fpdfapi_jfdctint.c revision ee451cb395940862dad63c85adfe8f2fd55e864c
1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jfdctint.c
4 *
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains a slow-but-accurate integer implementation of the
10 * forward DCT (Discrete Cosine Transform).
11 *
12 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
13 * on each column.  Direct algorithms are also available, but they are
14 * much more complex and seem not to be any faster when reduced to code.
15 *
16 * This implementation is based on an algorithm described in
17 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
18 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
19 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
20 * The primary algorithm described there uses 11 multiplies and 29 adds.
21 * We use their alternate method with 12 multiplies and 32 adds.
22 * The advantage of this method is that no data path contains more than one
23 * multiplication; this allows a very simple and accurate implementation in
24 * scaled fixed-point arithmetic, with a minimal number of shifts.
25 */
26
27#define JPEG_INTERNALS
28#include "jinclude.h"
29#include "jpeglib.h"
30#include "jdct.h"		/* Private declarations for DCT subsystem */
31
32#ifdef DCT_ISLOW_SUPPORTED
33
34
35/*
36 * This module is specialized to the case DCTSIZE = 8.
37 */
38
39#if DCTSIZE != 8
40  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
41#endif
42
43
44/*
45 * The poop on this scaling stuff is as follows:
46 *
47 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
48 * larger than the true DCT outputs.  The final outputs are therefore
49 * a factor of N larger than desired; since N=8 this can be cured by
50 * a simple right shift at the end of the algorithm.  The advantage of
51 * this arrangement is that we save two multiplications per 1-D DCT,
52 * because the y0 and y4 outputs need not be divided by sqrt(N).
53 * In the IJG code, this factor of 8 is removed by the quantization step
54 * (in jcdctmgr.c), NOT in this module.
55 *
56 * We have to do addition and subtraction of the integer inputs, which
57 * is no problem, and multiplication by fractional constants, which is
58 * a problem to do in integer arithmetic.  We multiply all the constants
59 * by CONST_SCALE and convert them to integer constants (thus retaining
60 * CONST_BITS bits of precision in the constants).  After doing a
61 * multiplication we have to divide the product by CONST_SCALE, with proper
62 * rounding, to produce the correct output.  This division can be done
63 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
64 * as long as possible so that partial sums can be added together with
65 * full fractional precision.
66 *
67 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
68 * they are represented to better-than-integral precision.  These outputs
69 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
70 * with the recommended scaling.  (For 12-bit sample data, the intermediate
71 * array is INT32 anyway.)
72 *
73 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
74 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
75 * shows that the values given below are the most effective.
76 */
77
78#if BITS_IN_JSAMPLE == 8
79#define CONST_BITS  13
80#define PASS1_BITS  2
81#else
82#define CONST_BITS  13
83#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
84#endif
85
86/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
87 * causing a lot of useless floating-point operations at run time.
88 * To get around this we use the following pre-calculated constants.
89 * If you change CONST_BITS you may want to add appropriate values.
90 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
91 */
92
93#if CONST_BITS == 13
94#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
95#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
96#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
97#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
98#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
99#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
100#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
101#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
102#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
103#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
104#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
105#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
106#else
107#define FIX_0_298631336  FIX(0.298631336)
108#define FIX_0_390180644  FIX(0.390180644)
109#define FIX_0_541196100  FIX(0.541196100)
110#define FIX_0_765366865  FIX(0.765366865)
111#define FIX_0_899976223  FIX(0.899976223)
112#define FIX_1_175875602  FIX(1.175875602)
113#define FIX_1_501321110  FIX(1.501321110)
114#define FIX_1_847759065  FIX(1.847759065)
115#define FIX_1_961570560  FIX(1.961570560)
116#define FIX_2_053119869  FIX(2.053119869)
117#define FIX_2_562915447  FIX(2.562915447)
118#define FIX_3_072711026  FIX(3.072711026)
119#endif
120
121
122/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
123 * For 8-bit samples with the recommended scaling, all the variable
124 * and constant values involved are no more than 16 bits wide, so a
125 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
126 * For 12-bit samples, a full 32-bit multiplication will be needed.
127 */
128
129#if BITS_IN_JSAMPLE == 8
130#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
131#else
132#define MULTIPLY(var,const)  ((var) * (const))
133#endif
134
135
136/*
137 * Perform the forward DCT on one block of samples.
138 */
139
140GLOBAL(void)
141jpeg_fdct_islow (DCTELEM * data)
142{
143  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
144  INT32 tmp10, tmp11, tmp12, tmp13;
145  INT32 z1, z2, z3, z4, z5;
146  DCTELEM *dataptr;
147  int ctr;
148  SHIFT_TEMPS
149
150  /* Pass 1: process rows. */
151  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
152  /* furthermore, we scale the results by 2**PASS1_BITS. */
153
154  dataptr = data;
155  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
156    tmp0 = dataptr[0] + dataptr[7];
157    tmp7 = dataptr[0] - dataptr[7];
158    tmp1 = dataptr[1] + dataptr[6];
159    tmp6 = dataptr[1] - dataptr[6];
160    tmp2 = dataptr[2] + dataptr[5];
161    tmp5 = dataptr[2] - dataptr[5];
162    tmp3 = dataptr[3] + dataptr[4];
163    tmp4 = dataptr[3] - dataptr[4];
164
165    /* Even part per LL&M figure 1 --- note that published figure is faulty;
166     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
167     */
168
169    tmp10 = tmp0 + tmp3;
170    tmp13 = tmp0 - tmp3;
171    tmp11 = tmp1 + tmp2;
172    tmp12 = tmp1 - tmp2;
173
174    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
175    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
176
177    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
178    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
179				   CONST_BITS-PASS1_BITS);
180    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
181				   CONST_BITS-PASS1_BITS);
182
183    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
184     * cK represents cos(K*pi/16).
185     * i0..i3 in the paper are tmp4..tmp7 here.
186     */
187
188    z1 = tmp4 + tmp7;
189    z2 = tmp5 + tmp6;
190    z3 = tmp4 + tmp6;
191    z4 = tmp5 + tmp7;
192    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
193
194    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
195    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
196    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
197    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
198    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
199    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
200    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
201    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
202
203    z3 += z5;
204    z4 += z5;
205
206    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
207    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
208    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
209    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
210
211    dataptr += DCTSIZE;		/* advance pointer to next row */
212  }
213
214  /* Pass 2: process columns.
215   * We remove the PASS1_BITS scaling, but leave the results scaled up
216   * by an overall factor of 8.
217   */
218
219  dataptr = data;
220  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
221    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
222    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
223    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
224    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
225    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
226    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
227    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
228    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
229
230    /* Even part per LL&M figure 1 --- note that published figure is faulty;
231     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
232     */
233
234    tmp10 = tmp0 + tmp3;
235    tmp13 = tmp0 - tmp3;
236    tmp11 = tmp1 + tmp2;
237    tmp12 = tmp1 - tmp2;
238
239    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
240    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
241
242    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
243    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
244					   CONST_BITS+PASS1_BITS);
245    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
246					   CONST_BITS+PASS1_BITS);
247
248    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
249     * cK represents cos(K*pi/16).
250     * i0..i3 in the paper are tmp4..tmp7 here.
251     */
252
253    z1 = tmp4 + tmp7;
254    z2 = tmp5 + tmp6;
255    z3 = tmp4 + tmp6;
256    z4 = tmp5 + tmp7;
257    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
258
259    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
260    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
261    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
262    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
263    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
264    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
265    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
266    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
267
268    z3 += z5;
269    z4 += z5;
270
271    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
272					   CONST_BITS+PASS1_BITS);
273    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
274					   CONST_BITS+PASS1_BITS);
275    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
276					   CONST_BITS+PASS1_BITS);
277    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
278					   CONST_BITS+PASS1_BITS);
279
280    dataptr++;			/* advance pointer to next column */
281  }
282}
283
284#endif /* DCT_ISLOW_SUPPORTED */
285
286#endif //_FX_JPEG_TURBO_
287