rc4-x86_64.pl revision e45f106cb6b47af1f21efe76e933bdea2f5dd1ca
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
11# "hand-coded assembler"] doesn't stand for the whole improvement
12# coefficient. It turned out that eliminating RC4_CHAR from config
13# line results in ~40% improvement (yes, even for C implementation).
14# Presumably it has everything to do with AMD cache architecture and
15# RAW or whatever penalties. Once again! The module *requires* config
16# line *without* RC4_CHAR! As for coding "secret," I bet on partial
17# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
18# I simply 'inc %r8b'. Even though optimization manual discourages
19# to operate on partial registers, it turned out to be the best bet.
20# At least for AMD... How IA32E would perform remains to be seen...
21
22# As was shown by Marc Bevand reordering of couple of load operations
23# results in even higher performance gain of 3.3x:-) At least on
24# Opteron... For reference, 1x in this case is RC4_CHAR C-code
25# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
26# Latter means that if you want to *estimate* what to expect from
27# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
28
29# Intel P4 EM64T core was found to run the AMD64 code really slow...
30# The only way to achieve comparable performance on P4 was to keep
31# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
32# compose blended code, which would perform even within 30% marginal
33# on either AMD and Intel platforms, I implement both cases. See
34# rc4_skey.c for further details...
35
36# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
37# those with add/sub results in 50% performance improvement of folded
38# loop...
39
40# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
41# performance by >30% [unlike P4 32-bit case that is]. But this is
42# provided that loads are reordered even more aggressively! Both code
43# pathes, AMD64 and EM64T, reorder loads in essentially same manner
44# as my IA-64 implementation. On Opteron this resulted in modest 5%
45# improvement [I had to test it], while final Intel P4 performance
46# achieves respectful 432MBps on 2.8GHz processor now. For reference.
47# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
48# RC4_INT code-path. While if executed on Opteron, it's only 25%
49# slower than the RC4_INT one [meaning that if CPU �-arch detection
50# is not implemented, then this final RC4_CHAR code-path should be
51# preferred, as it provides better *all-round* performance].
52
53# Intel Core2 was observed to perform poorly on both code paths:-( It
54# apparently suffers from some kind of partial register stall, which
55# occurs in 64-bit mode only [as virtually identical 32-bit loop was
56# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
57# cloop1 boosts its performance by 80%! This loop appears to be optimal
58# fit for Core2 and therefore the code was modified to skip cloop8 on
59# this CPU.
60
61$output=shift;
62
63$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
65( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
66die "can't locate x86_64-xlate.pl";
67
68open STDOUT,"| $^X $xlate $output";
69
70$dat="%rdi";	    # arg1
71$len="%rsi";	    # arg2
72$inp="%rdx";	    # arg3
73$out="%rcx";	    # arg4
74
75@XX=("%r8","%r10");
76@TX=("%r9","%r11");
77$YY="%r12";
78$TY="%r13";
79
80$code=<<___;
81.text
82
83.globl	RC4
84.type	RC4,\@function,4
85.align	16
86RC4:	or	$len,$len
87	jne	.Lentry
88	ret
89.Lentry:
90	push	%r12
91	push	%r13
92
93	add	\$8,$dat
94	movl	-8($dat),$XX[0]#d
95	movl	-4($dat),$YY#d
96	cmpl	\$-1,256($dat)
97	je	.LRC4_CHAR
98	inc	$XX[0]#b
99	movl	($dat,$XX[0],4),$TX[0]#d
100	test	\$-8,$len
101	jz	.Lloop1
102	jmp	.Lloop8
103.align	16
104.Lloop8:
105___
106for ($i=0;$i<8;$i++) {
107$code.=<<___;
108	add	$TX[0]#b,$YY#b
109	mov	$XX[0],$XX[1]
110	movl	($dat,$YY,4),$TY#d
111	ror	\$8,%rax			# ror is redundant when $i=0
112	inc	$XX[1]#b
113	movl	($dat,$XX[1],4),$TX[1]#d
114	cmp	$XX[1],$YY
115	movl	$TX[0]#d,($dat,$YY,4)
116	cmove	$TX[0],$TX[1]
117	movl	$TY#d,($dat,$XX[0],4)
118	add	$TX[0]#b,$TY#b
119	movb	($dat,$TY,4),%al
120___
121push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
122}
123$code.=<<___;
124	ror	\$8,%rax
125	sub	\$8,$len
126
127	xor	($inp),%rax
128	add	\$8,$inp
129	mov	%rax,($out)
130	add	\$8,$out
131
132	test	\$-8,$len
133	jnz	.Lloop8
134	cmp	\$0,$len
135	jne	.Lloop1
136___
137$code.=<<___;
138.Lexit:
139	sub	\$1,$XX[0]#b
140	movl	$XX[0]#d,-8($dat)
141	movl	$YY#d,-4($dat)
142
143	pop	%r13
144	pop	%r12
145	ret
146.align	16
147.Lloop1:
148	add	$TX[0]#b,$YY#b
149	movl	($dat,$YY,4),$TY#d
150	movl	$TX[0]#d,($dat,$YY,4)
151	movl	$TY#d,($dat,$XX[0],4)
152	add	$TY#b,$TX[0]#b
153	inc	$XX[0]#b
154	movl	($dat,$TX[0],4),$TY#d
155	movl	($dat,$XX[0],4),$TX[0]#d
156	xorb	($inp),$TY#b
157	inc	$inp
158	movb	$TY#b,($out)
159	inc	$out
160	dec	$len
161	jnz	.Lloop1
162	jmp	.Lexit
163
164.align	16
165.LRC4_CHAR:
166	add	\$1,$XX[0]#b
167	movzb	($dat,$XX[0]),$TX[0]#d
168	test	\$-8,$len
169	jz	.Lcloop1
170	cmp	\$0,260($dat)
171	jnz	.Lcloop1
172	push	%rbx
173	jmp	.Lcloop8
174.align	16
175.Lcloop8:
176	mov	($inp),%eax
177	mov	4($inp),%ebx
178___
179# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
180for ($i=0;$i<4;$i++) {
181$code.=<<___;
182	add	$TX[0]#b,$YY#b
183	lea	1($XX[0]),$XX[1]
184	movzb	($dat,$YY),$TY#d
185	movzb	$XX[1]#b,$XX[1]#d
186	movzb	($dat,$XX[1]),$TX[1]#d
187	movb	$TX[0]#b,($dat,$YY)
188	cmp	$XX[1],$YY
189	movb	$TY#b,($dat,$XX[0])
190	jne	.Lcmov$i			# Intel cmov is sloooow...
191	mov	$TX[0],$TX[1]
192.Lcmov$i:
193	add	$TX[0]#b,$TY#b
194	xor	($dat,$TY),%al
195	ror	\$8,%eax
196___
197push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
198}
199for ($i=4;$i<8;$i++) {
200$code.=<<___;
201	add	$TX[0]#b,$YY#b
202	lea	1($XX[0]),$XX[1]
203	movzb	($dat,$YY),$TY#d
204	movzb	$XX[1]#b,$XX[1]#d
205	movzb	($dat,$XX[1]),$TX[1]#d
206	movb	$TX[0]#b,($dat,$YY)
207	cmp	$XX[1],$YY
208	movb	$TY#b,($dat,$XX[0])
209	jne	.Lcmov$i			# Intel cmov is sloooow...
210	mov	$TX[0],$TX[1]
211.Lcmov$i:
212	add	$TX[0]#b,$TY#b
213	xor	($dat,$TY),%bl
214	ror	\$8,%ebx
215___
216push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
217}
218$code.=<<___;
219	lea	-8($len),$len
220	mov	%eax,($out)
221	lea	8($inp),$inp
222	mov	%ebx,4($out)
223	lea	8($out),$out
224
225	test	\$-8,$len
226	jnz	.Lcloop8
227	pop	%rbx
228	cmp	\$0,$len
229	jne	.Lcloop1
230	jmp	.Lexit
231___
232$code.=<<___;
233.align	16
234.Lcloop1:
235	add	$TX[0]#b,$YY#b
236	movzb	($dat,$YY),$TY#d
237	movb	$TX[0]#b,($dat,$YY)
238	movb	$TY#b,($dat,$XX[0])
239	add	$TX[0]#b,$TY#b
240	add	\$1,$XX[0]#b
241	movzb	$TY#b,$TY#d
242	movzb	$XX[0]#b,$XX[0]#d
243	movzb	($dat,$TY),$TY#d
244	movzb	($dat,$XX[0]),$TX[0]#d
245	xorb	($inp),$TY#b
246	lea	1($inp),$inp
247	movb	$TY#b,($out)
248	lea	1($out),$out
249	sub	\$1,$len
250	jnz	.Lcloop1
251	jmp	.Lexit
252.size	RC4,.-RC4
253___
254
255$idx="%r8";
256$ido="%r9";
257
258$code.=<<___;
259.extern	OPENSSL_ia32cap_P
260.globl	RC4_set_key
261.type	RC4_set_key,\@function,3
262.align	16
263RC4_set_key:
264	lea	8($dat),$dat
265	lea	($inp,$len),$inp
266	neg	$len
267	mov	$len,%rcx
268	xor	%eax,%eax
269	xor	$ido,$ido
270	xor	%r10,%r10
271	xor	%r11,%r11
272
273	mov	OPENSSL_ia32cap_P(%rip),$idx#d
274	bt	\$20,$idx#d
275	jnc	.Lw1stloop
276	bt	\$30,$idx#d
277	setc	$ido#b
278	mov	$ido#d,260($dat)
279	jmp	.Lc1stloop
280
281.align	16
282.Lw1stloop:
283	mov	%eax,($dat,%rax,4)
284	add	\$1,%al
285	jnc	.Lw1stloop
286
287	xor	$ido,$ido
288	xor	$idx,$idx
289.align	16
290.Lw2ndloop:
291	mov	($dat,$ido,4),%r10d
292	add	($inp,$len,1),$idx#b
293	add	%r10b,$idx#b
294	add	\$1,$len
295	mov	($dat,$idx,4),%r11d
296	cmovz	%rcx,$len
297	mov	%r10d,($dat,$idx,4)
298	mov	%r11d,($dat,$ido,4)
299	add	\$1,$ido#b
300	jnc	.Lw2ndloop
301	jmp	.Lexit_key
302
303.align	16
304.Lc1stloop:
305	mov	%al,($dat,%rax)
306	add	\$1,%al
307	jnc	.Lc1stloop
308
309	xor	$ido,$ido
310	xor	$idx,$idx
311.align	16
312.Lc2ndloop:
313	mov	($dat,$ido),%r10b
314	add	($inp,$len),$idx#b
315	add	%r10b,$idx#b
316	add	\$1,$len
317	mov	($dat,$idx),%r11b
318	jnz	.Lcnowrap
319	mov	%rcx,$len
320.Lcnowrap:
321	mov	%r10b,($dat,$idx)
322	mov	%r11b,($dat,$ido)
323	add	\$1,$ido#b
324	jnc	.Lc2ndloop
325	movl	\$-1,256($dat)
326
327.align	16
328.Lexit_key:
329	xor	%eax,%eax
330	mov	%eax,-8($dat)
331	mov	%eax,-4($dat)
332	ret
333.size	RC4_set_key,.-RC4_set_key
334
335.globl	RC4_options
336.type	RC4_options,\@function,0
337.align	16
338RC4_options:
339	.picmeup %rax
340	lea	.Lopts-.(%rax),%rax
341	mov	OPENSSL_ia32cap_P(%rip),%edx
342	bt	\$20,%edx
343	jnc	.Ldone
344	add	\$12,%rax
345	bt	\$30,%edx
346	jnc	.Ldone
347	add	\$13,%rax
348.Ldone:
349	ret
350.align	64
351.Lopts:
352.asciz	"rc4(8x,int)"
353.asciz	"rc4(8x,char)"
354.asciz	"rc4(1x,char)"
355.asciz	"RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
356.align	64
357.size	RC4_options,.-RC4_options
358___
359
360$code =~ s/#([bwd])/$1/gm;
361
362$code =~ s/RC4_set_key/private_RC4_set_key/g if ($ENV{FIPSCANLIB} ne "");
363
364print $code;
365
366close STDOUT;
367