1//---------------------------------------------------------------------------------
2//
3//  Little Color Management System
4//  Copyright (c) 1998-2012 Marti Maria Saguer
5//
6// Permission is hereby granted, free of charge, to any person obtaining
7// a copy of this software and associated documentation files (the "Software"),
8// to deal in the Software without restriction, including without limitation
9// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10// and/or sell copies of the Software, and to permit persons to whom the Software
11// is furnished to do so, subject to the following conditions:
12//
13// The above copyright notice and this permission notice shall be included in
14// all copies or substantial portions of the Software.
15//
16// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23//
24//---------------------------------------------------------------------------------
25//
26
27#include "lcms2_internal.h"
28
29
30// Auxiliar: append a Lab identity after the given sequence of profiles
31// and return the transform. Lab profile is closed, rest of profiles are kept open.
32cmsHTRANSFORM _cmsChain2Lab(cmsContext            ContextID,
33                            cmsUInt32Number        nProfiles,
34                            cmsUInt32Number        InputFormat,
35                            cmsUInt32Number        OutputFormat,
36                            const cmsUInt32Number  Intents[],
37                            const cmsHPROFILE      hProfiles[],
38                            const cmsBool          BPC[],
39                            const cmsFloat64Number AdaptationStates[],
40                            cmsUInt32Number        dwFlags)
41{
42    cmsHTRANSFORM xform;
43    cmsHPROFILE   hLab;
44    cmsHPROFILE   ProfileList[256];
45    cmsBool       BPCList[256];
46    cmsFloat64Number AdaptationList[256];
47    cmsUInt32Number IntentList[256];
48    cmsUInt32Number i;
49
50    // This is a rather big number and there is no need of dynamic memory
51    // since we are adding a profile, 254 + 1 = 255 and this is the limit
52    if (nProfiles > 254) return NULL;
53
54    // The output space
55    hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
56    if (hLab == NULL) return NULL;
57
58    // Create a copy of parameters
59    for (i=0; i < nProfiles; i++) {
60
61        ProfileList[i]    = hProfiles[i];
62        BPCList[i]        = BPC[i];
63        AdaptationList[i] = AdaptationStates[i];
64        IntentList[i]     = Intents[i];
65    }
66
67    // Place Lab identity at chain's end.
68    ProfileList[nProfiles]    = hLab;
69    BPCList[nProfiles]        = 0;
70    AdaptationList[nProfiles] = 1.0;
71    IntentList[nProfiles]     = INTENT_RELATIVE_COLORIMETRIC;
72
73    // Create the transform
74    xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
75                                       BPCList,
76                                       IntentList,
77                                       AdaptationList,
78                                       NULL, 0,
79                                       InputFormat,
80                                       OutputFormat,
81                                       dwFlags);
82
83    cmsCloseProfile(hLab);
84
85    return xform;
86}
87
88
89// Compute K -> L* relationship. Flags may include black point compensation. In this case,
90// the relationship is assumed from the profile with BPC to a black point zero.
91static
92cmsToneCurve* ComputeKToLstar(cmsContext            ContextID,
93                               cmsUInt32Number       nPoints,
94                               cmsUInt32Number       nProfiles,
95                               const cmsUInt32Number Intents[],
96                               const cmsHPROFILE     hProfiles[],
97                               const cmsBool         BPC[],
98                               const cmsFloat64Number AdaptationStates[],
99                               cmsUInt32Number dwFlags)
100{
101    cmsToneCurve* out = NULL;
102    cmsUInt32Number i;
103    cmsHTRANSFORM xform;
104    cmsCIELab Lab;
105    cmsFloat32Number cmyk[4];
106    cmsFloat32Number* SampledPoints;
107
108    xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
109    if (xform == NULL) return NULL;
110
111    SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
112    if (SampledPoints  == NULL) goto Error;
113
114    for (i=0; i < nPoints; i++) {
115
116        cmyk[0] = 0;
117        cmyk[1] = 0;
118        cmyk[2] = 0;
119        cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
120
121        cmsDoTransform(xform, cmyk, &Lab, 1);
122        SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
123    }
124
125    out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
126
127Error:
128
129    cmsDeleteTransform(xform);
130    if (SampledPoints) _cmsFree(ContextID, SampledPoints);
131
132    return out;
133}
134
135
136// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
137// using the proof direction on both profiles to find K->L* relationship
138// then joining both curves. dwFlags may include black point compensation.
139cmsToneCurve* _cmsBuildKToneCurve(cmsContext        ContextID,
140                                   cmsUInt32Number   nPoints,
141                                   cmsUInt32Number   nProfiles,
142                                   const cmsUInt32Number Intents[],
143                                   const cmsHPROFILE hProfiles[],
144                                   const cmsBool     BPC[],
145                                   const cmsFloat64Number AdaptationStates[],
146                                   cmsUInt32Number   dwFlags)
147{
148    cmsToneCurve *in, *out, *KTone;
149
150    // Make sure CMYK -> CMYK
151    if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData ||
152        cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
153
154
155    // Make sure last is an output profile
156    if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
157
158    // Create individual curves. BPC works also as each K to L* is
159    // computed as a BPC to zero black point in case of L*
160    in  = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
161    if (in == NULL) return NULL;
162
163    out = ComputeKToLstar(ContextID, nPoints, 1,
164                            Intents + (nProfiles - 1),
165                            &hProfiles [nProfiles - 1],
166                            BPC + (nProfiles - 1),
167                            AdaptationStates + (nProfiles - 1),
168                            dwFlags);
169    if (out == NULL) {
170        cmsFreeToneCurve(in);
171        return NULL;
172    }
173
174    // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
175    // since this is used on black-preserving LUTs, we are not loosing  accuracy in any case
176    KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
177
178    // Get rid of components
179    cmsFreeToneCurve(in); cmsFreeToneCurve(out);
180
181    // Something went wrong...
182    if (KTone == NULL) return NULL;
183
184    // Make sure it is monotonic
185    if (!cmsIsToneCurveMonotonic(KTone)) {
186        cmsFreeToneCurve(KTone);
187        return NULL;
188    }
189
190    return KTone;
191}
192
193
194// Gamut LUT Creation -----------------------------------------------------------------------------------------
195
196// Used by gamut & softproofing
197
198typedef struct {
199
200    cmsHTRANSFORM hInput;               // From whatever input color space. 16 bits to DBL
201    cmsHTRANSFORM hForward, hReverse;   // Transforms going from Lab to colorant and back
202    cmsFloat64Number Thereshold;        // The thereshold after which is considered out of gamut
203
204    } GAMUTCHAIN;
205
206// This sampler does compute gamut boundaries by comparing original
207// values with a transform going back and forth. Values above ERR_THERESHOLD
208// of maximum are considered out of gamut.
209
210#define ERR_THERESHOLD      5
211
212
213static
214int GamutSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
215{
216    GAMUTCHAIN*  t = (GAMUTCHAIN* ) Cargo;
217    cmsCIELab LabIn1, LabOut1;
218    cmsCIELab LabIn2, LabOut2;
219    cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
220    cmsFloat64Number dE1, dE2, ErrorRatio;
221
222    // Assume in-gamut by default.
223    ErrorRatio = 1.0;
224
225    // Convert input to Lab
226    cmsDoTransform(t -> hInput, In, &LabIn1, 1);
227
228    // converts from PCS to colorant. This always
229    // does return in-gamut values,
230    cmsDoTransform(t -> hForward, &LabIn1, Proof, 1);
231
232    // Now, do the inverse, from colorant to PCS.
233    cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1);
234
235    memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
236
237    // Try again, but this time taking Check as input
238    cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1);
239    cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1);
240
241    // Take difference of direct value
242    dE1 = cmsDeltaE(&LabIn1, &LabOut1);
243
244    // Take difference of converted value
245    dE2 = cmsDeltaE(&LabIn2, &LabOut2);
246
247
248    // if dE1 is small and dE2 is small, value is likely to be in gamut
249    if (dE1 < t->Thereshold && dE2 < t->Thereshold)
250        Out[0] = 0;
251    else {
252
253        // if dE1 is small and dE2 is big, undefined. Assume in gamut
254        if (dE1 < t->Thereshold && dE2 > t->Thereshold)
255            Out[0] = 0;
256        else
257            // dE1 is big and dE2 is small, clearly out of gamut
258            if (dE1 > t->Thereshold && dE2 < t->Thereshold)
259                Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
260            else  {
261
262                // dE1 is big and dE2 is also big, could be due to perceptual mapping
263                // so take error ratio
264                if (dE2 == 0.0)
265                    ErrorRatio = dE1;
266                else
267                    ErrorRatio = dE1 / dE2;
268
269                if (ErrorRatio > t->Thereshold)
270                    Out[0] = (cmsUInt16Number)  _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
271                else
272                    Out[0] = 0;
273            }
274    }
275
276
277    return TRUE;
278}
279
280// Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
281// the dE obtained is then annotated on the LUT. Values truely out of gamut are clipped to dE = 0xFFFE
282// and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
283//
284// **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
285// of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
286
287cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
288                                          cmsHPROFILE hProfiles[],
289                                          cmsBool  BPC[],
290                                          cmsUInt32Number Intents[],
291                                          cmsFloat64Number AdaptationStates[],
292                                          cmsUInt32Number nGamutPCSposition,
293                                          cmsHPROFILE hGamut)
294{
295    cmsHPROFILE hLab;
296    cmsPipeline* Gamut;
297    cmsStage* CLUT;
298    cmsUInt32Number dwFormat;
299    GAMUTCHAIN Chain;
300    int nChannels, nGridpoints;
301    cmsColorSpaceSignature ColorSpace;
302    cmsUInt32Number i;
303    cmsHPROFILE ProfileList[256];
304    cmsBool     BPCList[256];
305    cmsFloat64Number AdaptationList[256];
306    cmsUInt32Number IntentList[256];
307
308    memset(&Chain, 0, sizeof(GAMUTCHAIN));
309
310
311    if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
312        cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition);
313        return NULL;
314    }
315
316    hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
317    if (hLab == NULL) return NULL;
318
319
320    // The figure of merit. On matrix-shaper profiles, should be almost zero as
321    // the conversion is pretty exact. On LUT based profiles, different resolutions
322    // of input and output CLUT may result in differences.
323
324    if (cmsIsMatrixShaper(hGamut)) {
325
326        Chain.Thereshold = 1.0;
327    }
328    else {
329        Chain.Thereshold = ERR_THERESHOLD;
330    }
331
332
333    // Create a copy of parameters
334    for (i=0; i < nGamutPCSposition; i++) {
335        ProfileList[i]    = hProfiles[i];
336        BPCList[i]        = BPC[i];
337        AdaptationList[i] = AdaptationStates[i];
338        IntentList[i]     = Intents[i];
339    }
340
341    // Fill Lab identity
342    ProfileList[nGamutPCSposition] = hLab;
343    BPCList[nGamutPCSposition] = 0;
344    AdaptationList[nGamutPCSposition] = 1.0;
345    IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
346
347
348    ColorSpace  = cmsGetColorSpace(hGamut);
349
350    nChannels   = cmsChannelsOf(ColorSpace);
351    nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
352    dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));
353
354    // 16 bits to Lab double
355    Chain.hInput = cmsCreateExtendedTransform(ContextID,
356        nGamutPCSposition + 1,
357        ProfileList,
358        BPCList,
359        IntentList,
360        AdaptationList,
361        NULL, 0,
362        dwFormat, TYPE_Lab_DBL,
363        cmsFLAGS_NOCACHE);
364
365
366    // Does create the forward step. Lab double to device
367    dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));
368    Chain.hForward = cmsCreateTransformTHR(ContextID,
369        hLab, TYPE_Lab_DBL,
370        hGamut, dwFormat,
371        INTENT_RELATIVE_COLORIMETRIC,
372        cmsFLAGS_NOCACHE);
373
374    // Does create the backwards step
375    Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat,
376        hLab, TYPE_Lab_DBL,
377        INTENT_RELATIVE_COLORIMETRIC,
378        cmsFLAGS_NOCACHE);
379
380
381    // All ok?
382    if (Chain.hInput && Chain.hForward && Chain.hReverse) {
383
384        // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
385        // dE when doing a transform back and forth on the colorimetric intent.
386
387        Gamut = cmsPipelineAlloc(ContextID, 3, 1);
388        if (Gamut != NULL) {
389
390            CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
391            if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) {
392                cmsPipelineFree(Gamut);
393                Gamut = NULL;
394            }
395            else {
396                cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0);
397            }
398        }
399    }
400    else
401        Gamut = NULL;   // Didn't work...
402
403    // Free all needed stuff.
404    if (Chain.hInput)   cmsDeleteTransform(Chain.hInput);
405    if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
406    if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
407    if (hLab) cmsCloseProfile(hLab);
408
409    // And return computed hull
410    return Gamut;
411}
412
413// Total Area Coverage estimation ----------------------------------------------------------------
414
415typedef struct {
416    cmsUInt32Number  nOutputChans;
417    cmsHTRANSFORM    hRoundTrip;
418    cmsFloat32Number MaxTAC;
419    cmsFloat32Number MaxInput[cmsMAXCHANNELS];
420
421} cmsTACestimator;
422
423
424// This callback just accounts the maximum ink dropped in the given node. It does not populate any
425// memory, as the destination table is NULL. Its only purpose it to know the global maximum.
426static
427int EstimateTAC(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
428{
429    cmsTACestimator* bp = (cmsTACestimator*) Cargo;
430    cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
431    cmsUInt32Number i;
432    cmsFloat32Number Sum;
433
434
435    // Evaluate the xform
436    cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1);
437
438    // All all amounts of ink
439    for (Sum=0, i=0; i < bp ->nOutputChans; i++)
440            Sum += RoundTrip[i];
441
442    // If above maximum, keep track of input values
443    if (Sum > bp ->MaxTAC) {
444
445            bp ->MaxTAC = Sum;
446
447            for (i=0; i < bp ->nOutputChans; i++) {
448                bp ->MaxInput[i] = In[i];
449            }
450    }
451
452    return TRUE;
453
454    cmsUNUSED_PARAMETER(Out);
455}
456
457
458// Detect Total area coverage of the profile
459cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile)
460{
461    cmsTACestimator bp;
462    cmsUInt32Number dwFormatter;
463    cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
464    cmsHPROFILE hLab;
465    cmsContext ContextID = cmsGetProfileContextID(hProfile);
466
467    // TAC only works on output profiles
468    if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) {
469        return 0;
470    }
471
472    // Create a fake formatter for result
473    dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE);
474
475    bp.nOutputChans = T_CHANNELS(dwFormatter);
476    bp.MaxTAC = 0;    // Initial TAC is 0
477
478    //  for safety
479    if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
480
481    hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
482    if (hLab == NULL) return 0;
483    // Setup a roundtrip on perceptual intent in output profile for TAC estimation
484    bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16,
485                                          hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
486
487    cmsCloseProfile(hLab);
488    if (bp.hRoundTrip == NULL) return 0;
489
490    // For L* we only need black and white. For C* we need many points
491    GridPoints[0] = 6;
492    GridPoints[1] = 74;
493    GridPoints[2] = 74;
494
495
496    if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) {
497        bp.MaxTAC = 0;
498    }
499
500    cmsDeleteTransform(bp.hRoundTrip);
501
502    // Results in %
503    return bp.MaxTAC;
504}
505
506
507// Carefully,  clamp on CIELab space.
508
509cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab,
510                                   double amax, double amin,
511                                   double bmax, double bmin)
512{
513
514    // Whole Luma surface to zero
515
516    if (Lab -> L < 0) {
517
518        Lab-> L = Lab->a = Lab-> b = 0.0;
519        return FALSE;
520    }
521
522    // Clamp white, DISCARD HIGHLIGHTS. This is done
523    // in such way because icc spec doesn't allow the
524    // use of L>100 as a highlight means.
525
526    if (Lab->L > 100)
527        Lab -> L = 100;
528
529    // Check out gamut prism, on a, b faces
530
531    if (Lab -> a < amin || Lab->a > amax||
532        Lab -> b < bmin || Lab->b > bmax) {
533
534            cmsCIELCh LCh;
535            double h, slope;
536
537            // Falls outside a, b limits. Transports to LCh space,
538            // and then do the clipping
539
540
541            if (Lab -> a == 0.0) { // Is hue exactly 90?
542
543                // atan will not work, so clamp here
544                Lab -> b = Lab->b < 0 ? bmin : bmax;
545                return TRUE;
546            }
547
548            cmsLab2LCh(&LCh, Lab);
549
550            slope = Lab -> b / Lab -> a;
551            h = LCh.h;
552
553            // There are 4 zones
554
555            if ((h >= 0. && h < 45.) ||
556                (h >= 315 && h <= 360.)) {
557
558                    // clip by amax
559                    Lab -> a = amax;
560                    Lab -> b = amax * slope;
561            }
562            else
563                if (h >= 45. && h < 135.)
564                {
565                    // clip by bmax
566                    Lab -> b = bmax;
567                    Lab -> a = bmax / slope;
568                }
569                else
570                    if (h >= 135. && h < 225.) {
571                        // clip by amin
572                        Lab -> a = amin;
573                        Lab -> b = amin * slope;
574
575                    }
576                    else
577                        if (h >= 225. && h < 315.) {
578                            // clip by bmin
579                            Lab -> b = bmin;
580                            Lab -> a = bmin / slope;
581                        }
582                        else  {
583                            cmsSignalError(0, cmsERROR_RANGE, "Invalid angle");
584                            return FALSE;
585                        }
586
587    }
588
589    return TRUE;
590}
591