

 Cross Reference: jmorecfg.h

 xref: /external/pdfium/core/include/thirdparties/libjpeg/jmorecfg.h

 	Home
	History
	Annotate
	Line#
	Navigate
	Download
	

	 only in jmorecfg.h

 1/*
2 * jmorecfg.h
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains additional configuration options that customize the
9 * JPEG software for special applications or support machine-dependent
10 * optimizations. Most users will not need to touch this file.
11 */
12
13#ifdef _MSC_VER
14#pragma warning (disable : 4142)
15#endif
16
17/*
18 * Define BITS_IN_JSAMPLE as either
19 * 8 for 8-bit sample values (the usual setting)
20 * 12 for 12-bit sample values
21 * Only 8 and 12 are legal data precisions for lossy JPEG according to the
22 * JPEG standard, and the IJG code does not support anything else!
23 * We do not support run-time selection of data precision, sorry.
24 */
25
26#define BITS_IN_JSAMPLE 8	/* use 8 or 12 */
27
28
29/*
30 * Maximum number of components (color channels) allowed in JPEG image.
31 * To meet the letter of the JPEG spec, set this to 255. However, darn
32 * few applications need more than 4 channels (maybe 5 for CMYK + alpha
33 * mask). We recommend 10 as a reasonable compromise; use 4 if you are
34 * really short on memory. (Each allowed component costs a hundred or so
35 * bytes of storage, whether actually used in an image or not.)
36 */
37
38#define MAX_COMPONENTS 10	/* maximum number of image components */
39
40
41/*
42 * Basic data types.
43 * You may need to change these if you have a machine with unusual data
44 * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
45 * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
46 * but it had better be at least 16.
47 */
48
49/* Representation of a single sample (pixel element value).
50 * We frequently allocate large arrays of these, so it's important to keep
51 * them small. But if you have memory to burn and access to char or short
52 * arrays is very slow on your hardware, you might want to change these.
53 */
54
55#if BITS_IN_JSAMPLE == 8
56/* JSAMPLE should be the smallest type that will hold the values 0..255.
57 * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
58 */
59
60#ifdef HAVE_UNSIGNED_CHAR
61
62typedef unsigned char JSAMPLE;
63#define GETJSAMPLE(value) ((int) (value))
64
65#else /* not HAVE_UNSIGNED_CHAR */
66
67typedef char JSAMPLE;
68#ifdef CHAR_IS_UNSIGNED
69#define GETJSAMPLE(value) ((int) (value))
70#else
71#define GETJSAMPLE(value) ((int) (value) & 0xFF)
72#endif /* CHAR_IS_UNSIGNED */
73
74#endif /* HAVE_UNSIGNED_CHAR */
75
76#define MAXJSAMPLE	255
77#define CENTERJSAMPLE	128
78
79#endif /* BITS_IN_JSAMPLE == 8 */
80
81
82#if BITS_IN_JSAMPLE == 12
83/* JSAMPLE should be the smallest type that will hold the values 0..4095.
84 * On nearly all machines "short" will do nicely.
85 */
86
87typedef short JSAMPLE;
88#define GETJSAMPLE(value) ((int) (value))
89
90#define MAXJSAMPLE	4095
91#define CENTERJSAMPLE	2048
92
93#endif /* BITS_IN_JSAMPLE == 12 */
94
95
96/* Representation of a DCT frequency coefficient.
97 * This should be a signed value of at least 16 bits; "short" is usually OK.
98 * Again, we allocate large arrays of these, but you can change to int
99 * if you have memory to burn and "short" is really slow.
100 */
101
102typedef short JCOEF;
103
104
105/* Compressed datastreams are represented as arrays of JOCTET.
106 * These must be EXACTLY 8 bits wide, at least once they are written to
107 * external storage. Note that when using the stdio data source/destination
108 * managers, this is also the data type passed to fread/fwrite.
109 */
110
111#ifdef HAVE_UNSIGNED_CHAR
112
113typedef unsigned char JOCTET;
114#define GETJOCTET(value) (value)
115
116#else /* not HAVE_UNSIGNED_CHAR */
117
118typedef char JOCTET;
119#ifdef CHAR_IS_UNSIGNED
120#define GETJOCTET(value) (value)
121#else
122#define GETJOCTET(value) ((value) & 0xFF)
123#endif /* CHAR_IS_UNSIGNED */
124
125#endif /* HAVE_UNSIGNED_CHAR */
126
127
128/* These typedefs are used for various table entries and so forth.
129 * They must be at least as wide as specified; but making them too big
130 * won't cost a huge amount of memory, so we don't provide special
131 * extraction code like we did for JSAMPLE. (In other words, these
132 * typedefs live at a different point on the speed/space tradeoff curve.)
133 */
134
135#if _FX_OS_ != _FX_VXWORKS_
136
137/* UINT8 must hold at least the values 0..255. */
138
139#ifdef HAVE_UNSIGNED_CHAR
140typedef unsigned char UINT8;
141#else /* not HAVE_UNSIGNED_CHAR */
142#ifdef CHAR_IS_UNSIGNED
143typedef char UINT8;
144#else /* not CHAR_IS_UNSIGNED */
145typedef short UINT8;
146#endif /* CHAR_IS_UNSIGNED */
147#endif /* HAVE_UNSIGNED_CHAR */
148
149
150/* UINT16 must hold at least the values 0..65535. */
151
152#ifdef HAVE_UNSIGNED_SHORT
153typedef unsigned short UINT16;
154#else /* not HAVE_UNSIGNED_SHORT */
155typedef unsigned int UINT16;
156#endif /* HAVE_UNSIGNED_SHORT */
157
158/* INT16 must hold at least the values -32768..32767. */
159
160#ifndef XMD_H			/* X11/xmd.h correctly defines INT16 */
161typedef short INT16;
162#endif
163
164/* INT32 must hold at least signed 32-bit values. */
165
166#ifndef XMD_H			/* X11/xmd.h correctly defines INT32 */
167typedef int INT32;
168#endif
169
170#endif
171
172/* Datatype used for image dimensions. The JPEG standard only supports
173 * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
174 * "unsigned int" is sufficient on all machines. However, if you need to
175 * handle larger images and you don't mind deviating from the spec, you
176 * can change this datatype.
177 */
178
179typedef unsigned int JDIMENSION;
180
181#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
182
183
184/* These macros are used in all function definitions and extern declarations.
185 * You could modify them if you need to change function linkage conventions;
186 * in particular, you'll need to do that to make the library a Windows DLL.
187 * Another application is to make all functions global for use with debuggers
188 * or code profilers that require it.
189 */
190
191/* a function called through method pointers: */
192#define METHODDEF(type)		static type
193/* a function used only in its module: */
194#define LOCAL(type)		static type
195/* a function referenced thru EXTERNs: */
196#define GLOBAL(type)		type
197
198#ifdef _FX_MANAGED_CODE_
199#define EXTERN(type)		extern "C" type
200#else
201/* a reference to a GLOBAL function: */
202#define EXTERN(type)		extern type
203#endif
204
205
206/* This macro is used to declare a "method", that is, a function pointer.
207 * We want to supply prototype parameters if the compiler can cope.
208 * Note that the arglist parameter must be parenthesized!
209 * Again, you can customize this if you need special linkage keywords.
210 */
211
212#ifdef HAVE_PROTOTYPES
213#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
214#else
215#define JMETHOD(type,methodname,arglist) type (*methodname) ()
216#endif
217
218
219/* Here is the pseudo-keyword for declaring pointers that must be "far"
220 * on 80x86 machines. Most of the specialized coding for 80x86 is handled
221 * by just saying "FAR *" where such a pointer is needed. In a few places
222 * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
223 */
224
225#ifdef NEED_FAR_POINTERS
226#define FAR far
227#else
228//#define FAR
229#endif
230
231
232/*
233 * On a few systems, type boolean and/or its values FALSE, TRUE may appear
234 * in standard header files. Or you may have conflicts with application-
235 * specific header files that you want to include together with these files.
236 * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
237 */
238
239#ifndef HAVE_BOOLEAN
240typedef int boolean;
241#endif
242#ifndef FALSE			/* in case these macros already exist */
243#define FALSE	0		/* values of boolean */
244#endif
245#ifndef TRUE
246#define TRUE	1
247#endif
248
249
250/*
251 * The remaining options affect code selection within the JPEG library,
252 * but they don't need to be visible to most applications using the library.
253 * To minimize application namespace pollution, the symbols won't be
254 * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
255 */
256
257#ifdef JPEG_INTERNALS
258#define JPEG_INTERNAL_OPTIONS
259#endif
260
261#ifdef JPEG_INTERNAL_OPTIONS
262
263
264/*
265 * These defines indicate whether to include various optional functions.
266 * Undefining some of these symbols will produce a smaller but less capable
267 * library. Note that you can leave certain source files out of the
268 * compilation/linking process if you've #undef'd the corresponding symbols.
269 * (You may HAVE to do that if your compiler doesn't like null source files.)
270 */
271
272/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
273
274/* Capability options common to encoder and decoder: */
275
276#define DCT_ISLOW_SUPPORTED	/* slow but accurate integer algorithm */
277#define DCT_IFAST_SUPPORTED	/* faster, less accurate integer method */
278#undef DCT_FLOAT_SUPPORTED	/* floating-point: accurate, fast on fast HW */
279
280/* Encoder capability options: */
281
282#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
283#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
284#define C_PROGRESSIVE_SUPPORTED	 /* Progressive JPEG? (Requires MULTISCAN)*/
285#define ENTROPY_OPT_SUPPORTED	 /* Optimization of entropy coding parms? */
286/* Note: if you selected 12-bit data precision, it is dangerous to turn off
287 * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
288 * precision, so jchuff.c normally uses entropy optimization to compute
289 * usable tables for higher precision. If you don't want to do optimization,
290 * you'll have to supply different default Huffman tables.
291 * The exact same statements apply for progressive JPEG: the default tables
292 * don't work for progressive mode. (This may get fixed, however.)
293 */
294#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
295
296/* Decoder capability options: */
297
298#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
299#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
300#define D_PROGRESSIVE_SUPPORTED	 /* Progressive JPEG? (Requires MULTISCAN)*/
301#define SAVE_MARKERS_SUPPORTED	 /* jpeg_save_markers() needed? */
302#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
303#define IDCT_SCALING_SUPPORTED	 /* Output rescaling via IDCT? */
304#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
305#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
306#undef QUANT_1PASS_SUPPORTED	 /* 1-pass color quantization? */
307#undef QUANT_2PASS_SUPPORTED	 /* 2-pass color quantization? */
308
309/* more capability options later, no doubt */
310
311
312/*
313 * Ordering of RGB data in scanlines passed to or from the application.
314 * If your application wants to deal with data in the order B,G,R, just
315 * change these macros. You can also deal with formats such as R,G,B,X
316 * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
317 * the offsets will also change the order in which colormap data is organized.
318 * RESTRICTIONS:
319 * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
320 * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
321 * useful if you are using JPEG color spaces other than YCbCr or grayscale.
322 * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
323 * is not 3 (they don't understand about dummy color components!). So you
324 * can't use color quantization if you change that value.
325 */
326
327#define RGB_RED		0	/* Offset of Red in an RGB scanline element */
328#define RGB_GREEN	1	/* Offset of Green */
329#define RGB_BLUE	2	/* Offset of Blue */
330#define RGB_PIXELSIZE	3	/* JSAMPLEs per RGB scanline element */
331
332
333/* Definitions for speed-related optimizations. */
334
335
336/* If your compiler supports inline functions, define INLINE
337 * as the inline keyword; otherwise define it as empty.
338 */
339
340#ifndef INLINE
341#ifdef __GNUC__			/* for instance, GNU C knows about inline */
342#define INLINE __inline__
343#endif
344#ifndef INLINE
345#define INLINE			/* default is to define it as empty */
346#endif
347#endif
348
349
350/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
351 * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
352 * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
353 */
354
355#ifndef MULTIPLIER
356#define MULTIPLIER int		/* type for fastest integer multiply */
357#endif
358
359
360/* FAST_FLOAT should be either float or double, whichever is done faster
361 * by your compiler. (Note that this type is only used in the floating point
362 * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
363 * Typically, float is faster in ANSI C compilers, while double is faster in
364 * pre-ANSI compilers (because they insist on converting to double anyway).
365 * The code below therefore chooses float if we have ANSI-style prototypes.
366 */
367
368#ifndef FAST_FLOAT
369#ifdef HAVE_PROTOTYPES
370#define FAST_FLOAT float
371#else
372#define FAST_FLOAT double
373#endif
374#endif
375
376#endif /* JPEG_INTERNAL_OPTIONS */
377

Indexes created Fri Mar 13 02:32:08 CET 2015

