sha256.c revision 04ef91b390dfcc6125913e2f2af502d23d7a5112
1/* crypto/sha/sha256.c */
2/* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
7#include <openssl/opensslconf.h>
8#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9
10#include <stdlib.h>
11#include <string.h>
12
13#include <openssl/crypto.h>
14#include <openssl/sha.h>
15#include <openssl/opensslv.h>
16
17const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
18
19fips_md_init_ctx(SHA224, SHA256)
20	{
21	memset (c,0,sizeof(*c));
22	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
23	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
24	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
25	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
26	c->md_len=SHA224_DIGEST_LENGTH;
27	return 1;
28	}
29
30fips_md_init(SHA256)
31	{
32	memset (c,0,sizeof(*c));
33	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
34	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
35	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
36	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
37	c->md_len=SHA256_DIGEST_LENGTH;
38	return 1;
39	}
40
41unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
42	{
43	SHA256_CTX c;
44	static unsigned char m[SHA224_DIGEST_LENGTH];
45
46	if (md == NULL) md=m;
47	SHA224_Init(&c);
48	SHA256_Update(&c,d,n);
49	SHA256_Final(md,&c);
50	OPENSSL_cleanse(&c,sizeof(c));
51	return(md);
52	}
53
54unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
55	{
56	SHA256_CTX c;
57	static unsigned char m[SHA256_DIGEST_LENGTH];
58
59	if (md == NULL) md=m;
60	SHA256_Init(&c);
61	SHA256_Update(&c,d,n);
62	SHA256_Final(md,&c);
63	OPENSSL_cleanse(&c,sizeof(c));
64	return(md);
65	}
66
67int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68{   return SHA256_Update (c,data,len);   }
69int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70{   return SHA256_Final (md,c);   }
71
72#define	DATA_ORDER_IS_BIG_ENDIAN
73
74#define	HASH_LONG		SHA_LONG
75#define	HASH_CTX		SHA256_CTX
76#define	HASH_CBLOCK		SHA_CBLOCK
77/*
78 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
79 * default: case below covers for it. It's not clear however if it's
80 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
81 * but if it is, then default: case shall be extended. For reference.
82 * Idea behind separate cases for pre-defined lenghts is to let the
83 * compiler decide if it's appropriate to unroll small loops.
84 */
85#define	HASH_MAKE_STRING(c,s)	do {	\
86	unsigned long ll;		\
87	unsigned int  nn;		\
88	switch ((c)->md_len)		\
89	{   case SHA224_DIGEST_LENGTH:	\
90		for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++)	\
91		{   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }	\
92		break;			\
93	    case SHA256_DIGEST_LENGTH:	\
94		for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++)	\
95		{   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }	\
96		break;			\
97	    default:			\
98		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
99		    return 0;				\
100		for (nn=0;nn<(c)->md_len/4;nn++)		\
101		{   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }	\
102		break;			\
103	}				\
104	} while (0)
105
106#define	HASH_UPDATE		SHA256_Update
107#define	HASH_TRANSFORM		SHA256_Transform
108#define	HASH_FINAL		SHA256_Final
109#define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
110#ifndef SHA256_ASM
111static
112#endif
113void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
114
115#include "md32_common.h"
116
117#ifndef SHA256_ASM
118static const SHA_LONG K256[64] = {
119	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
120	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
121	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
122	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
123	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
124	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
125	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
126	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
127	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
128	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
129	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
130	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
131	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
132	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
133	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
134	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
135
136/*
137 * FIPS specification refers to right rotations, while our ROTATE macro
138 * is left one. This is why you might notice that rotation coefficients
139 * differ from those observed in FIPS document by 32-N...
140 */
141#define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
142#define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
143#define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
144#define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
145
146#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
147#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
148
149#ifdef OPENSSL_SMALL_FOOTPRINT
150
151static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
152	{
153	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
154	SHA_LONG	X[16],l;
155	int i;
156	const unsigned char *data=in;
157
158			while (num--) {
159
160	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
161	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
162
163	for (i=0;i<16;i++)
164		{
165		HOST_c2l(data,l); T1 = X[i] = l;
166		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
167		T2 = Sigma0(a) + Maj(a,b,c);
168		h = g;	g = f;	f = e;	e = d + T1;
169		d = c;	c = b;	b = a;	a = T1 + T2;
170		}
171
172	for (;i<64;i++)
173		{
174		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
175		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
176
177		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
178		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
179		T2 = Sigma0(a) + Maj(a,b,c);
180		h = g;	g = f;	f = e;	e = d + T1;
181		d = c;	c = b;	b = a;	a = T1 + T2;
182		}
183
184	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
185	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
186
187			}
188}
189
190#else
191
192#define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
193	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
194	h = Sigma0(a) + Maj(a,b,c);			\
195	d += T1;	h += T1;		} while (0)
196
197#define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
198	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
199	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
200	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
201	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)
202
203static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
204	{
205	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
206	SHA_LONG	X[16];
207	int i;
208	const unsigned char *data=in;
209	const union { long one; char little; } is_endian = {1};
210
211			while (num--) {
212
213	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
214	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
215
216	if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
217		{
218		const SHA_LONG *W=(const SHA_LONG *)data;
219
220		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
221		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
222		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
223		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
224		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
225		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
226		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
227		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
228		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
229		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
230		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
231		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
232		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
233		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
234		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
235		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
236
237		data += SHA256_CBLOCK;
238		}
239	else
240		{
241		SHA_LONG l;
242
243		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
244		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
245		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
246		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
247		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
248		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
249		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
250		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
251		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
252		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
253		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
254		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
255		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
256		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
257		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
258		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
259		}
260
261	for (i=16;i<64;i+=8)
262		{
263		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
264		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
265		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
266		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
267		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
268		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
269		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
270		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
271		}
272
273	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
274	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
275
276			}
277	}
278
279#endif
280#endif /* SHA256_ASM */
281
282#endif /* OPENSSL_NO_SHA256 */
283