sha1-586.pl revision 656d9c7f52f88b3a3daccafa7655dec086c4756e
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# It was noted that Intel IA-32 C compiler generates code which
16# performs ~30% *faster* on P4 CPU than original *hand-coded*
17# SHA1 assembler implementation. To address this problem (and
18# prove that humans are still better than machines:-), the
19# original code was overhauled, which resulted in following
20# performance changes:
21#
22#		compared with original	compared with Intel cc
23#		assembler impl.		generated code
24# Pentium	-16%			+48%
25# PIII/AMD	+8%			+16%
26# P4		+85%(!)			+45%
27#
28# As you can see Pentium came out as looser:-( Yet I reckoned that
29# improvement on P4 outweights the loss and incorporate this
30# re-tuned code to 0.9.7 and later.
31# ----------------------------------------------------------------
32#					<appro@fy.chalmers.se>
33
34$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35push(@INC,"${dir}","${dir}../../perlasm");
36require "x86asm.pl";
37
38&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
39
40$A="eax";
41$B="ebx";
42$C="ecx";
43$D="edx";
44$E="edi";
45$T="esi";
46$tmp1="ebp";
47
48@V=($A,$B,$C,$D,$E,$T);
49
50sub BODY_00_15
51	{
52	local($n,$a,$b,$c,$d,$e,$f)=@_;
53
54	&comment("00_15 $n");
55
56	&mov($f,$c);			# f to hold F_00_19(b,c,d)
57	 if ($n==0)  { &mov($tmp1,$a); }
58	 else        { &mov($a,$tmp1); }
59	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
60	 &xor($f,$d);
61	&add($tmp1,$e);			# tmp1+=e;
62	 &and($f,$b);
63	&mov($e,&swtmp($n%16));		# e becomes volatile and is loaded
64	 				# with xi, also note that e becomes
65					# f in next round...
66	 &xor($f,$d);			# f holds F_00_19(b,c,d)
67	&rotr($b,2);			# b=ROTATE(b,30)
68	 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
69
70	if ($n==15) { &add($f,$tmp1); }	# f+=tmp1
71	else        { &add($tmp1,$f); }	# f becomes a in next round
72	}
73
74sub BODY_16_19
75	{
76	local($n,$a,$b,$c,$d,$e,$f)=@_;
77
78	&comment("16_19 $n");
79
80	&mov($f,&swtmp($n%16));		# f to hold Xupdate(xi,xa,xb,xc,xd)
81	 &mov($tmp1,$c);		# tmp1 to hold F_00_19(b,c,d)
82	&xor($f,&swtmp(($n+2)%16));
83	 &xor($tmp1,$d);
84	&xor($f,&swtmp(($n+8)%16));
85	 &and($tmp1,$b);		# tmp1 holds F_00_19(b,c,d)
86	&rotr($b,2);			# b=ROTATE(b,30)
87	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
88	&rotl($f,1);			# f=ROTATE(f,1)
89	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
90	&mov(&swtmp($n%16),$f);		# xi=f
91	&lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e
92	 &mov($e,$a);			# e becomes volatile
93	&rotl($e,5);			# e=ROTATE(a,5)
94	 &add($f,$tmp1);		# f+=F_00_19(b,c,d)
95	&add($f,$e);			# f+=ROTATE(a,5)
96	}
97
98sub BODY_20_39
99	{
100	local($n,$a,$b,$c,$d,$e,$f)=@_;
101	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
102
103	&comment("20_39 $n");
104
105	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
106	 &mov($f,&swtmp($n%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
107	&rotr($b,2);			# b=ROTATE(b,30)
108	 &xor($f,&swtmp(($n+2)%16));
109	&xor($tmp1,$c);
110	 &xor($f,&swtmp(($n+8)%16));
111	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
112	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
113	&rotl($f,1);			# f=ROTATE(f,1)
114	 &add($tmp1,$e);
115	&mov(&swtmp($n%16),$f);		# xi=f
116	 &mov($e,$a);			# e becomes volatile
117	&rotl($e,5);			# e=ROTATE(a,5)
118	 &lea($f,&DWP($K,$f,$tmp1));	# f+=K_20_39+e
119	&add($f,$e);			# f+=ROTATE(a,5)
120	}
121
122sub BODY_40_59
123	{
124	local($n,$a,$b,$c,$d,$e,$f)=@_;
125
126	&comment("40_59 $n");
127
128	&mov($f,&swtmp($n%16));		# f to hold Xupdate(xi,xa,xb,xc,xd)
129	 &mov($tmp1,&swtmp(($n+2)%16));
130	&xor($f,$tmp1);
131	 &mov($tmp1,&swtmp(($n+8)%16));
132	&xor($f,$tmp1);
133	 &mov($tmp1,&swtmp(($n+13)%16));
134	&xor($f,$tmp1);			# f holds xa^xb^xc^xd
135	 &mov($tmp1,$b);		# tmp1 to hold F_40_59(b,c,d)
136	&rotl($f,1);			# f=ROTATE(f,1)
137	 &or($tmp1,$c);
138	&mov(&swtmp($n%16),$f);		# xi=f
139	 &and($tmp1,$d);
140	&lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e
141	 &mov($e,$b);			# e becomes volatile and is used
142					# to calculate F_40_59(b,c,d)
143	&rotr($b,2);			# b=ROTATE(b,30)
144	 &and($e,$c);
145	&or($tmp1,$e);			# tmp1 holds F_40_59(b,c,d)
146	 &mov($e,$a);
147	&rotl($e,5);			# e=ROTATE(a,5)
148	 &add($f,$tmp1);		# f+=tmp1;
149	&add($f,$e);			# f+=ROTATE(a,5)
150	}
151
152&function_begin("sha1_block_data_order",16);
153	&mov($tmp1,&wparam(0));	# SHA_CTX *c
154	&mov($T,&wparam(1));	# const void *input
155	&mov($A,&wparam(2));	# size_t num
156	&stack_push(16);	# allocate X[16]
157	&shl($A,6);
158	&add($A,$T);
159	&mov(&wparam(2),$A);	# pointer beyond the end of input
160	&mov($E,&DWP(16,$tmp1));# pre-load E
161
162	&set_label("loop",16);
163
164	# copy input chunk to X, but reversing byte order!
165	for ($i=0; $i<16; $i+=4)
166		{
167		&mov($A,&DWP(4*($i+0),$T));
168		&mov($B,&DWP(4*($i+1),$T));
169		&mov($C,&DWP(4*($i+2),$T));
170		&mov($D,&DWP(4*($i+3),$T));
171		&bswap($A);
172		&bswap($B);
173		&bswap($C);
174		&bswap($D);
175		&mov(&swtmp($i+0),$A);
176		&mov(&swtmp($i+1),$B);
177		&mov(&swtmp($i+2),$C);
178		&mov(&swtmp($i+3),$D);
179		}
180	&mov(&wparam(1),$T);	# redundant in 1st spin
181
182	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
183	&mov($B,&DWP(4,$tmp1));
184	&mov($C,&DWP(8,$tmp1));
185	&mov($D,&DWP(12,$tmp1));
186	# E is pre-loaded
187
188	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
189	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
190	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
191	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
192	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
193
194	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
195
196	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
197	&mov($D,&wparam(1));	# D is last "T" and is discarded
198
199	&add($E,&DWP(0,$tmp1));	# E is last "A"...
200	&add($T,&DWP(4,$tmp1));
201	&add($A,&DWP(8,$tmp1));
202	&add($B,&DWP(12,$tmp1));
203	&add($C,&DWP(16,$tmp1));
204
205	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
206	 &add($D,64);		# advance input pointer
207	&mov(&DWP(4,$tmp1),$T);
208	 &cmp($D,&wparam(2));	# have we reached the end yet?
209	&mov(&DWP(8,$tmp1),$A);
210	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
211	&mov(&DWP(12,$tmp1),$B);
212	 &mov($T,$D);		# input pointer
213	&mov(&DWP(16,$tmp1),$C);
214	&jb(&label("loop"));
215
216	&stack_pop(16);
217&function_end("sha1_block_data_order");
218
219&asm_finish();
220