)
1191		return 1;
1192
1193	if (ctx == NULL)
1194		{
1195		ctx = new_ctx = BN_CTX_new();
1196		if (ctx == NULL)
1197			return 0;
1198		}
1199
1200	BN_CTX_start(ctx);
1201	tmp0 = BN_CTX_get(ctx);
1202	tmp1 = BN_CTX_get(ctx);
1203	if (tmp0  == NULL || tmp1 == NULL) goto err;
1204
1205	/* Before converting the individual points, compute inverses of all Z values.
1206	 * Modular inversion is rather slow, but luckily we can do with a single
1207	 * explicit inversion, plus about 3 multiplications per input value.
1208	 */
1209
1210	pow2 = 1;
1211	while (num > pow2)
1212		pow2 <<= 1;
1213	/* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
1214	 * We need twice that. */
1215	pow2 <<= 1;
1216
1217	heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
1218	if (heap == NULL) goto err;
1219
1220	/* The array is used as a binary tree, exactly as in heapsort:
1221	 *
1222	 *                               heap[1]
1223	 *                 heap[2]                     heap[3]
1224	 *          heap[4]       heap[5]       heap[6]       heap[7]
1225	 *   heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
1226	 *
1227	 * We put the Z's in the last line;
1228	 * then we set each other node to the product of its two child-nodes (where
1229	 * empty or 0 entries are treated as ones);
1230	 * then we invert heap[1];
1231	 * then we invert each other node by replacing it by the product of its
1232	 * parent (after inversion) and its sibling (before inversion).
1233	 */
1234	heap[0] = NULL;
1235	for (i = pow2/2 - 1; i > 0; i--)
1236		heap[i] = NULL;
1237	for (i = 0; i < num; i++)
1238		heap[pow2/2 + i] = &points[i]->Z;
1239	for (i = pow2/2 + num; i < pow2; i++)
1240		heap[i] = NULL;
1241
1242	/* set each node to the product of its children */
1243	for (i = pow2/2 - 1; i > 0; i--)
1244		{
1245		heap[i] = BN_new();
1246		if (heap[i] == NULL) goto err;
1247
1248		if (heap[2*i] != NULL)
1249			{
1250			if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1]))
1251				{
1252				if (!BN_copy(heap[i], heap[2*i])) goto err;
1253				}
1254			else
1255				{
1256				if (BN_is_zero(heap[2*i]))
1257					{
1258					if (!BN_copy(heap[i], heap[2*i + 1])) goto err;
1259					}
1260				else
1261					{
1262					if (!group->meth->field_mul(group, heap[i],
1263						heap[2*i], heap[2*i + 1], ctx)) goto err;
1264					}
1265				}
1266			}
1267		}
1268
1269	/* invert heap[1] */
1270	if (!BN_is_zero(heap[1]))
1271		{
1272		if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx))
1273			{
1274			ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
1275			goto err;
1276			}
1277		}
1278	if (group->meth->field_encode != 0)
1279		{
1280		/* in the Montgomery case, we just turned  R*H  (representing H)
1281		 * into  1/(R*H),  but we need  R*(1/H)  (representing 1/H);
1282		 * i.e. we have need to multiply by the Montgomery factor twice */
1283		if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
1284		if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
1285		}
1286
1287	/* set other heap[i]'s to their inverses */
1288	for (i = 2; i < pow2/2 + num; i += 2)
1289		{
1290		/* i is even */
1291		if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1]))
1292			{
1293			if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err;
1294			if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err;
1295			if (!BN_copy(heap[i], tmp0)) goto err;
1296			if (!BN_copy(heap[i + 1], tmp1)) goto err;
1297			}
1298		else
1299			{
1300			if (!BN_copy(heap[i], heap[i/2])) goto err;
1301			}
1302		}
1303
1304	/* we have replaced all non-zero Z's by their inverses, now fix up all the points */
1305	for (i = 0; i < num; i++)
1306		{
1307		EC_POINT *p = points[i];
1308
1309		if (!BN_is_zero(&p->Z))
1310			{
1311			/* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1312
1313			if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err;
1314			if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err;
1315
1316			if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err;
1317			if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err;
1318
1319			if (group->meth->field_set_to_one != 0)
1320				{
1321				if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err;
1322				}
1323			else
1324				{
1325				if (!BN_one(&p->Z)) goto err;
1326				}
1327			p->Z_is_one = 1;
1328			}
1329		}
1330
1331	ret = 1;
1332
1333 err:
1334	BN_CTX_end(ctx);
1335	if (new_ctx != NULL)
1336		BN_CTX_free(new_ctx);
1337	if (heap != NULL)
1338		{
1339		/* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
1340		for (i = pow2/2 - 1; i > 0; i--)
1341			{
1342			if (heap[i] != NULL)
1343				BN_clear_free(heap[i]);
1344			}
1345		OPENSSL_free(heap);
1346		}
1347	return ret;
1348	}
1349
1350
1351int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1352	{
1353	return BN_mod_mul(r, a, b, &group->field, ctx);
1354	}
1355
1356
1357int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
1358	{
1359	return BN_mod_sqr(r, a, &group->field, ctx);
1360	}
1361