1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jchuff.c
4 *
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains Huffman entropy encoding routines.
10 *
11 * Much of the complexity here has to do with supporting output suspension.
12 * If the data destination module demands suspension, we want to be able to
13 * back up to the start of the current MCU.  To do this, we copy state
14 * variables into local working storage, and update them back to the
15 * permanent JPEG objects only upon successful completion of an MCU.
16 */
17
18#define JPEG_INTERNALS
19#include "jinclude.h"
20#include "jpeglib.h"
21#include "jchuff.h"		/* Declarations shared with jcphuff.c */
22
23#ifdef _FX_MANAGED_CODE_
24#define savable_state	savable_state_c
25#endif
26
27/* Expanded entropy encoder object for Huffman encoding.
28 *
29 * The savable_state subrecord contains fields that change within an MCU,
30 * but must not be updated permanently until we complete the MCU.
31 */
32
33typedef struct {
34  INT32 put_buffer;		/* current bit-accumulation buffer */
35  int put_bits;			/* # of bits now in it */
36  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
37} savable_state;
38
39/* This macro is to work around compilers with missing or broken
40 * structure assignment.  You'll need to fix this code if you have
41 * such a compiler and you change MAX_COMPS_IN_SCAN.
42 */
43
44#ifndef NO_STRUCT_ASSIGN
45#define ASSIGN_STATE(dest,src)  ((dest) = (src))
46#else
47#if MAX_COMPS_IN_SCAN == 4
48#define ASSIGN_STATE(dest,src)  \
49	((dest).put_buffer = (src).put_buffer, \
50	 (dest).put_bits = (src).put_bits, \
51	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
52	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
53	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
54	 (dest).last_dc_val[3] = (src).last_dc_val[3])
55#endif
56#endif
57
58
59typedef struct {
60  struct jpeg_entropy_encoder pub; /* public fields */
61
62  savable_state saved;		/* Bit buffer & DC state at start of MCU */
63
64  /* These fields are NOT loaded into local working state. */
65  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
66  int next_restart_num;		/* next restart number to write (0-7) */
67
68  /* Pointers to derived tables (these workspaces have image lifespan) */
69  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
71
72#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
73  long * dc_count_ptrs[NUM_HUFF_TBLS];
74  long * ac_count_ptrs[NUM_HUFF_TBLS];
75#endif
76} huff_entropy_encoder;
77
78typedef huff_entropy_encoder * huff_entropy_ptr;
79
80/* Working state while writing an MCU.
81 * This struct contains all the fields that are needed by subroutines.
82 */
83
84typedef struct {
85  JOCTET * next_output_byte;	/* => next byte to write in buffer */
86  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
87  savable_state cur;		/* Current bit buffer & DC state */
88  j_compress_ptr cinfo;		/* dump_buffer needs access to this */
89} working_state;
90
91
92/* Forward declarations */
93METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
94					JBLOCKROW *MCU_data));
95METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
96#ifdef ENTROPY_OPT_SUPPORTED
97METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
98					  JBLOCKROW *MCU_data));
99METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
100#endif
101
102
103/*
104 * Initialize for a Huffman-compressed scan.
105 * If gather_statistics is TRUE, we do not output anything during the scan,
106 * just count the Huffman symbols used and generate Huffman code tables.
107 */
108
109METHODDEF(void)
110start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
111{
112  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
113  int ci, dctbl, actbl;
114  jpeg_component_info * compptr;
115
116  if (gather_statistics) {
117#ifdef ENTROPY_OPT_SUPPORTED
118    entropy->pub.encode_mcu = encode_mcu_gather;
119    entropy->pub.finish_pass = finish_pass_gather;
120#else
121    ERREXIT(cinfo, JERR_NOT_COMPILED);
122#endif
123  } else {
124    entropy->pub.encode_mcu = encode_mcu_huff;
125    entropy->pub.finish_pass = finish_pass_huff;
126  }
127
128  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
129    compptr = cinfo->cur_comp_info[ci];
130    dctbl = compptr->dc_tbl_no;
131    actbl = compptr->ac_tbl_no;
132    if (gather_statistics) {
133#ifdef ENTROPY_OPT_SUPPORTED
134      /* Check for invalid table indexes */
135      /* (make_c_derived_tbl does this in the other path) */
136      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
137	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
138      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
139	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
140      /* Allocate and zero the statistics tables */
141      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
142      if (entropy->dc_count_ptrs[dctbl] == NULL)
143	entropy->dc_count_ptrs[dctbl] = (long *)
144	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
145				      257 * SIZEOF(long));
146      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
147      if (entropy->ac_count_ptrs[actbl] == NULL)
148	entropy->ac_count_ptrs[actbl] = (long *)
149	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
150				      257 * SIZEOF(long));
151      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
152#endif
153    } else {
154      /* Compute derived values for Huffman tables */
155      /* We may do this more than once for a table, but it's not expensive */
156      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
157			      & entropy->dc_derived_tbls[dctbl]);
158      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
159			      & entropy->ac_derived_tbls[actbl]);
160    }
161    /* Initialize DC predictions to 0 */
162    entropy->saved.last_dc_val[ci] = 0;
163  }
164
165  /* Initialize bit buffer to empty */
166  entropy->saved.put_buffer = 0;
167  entropy->saved.put_bits = 0;
168
169  /* Initialize restart stuff */
170  entropy->restarts_to_go = cinfo->restart_interval;
171  entropy->next_restart_num = 0;
172}
173
174
175/*
176 * Compute the derived values for a Huffman table.
177 * This routine also performs some validation checks on the table.
178 *
179 * Note this is also used by jcphuff.c.
180 */
181
182GLOBAL(void)
183jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
184			 c_derived_tbl ** pdtbl)
185{
186  JHUFF_TBL *htbl;
187  c_derived_tbl *dtbl;
188  int p, i, l, lastp, _si, maxsymbol;
189  char huffsize[257];
190  unsigned int huffcode[257];
191  unsigned int code;
192
193  /* Note that huffsize[] and huffcode[] are filled in code-length order,
194   * paralleling the order of the symbols themselves in htbl->huffval[].
195   */
196
197  /* Find the input Huffman table */
198  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
199    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
200  htbl =
201    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
202  if (htbl == NULL)
203    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
204
205  /* Allocate a workspace if we haven't already done so. */
206  if (*pdtbl == NULL)
207    *pdtbl = (c_derived_tbl *)
208      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
209				  SIZEOF(c_derived_tbl));
210  dtbl = *pdtbl;
211
212  /* Figure C.1: make table of Huffman code length for each symbol */
213
214  p = 0;
215  for (l = 1; l <= 16; l++) {
216    i = (int) htbl->bits[l];
217    if (i < 0 || p + i > 256)	/* protect against table overrun */
218      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
219    while (i--)
220      huffsize[p++] = (char) l;
221  }
222  huffsize[p] = 0;
223  lastp = p;
224
225  /* Figure C.2: generate the codes themselves */
226  /* We also validate that the counts represent a legal Huffman code tree. */
227
228  code = 0;
229  _si = huffsize[0];
230  p = 0;
231  while (huffsize[p]) {
232    while (((int) huffsize[p]) == _si) {
233      huffcode[p++] = code;
234      code++;
235    }
236    /* code is now 1 more than the last code used for codelength si; but
237     * it must still fit in si bits, since no code is allowed to be all ones.
238     */
239    if (((INT32) code) >= (((INT32) 1) << _si))
240      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
241    code <<= 1;
242    _si++;
243  }
244
245  /* Figure C.3: generate encoding tables */
246  /* These are code and size indexed by symbol value */
247
248  /* Set all codeless symbols to have code length 0;
249   * this lets us detect duplicate VAL entries here, and later
250   * allows emit_bits to detect any attempt to emit such symbols.
251   */
252  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
253
254  /* This is also a convenient place to check for out-of-range
255   * and duplicated VAL entries.  We allow 0..255 for AC symbols
256   * but only 0..15 for DC.  (We could constrain them further
257   * based on data depth and mode, but this seems enough.)
258   */
259  maxsymbol = isDC ? 15 : 255;
260
261  for (p = 0; p < lastp; p++) {
262    i = htbl->huffval[p];
263    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
264      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
265    dtbl->ehufco[i] = huffcode[p];
266    dtbl->ehufsi[i] = huffsize[p];
267  }
268}
269
270
271/* Outputting bytes to the file */
272
273/* Emit a byte, taking 'action' if must suspend. */
274#define emit_byte(state,val,action)  \
275	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
276	  if (--(state)->free_in_buffer == 0)  \
277	    if (! dump_buffer(state))  \
278	      { action; } }
279
280
281LOCAL(boolean)
282dump_buffer (working_state * state)
283/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
284{
285  struct jpeg_destination_mgr * dest = state->cinfo->dest;
286
287  if (! (*dest->empty_output_buffer) (state->cinfo))
288    return FALSE;
289  /* After a successful buffer dump, must reset buffer pointers */
290  state->next_output_byte = dest->next_output_byte;
291  state->free_in_buffer = dest->free_in_buffer;
292  return TRUE;
293}
294
295
296/* Outputting bits to the file */
297
298/* Only the right 24 bits of put_buffer are used; the valid bits are
299 * left-justified in this part.  At most 16 bits can be passed to emit_bits
300 * in one call, and we never retain more than 7 bits in put_buffer
301 * between calls, so 24 bits are sufficient.
302 */
303
304INLINE
305LOCAL(boolean)
306emit_bits (working_state * state, unsigned int code, int size)
307/* Emit some bits; return TRUE if successful, FALSE if must suspend */
308{
309  /* This routine is heavily used, so it's worth coding tightly. */
310  register INT32 put_buffer = (INT32) code;
311  register int put_bits = state->cur.put_bits;
312
313  /* if size is 0, caller used an invalid Huffman table entry */
314  if (size == 0)
315    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
316
317  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
318
319  put_bits += size;		/* new number of bits in buffer */
320
321  put_buffer <<= 24 - put_bits; /* align incoming bits */
322
323  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
324
325  while (put_bits >= 8) {
326    int c = (int) ((put_buffer >> 16) & 0xFF);
327
328    emit_byte(state, c, return FALSE);
329    if (c == 0xFF) {		/* need to stuff a zero byte? */
330      emit_byte(state, 0, return FALSE);
331    }
332    put_buffer <<= 8;
333    put_bits -= 8;
334  }
335
336  state->cur.put_buffer = put_buffer; /* update state variables */
337  state->cur.put_bits = put_bits;
338
339  return TRUE;
340}
341
342
343LOCAL(boolean)
344flush_bits (working_state * state)
345{
346  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
347    return FALSE;
348  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
349  state->cur.put_bits = 0;
350  return TRUE;
351}
352
353
354/* Encode a single block's worth of coefficients */
355
356LOCAL(boolean)
357encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
358		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
359{
360  register int temp, temp2;
361  register int nbits;
362  register int k, r, i;
363
364  /* Encode the DC coefficient difference per section F.1.2.1 */
365
366  temp = temp2 = block[0] - last_dc_val;
367
368  if (temp < 0) {
369    temp = -temp;		/* temp is abs value of input */
370    /* For a negative input, want temp2 = bitwise complement of abs(input) */
371    /* This code assumes we are on a two's complement machine */
372    temp2--;
373  }
374
375  /* Find the number of bits needed for the magnitude of the coefficient */
376  nbits = 0;
377  while (temp) {
378    nbits++;
379    temp >>= 1;
380  }
381  /* Check for out-of-range coefficient values.
382   * Since we're encoding a difference, the range limit is twice as much.
383   */
384  if (nbits > MAX_COEF_BITS+1)
385    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
386
387  /* Emit the Huffman-coded symbol for the number of bits */
388  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
389    return FALSE;
390
391  /* Emit that number of bits of the value, if positive, */
392  /* or the complement of its magnitude, if negative. */
393  if (nbits)			/* emit_bits rejects calls with size 0 */
394    if (! emit_bits(state, (unsigned int) temp2, nbits))
395      return FALSE;
396
397  /* Encode the AC coefficients per section F.1.2.2 */
398
399  r = 0;			/* r = run length of zeros */
400
401  for (k = 1; k < DCTSIZE2; k++) {
402    if ((temp = block[jpeg_natural_order[k]]) == 0) {
403      r++;
404    } else {
405      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
406      while (r > 15) {
407	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
408	  return FALSE;
409	r -= 16;
410      }
411
412      temp2 = temp;
413      if (temp < 0) {
414	temp = -temp;		/* temp is abs value of input */
415	/* This code assumes we are on a two's complement machine */
416	temp2--;
417      }
418
419      /* Find the number of bits needed for the magnitude of the coefficient */
420      nbits = 1;		/* there must be at least one 1 bit */
421      while ((temp >>= 1))
422	nbits++;
423      /* Check for out-of-range coefficient values */
424      if (nbits > MAX_COEF_BITS)
425	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
426
427      /* Emit Huffman symbol for run length / number of bits */
428      i = (r << 4) + nbits;
429      if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
430	return FALSE;
431
432      /* Emit that number of bits of the value, if positive, */
433      /* or the complement of its magnitude, if negative. */
434      if (! emit_bits(state, (unsigned int) temp2, nbits))
435	return FALSE;
436
437      r = 0;
438    }
439  }
440
441  /* If the last coef(s) were zero, emit an end-of-block code */
442  if (r > 0)
443    if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
444      return FALSE;
445
446  return TRUE;
447}
448
449
450/*
451 * Emit a restart marker & resynchronize predictions.
452 */
453
454LOCAL(boolean)
455emit_restart (working_state * state, int restart_num)
456{
457  int ci;
458
459  if (! flush_bits(state))
460    return FALSE;
461
462  emit_byte(state, 0xFF, return FALSE);
463  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
464
465  /* Re-initialize DC predictions to 0 */
466  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
467    state->cur.last_dc_val[ci] = 0;
468
469  /* The restart counter is not updated until we successfully write the MCU. */
470
471  return TRUE;
472}
473
474
475/*
476 * Encode and output one MCU's worth of Huffman-compressed coefficients.
477 */
478
479METHODDEF(boolean)
480encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
481{
482  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
483  working_state state;
484  int blkn, ci;
485  jpeg_component_info * compptr;
486
487  /* Load up working state */
488  state.next_output_byte = cinfo->dest->next_output_byte;
489  state.free_in_buffer = cinfo->dest->free_in_buffer;
490  ASSIGN_STATE(state.cur, entropy->saved);
491  state.cinfo = cinfo;
492
493  /* Emit restart marker if needed */
494  if (cinfo->restart_interval) {
495    if (entropy->restarts_to_go == 0)
496      if (! emit_restart(&state, entropy->next_restart_num))
497	return FALSE;
498  }
499
500  /* Encode the MCU data blocks */
501  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
502    ci = cinfo->MCU_membership[blkn];
503    compptr = cinfo->cur_comp_info[ci];
504    if (! encode_one_block(&state,
505			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
506			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
507			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
508      return FALSE;
509    /* Update last_dc_val */
510    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
511  }
512
513  /* Completed MCU, so update state */
514  cinfo->dest->next_output_byte = state.next_output_byte;
515  cinfo->dest->free_in_buffer = state.free_in_buffer;
516  ASSIGN_STATE(entropy->saved, state.cur);
517
518  /* Update restart-interval state too */
519  if (cinfo->restart_interval) {
520    if (entropy->restarts_to_go == 0) {
521      entropy->restarts_to_go = cinfo->restart_interval;
522      entropy->next_restart_num++;
523      entropy->next_restart_num &= 7;
524    }
525    entropy->restarts_to_go--;
526  }
527
528  return TRUE;
529}
530
531
532/*
533 * Finish up at the end of a Huffman-compressed scan.
534 */
535
536METHODDEF(void)
537finish_pass_huff (j_compress_ptr cinfo)
538{
539  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
540  working_state state;
541
542  /* Load up working state ... flush_bits needs it */
543  state.next_output_byte = cinfo->dest->next_output_byte;
544  state.free_in_buffer = cinfo->dest->free_in_buffer;
545  ASSIGN_STATE(state.cur, entropy->saved);
546  state.cinfo = cinfo;
547
548  /* Flush out the last data */
549  if (! flush_bits(&state))
550    ERREXIT(cinfo, JERR_CANT_SUSPEND);
551
552  /* Update state */
553  cinfo->dest->next_output_byte = state.next_output_byte;
554  cinfo->dest->free_in_buffer = state.free_in_buffer;
555  ASSIGN_STATE(entropy->saved, state.cur);
556}
557
558
559/*
560 * Huffman coding optimization.
561 *
562 * We first scan the supplied data and count the number of uses of each symbol
563 * that is to be Huffman-coded. (This process MUST agree with the code above.)
564 * Then we build a Huffman coding tree for the observed counts.
565 * Symbols which are not needed at all for the particular image are not
566 * assigned any code, which saves space in the DHT marker as well as in
567 * the compressed data.
568 */
569
570#ifdef ENTROPY_OPT_SUPPORTED
571
572
573/* Process a single block's worth of coefficients */
574
575LOCAL(void)
576htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
577		 long dc_counts[], long ac_counts[])
578{
579  register int temp;
580  register int nbits;
581  register int k, r;
582
583  /* Encode the DC coefficient difference per section F.1.2.1 */
584
585  temp = block[0] - last_dc_val;
586  if (temp < 0)
587    temp = -temp;
588
589  /* Find the number of bits needed for the magnitude of the coefficient */
590  nbits = 0;
591  while (temp) {
592    nbits++;
593    temp >>= 1;
594  }
595  /* Check for out-of-range coefficient values.
596   * Since we're encoding a difference, the range limit is twice as much.
597   */
598  if (nbits > MAX_COEF_BITS+1)
599    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
600
601  /* Count the Huffman symbol for the number of bits */
602  dc_counts[nbits]++;
603
604  /* Encode the AC coefficients per section F.1.2.2 */
605
606  r = 0;			/* r = run length of zeros */
607
608  for (k = 1; k < DCTSIZE2; k++) {
609    if ((temp = block[jpeg_natural_order[k]]) == 0) {
610      r++;
611    } else {
612      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
613      while (r > 15) {
614	ac_counts[0xF0]++;
615	r -= 16;
616      }
617
618      /* Find the number of bits needed for the magnitude of the coefficient */
619      if (temp < 0)
620	temp = -temp;
621
622      /* Find the number of bits needed for the magnitude of the coefficient */
623      nbits = 1;		/* there must be at least one 1 bit */
624      while ((temp >>= 1))
625	nbits++;
626      /* Check for out-of-range coefficient values */
627      if (nbits > MAX_COEF_BITS)
628	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
629
630      /* Count Huffman symbol for run length / number of bits */
631      ac_counts[(r << 4) + nbits]++;
632
633      r = 0;
634    }
635  }
636
637  /* If the last coef(s) were zero, emit an end-of-block code */
638  if (r > 0)
639    ac_counts[0]++;
640}
641
642
643/*
644 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
645 * No data is actually output, so no suspension return is possible.
646 */
647
648METHODDEF(boolean)
649encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
650{
651  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
652  int blkn, ci;
653  jpeg_component_info * compptr;
654
655  /* Take care of restart intervals if needed */
656  if (cinfo->restart_interval) {
657    if (entropy->restarts_to_go == 0) {
658      /* Re-initialize DC predictions to 0 */
659      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
660	entropy->saved.last_dc_val[ci] = 0;
661      /* Update restart state */
662      entropy->restarts_to_go = cinfo->restart_interval;
663    }
664    entropy->restarts_to_go--;
665  }
666
667  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
668    ci = cinfo->MCU_membership[blkn];
669    compptr = cinfo->cur_comp_info[ci];
670    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
671		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
672		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
673    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
674  }
675
676  return TRUE;
677}
678
679
680/*
681 * Generate the best Huffman code table for the given counts, fill htbl.
682 * Note this is also used by jcphuff.c.
683 *
684 * The JPEG standard requires that no symbol be assigned a codeword of all
685 * one bits (so that padding bits added at the end of a compressed segment
686 * can't look like a valid code).  Because of the canonical ordering of
687 * codewords, this just means that there must be an unused slot in the
688 * longest codeword length category.  Section K.2 of the JPEG spec suggests
689 * reserving such a slot by pretending that symbol 256 is a valid symbol
690 * with count 1.  In theory that's not optimal; giving it count zero but
691 * including it in the symbol set anyway should give a better Huffman code.
692 * But the theoretically better code actually seems to come out worse in
693 * practice, because it produces more all-ones bytes (which incur stuffed
694 * zero bytes in the final file).  In any case the difference is tiny.
695 *
696 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
697 * If some symbols have a very small but nonzero probability, the Huffman tree
698 * must be adjusted to meet the code length restriction.  We currently use
699 * the adjustment method suggested in JPEG section K.2.  This method is *not*
700 * optimal; it may not choose the best possible limited-length code.  But
701 * typically only very-low-frequency symbols will be given less-than-optimal
702 * lengths, so the code is almost optimal.  Experimental comparisons against
703 * an optimal limited-length-code algorithm indicate that the difference is
704 * microscopic --- usually less than a hundredth of a percent of total size.
705 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
706 */
707
708GLOBAL(void)
709jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
710{
711#define MAX_CLEN 32		/* assumed maximum initial code length */
712  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
713  int codesize[257];		/* codesize[k] = code length of symbol k */
714  int others[257];		/* next symbol in current branch of tree */
715  int c1, c2;
716  int p, i, j;
717  long v;
718
719  /* This algorithm is explained in section K.2 of the JPEG standard */
720
721  MEMZERO(bits, SIZEOF(bits));
722  MEMZERO(codesize, SIZEOF(codesize));
723  for (i = 0; i < 257; i++)
724    others[i] = -1;		/* init links to empty */
725
726  freq[256] = 1;		/* make sure 256 has a nonzero count */
727  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
728   * that no real symbol is given code-value of all ones, because 256
729   * will be placed last in the largest codeword category.
730   */
731
732  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
733
734  for (;;) {
735    /* Find the smallest nonzero frequency, set c1 = its symbol */
736    /* In case of ties, take the larger symbol number */
737    c1 = -1;
738    v = 1000000000L;
739    for (i = 0; i <= 256; i++) {
740      if (freq[i] && freq[i] <= v) {
741	v = freq[i];
742	c1 = i;
743      }
744    }
745
746    /* Find the next smallest nonzero frequency, set c2 = its symbol */
747    /* In case of ties, take the larger symbol number */
748    c2 = -1;
749    v = 1000000000L;
750    for (i = 0; i <= 256; i++) {
751      if (freq[i] && freq[i] <= v && i != c1) {
752	v = freq[i];
753	c2 = i;
754      }
755    }
756
757    /* Done if we've merged everything into one frequency */
758    if (c2 < 0)
759      break;
760
761    /* Else merge the two counts/trees */
762    freq[c1] += freq[c2];
763    freq[c2] = 0;
764
765    /* Increment the codesize of everything in c1's tree branch */
766    codesize[c1]++;
767    while (others[c1] >= 0) {
768      c1 = others[c1];
769      codesize[c1]++;
770    }
771
772    others[c1] = c2;		/* chain c2 onto c1's tree branch */
773
774    /* Increment the codesize of everything in c2's tree branch */
775    codesize[c2]++;
776    while (others[c2] >= 0) {
777      c2 = others[c2];
778      codesize[c2]++;
779    }
780  }
781
782  /* Now count the number of symbols of each code length */
783  for (i = 0; i <= 256; i++) {
784    if (codesize[i]) {
785      /* The JPEG standard seems to think that this can't happen, */
786      /* but I'm paranoid... */
787      if (codesize[i] > MAX_CLEN)
788	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
789
790      bits[codesize[i]]++;
791    }
792  }
793
794  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
795   * Huffman procedure assigned any such lengths, we must adjust the coding.
796   * Here is what the JPEG spec says about how this next bit works:
797   * Since symbols are paired for the longest Huffman code, the symbols are
798   * removed from this length category two at a time.  The prefix for the pair
799   * (which is one bit shorter) is allocated to one of the pair; then,
800   * skipping the BITS entry for that prefix length, a code word from the next
801   * shortest nonzero BITS entry is converted into a prefix for two code words
802   * one bit longer.
803   */
804
805  for (i = MAX_CLEN; i > 16; i--) {
806    while (bits[i] > 0) {
807      j = i - 2;		/* find length of new prefix to be used */
808      while (bits[j] == 0)
809	j--;
810
811      bits[i] -= 2;		/* remove two symbols */
812      bits[i-1]++;		/* one goes in this length */
813      bits[j+1] += 2;		/* two new symbols in this length */
814      bits[j]--;		/* symbol of this length is now a prefix */
815    }
816  }
817
818  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
819  while (bits[i] == 0)		/* find largest codelength still in use */
820    i--;
821  bits[i]--;
822
823  /* Return final symbol counts (only for lengths 0..16) */
824  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
825
826  /* Return a list of the symbols sorted by code length */
827  /* It's not real clear to me why we don't need to consider the codelength
828   * changes made above, but the JPEG spec seems to think this works.
829   */
830  p = 0;
831  for (i = 1; i <= MAX_CLEN; i++) {
832    for (j = 0; j <= 255; j++) {
833      if (codesize[j] == i) {
834	htbl->huffval[p] = (UINT8) j;
835	p++;
836      }
837    }
838  }
839
840  /* Set sent_table FALSE so updated table will be written to JPEG file. */
841  htbl->sent_table = FALSE;
842}
843
844
845/*
846 * Finish up a statistics-gathering pass and create the new Huffman tables.
847 */
848
849METHODDEF(void)
850finish_pass_gather (j_compress_ptr cinfo)
851{
852  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
853  int ci, dctbl, actbl;
854  jpeg_component_info * compptr;
855  JHUFF_TBL **htblptr;
856  boolean did_dc[NUM_HUFF_TBLS];
857  boolean did_ac[NUM_HUFF_TBLS];
858
859  /* It's important not to apply jpeg_gen_optimal_table more than once
860   * per table, because it clobbers the input frequency counts!
861   */
862  MEMZERO(did_dc, SIZEOF(did_dc));
863  MEMZERO(did_ac, SIZEOF(did_ac));
864
865  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
866    compptr = cinfo->cur_comp_info[ci];
867    dctbl = compptr->dc_tbl_no;
868    actbl = compptr->ac_tbl_no;
869    if (! did_dc[dctbl]) {
870      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
871      if (*htblptr == NULL)
872	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
873      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
874      did_dc[dctbl] = TRUE;
875    }
876    if (! did_ac[actbl]) {
877      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
878      if (*htblptr == NULL)
879	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
880      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
881      did_ac[actbl] = TRUE;
882    }
883  }
884}
885
886
887#endif /* ENTROPY_OPT_SUPPORTED */
888
889
890/*
891 * Module initialization routine for Huffman entropy encoding.
892 */
893
894GLOBAL(void)
895jinit_huff_encoder (j_compress_ptr cinfo)
896{
897  huff_entropy_ptr entropy;
898  int i;
899
900  entropy = (huff_entropy_ptr)
901    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
902				SIZEOF(huff_entropy_encoder));
903  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
904  entropy->pub.start_pass = start_pass_huff;
905
906  /* Mark tables unallocated */
907  for (i = 0; i < NUM_HUFF_TBLS; i++) {
908    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
909#ifdef ENTROPY_OPT_SUPPORTED
910    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
911#endif
912  }
913}
914
915#endif //_FX_JPEG_TURBO_
916