1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jidctfst.c
4 *
5 * Copyright (C) 1994-1998, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains a fast, not so accurate integer implementation of the
10 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
11 * must also perform dequantization of the input coefficients.
12 *
13 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14 * on each row (or vice versa, but it's more convenient to emit a row at
15 * a time).  Direct algorithms are also available, but they are much more
16 * complex and seem not to be any faster when reduced to code.
17 *
18 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
19 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
20 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
21 * JPEG textbook (see REFERENCES section in file README).  The following code
22 * is based directly on figure 4-8 in P&M.
23 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
24 * possible to arrange the computation so that many of the multiplies are
25 * simple scalings of the final outputs.  These multiplies can then be
26 * folded into the multiplications or divisions by the JPEG quantization
27 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
28 * to be done in the DCT itself.
29 * The primary disadvantage of this method is that with fixed-point math,
30 * accuracy is lost due to imprecise representation of the scaled
31 * quantization values.  The smaller the quantization table entry, the less
32 * precise the scaled value, so this implementation does worse with high-
33 * quality-setting files than with low-quality ones.
34 */
35
36#define JPEG_INTERNALS
37#include "jinclude.h"
38#include "jpeglib.h"
39#include "jdct.h"		/* Private declarations for DCT subsystem */
40
41#ifdef DCT_IFAST_SUPPORTED
42
43
44/*
45 * This module is specialized to the case DCTSIZE = 8.
46 */
47
48#if DCTSIZE != 8
49  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
50#endif
51
52
53/* Scaling decisions are generally the same as in the LL&M algorithm;
54 * see jidctint.c for more details.  However, we choose to descale
55 * (right shift) multiplication products as soon as they are formed,
56 * rather than carrying additional fractional bits into subsequent additions.
57 * This compromises accuracy slightly, but it lets us save a few shifts.
58 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
59 * everywhere except in the multiplications proper; this saves a good deal
60 * of work on 16-bit-int machines.
61 *
62 * The dequantized coefficients are not integers because the AA&N scaling
63 * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
64 * so that the first and second IDCT rounds have the same input scaling.
65 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
66 * avoid a descaling shift; this compromises accuracy rather drastically
67 * for small quantization table entries, but it saves a lot of shifts.
68 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
69 * so we use a much larger scaling factor to preserve accuracy.
70 *
71 * A final compromise is to represent the multiplicative constants to only
72 * 8 fractional bits, rather than 13.  This saves some shifting work on some
73 * machines, and may also reduce the cost of multiplication (since there
74 * are fewer one-bits in the constants).
75 */
76
77#if BITS_IN_JSAMPLE == 8
78#define CONST_BITS  8
79#define PASS1_BITS  2
80#else
81#define CONST_BITS  8
82#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
83#endif
84
85/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86 * causing a lot of useless floating-point operations at run time.
87 * To get around this we use the following pre-calculated constants.
88 * If you change CONST_BITS you may want to add appropriate values.
89 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90 */
91
92#if CONST_BITS == 8
93#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
94#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
95#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
96#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
97#else
98#define FIX_1_082392200  FIX(1.082392200)
99#define FIX_1_414213562  FIX(1.414213562)
100#define FIX_1_847759065  FIX(1.847759065)
101#define FIX_2_613125930  FIX(2.613125930)
102#endif
103
104
105/* We can gain a little more speed, with a further compromise in accuracy,
106 * by omitting the addition in a descaling shift.  This yields an incorrectly
107 * rounded result half the time...
108 */
109
110#ifndef USE_ACCURATE_ROUNDING
111#undef DESCALE
112#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
113#endif
114
115
116/* Multiply a DCTELEM variable by an INT32 constant, and immediately
117 * descale to yield a DCTELEM result.
118 */
119
120#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
121
122
123/* Dequantize a coefficient by multiplying it by the multiplier-table
124 * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
125 * multiplication will do.  For 12-bit data, the multiplier table is
126 * declared INT32, so a 32-bit multiply will be used.
127 */
128
129#if BITS_IN_JSAMPLE == 8
130#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
131#else
132#define DEQUANTIZE(coef,quantval)  \
133	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
134#endif
135
136
137/* Like DESCALE, but applies to a DCTELEM and produces an int.
138 * We assume that int right shift is unsigned if INT32 right shift is.
139 */
140
141#ifdef RIGHT_SHIFT_IS_UNSIGNED
142#define ISHIFT_TEMPS	DCTELEM ishift_temp;
143#if BITS_IN_JSAMPLE == 8
144#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
145#else
146#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
147#endif
148#define IRIGHT_SHIFT(x,shft)  \
149    ((ishift_temp = (x)) < 0 ? \
150     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
151     (ishift_temp >> (shft)))
152#else
153#define ISHIFT_TEMPS
154#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
155#endif
156
157#ifdef USE_ACCURATE_ROUNDING
158#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
159#else
160#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
161#endif
162
163
164/*
165 * Perform dequantization and inverse DCT on one block of coefficients.
166 */
167
168GLOBAL(void)
169jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
170		 JCOEFPTR coef_block,
171		 JSAMPARRAY output_buf, JDIMENSION output_col)
172{
173  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
174  DCTELEM tmp10, tmp11, tmp12, tmp13;
175  DCTELEM z5, z10, z11, z12, z13;
176  JCOEFPTR inptr;
177  IFAST_MULT_TYPE * quantptr;
178  int * wsptr;
179  JSAMPROW outptr;
180  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
181  int ctr;
182  int workspace[DCTSIZE2];	/* buffers data between passes */
183  SHIFT_TEMPS			/* for DESCALE */
184  ISHIFT_TEMPS			/* for IDESCALE */
185
186  /* Pass 1: process columns from input, store into work array. */
187
188  inptr = coef_block;
189  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
190  wsptr = workspace;
191  for (ctr = DCTSIZE; ctr > 0; ctr--) {
192    /* Due to quantization, we will usually find that many of the input
193     * coefficients are zero, especially the AC terms.  We can exploit this
194     * by short-circuiting the IDCT calculation for any column in which all
195     * the AC terms are zero.  In that case each output is equal to the
196     * DC coefficient (with scale factor as needed).
197     * With typical images and quantization tables, half or more of the
198     * column DCT calculations can be simplified this way.
199     */
200
201    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
202	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
203	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
204	inptr[DCTSIZE*7] == 0) {
205      /* AC terms all zero */
206      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
207
208      wsptr[DCTSIZE*0] = dcval;
209      wsptr[DCTSIZE*1] = dcval;
210      wsptr[DCTSIZE*2] = dcval;
211      wsptr[DCTSIZE*3] = dcval;
212      wsptr[DCTSIZE*4] = dcval;
213      wsptr[DCTSIZE*5] = dcval;
214      wsptr[DCTSIZE*6] = dcval;
215      wsptr[DCTSIZE*7] = dcval;
216
217      inptr++;			/* advance pointers to next column */
218      quantptr++;
219      wsptr++;
220      continue;
221    }
222
223    /* Even part */
224
225    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
226    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
227    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
228    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
229
230    tmp10 = tmp0 + tmp2;	/* phase 3 */
231    tmp11 = tmp0 - tmp2;
232
233    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
234    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
235
236    tmp0 = tmp10 + tmp13;	/* phase 2 */
237    tmp3 = tmp10 - tmp13;
238    tmp1 = tmp11 + tmp12;
239    tmp2 = tmp11 - tmp12;
240
241    /* Odd part */
242
243    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
244    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
245    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
246    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
247
248    z13 = tmp6 + tmp5;		/* phase 6 */
249    z10 = tmp6 - tmp5;
250    z11 = tmp4 + tmp7;
251    z12 = tmp4 - tmp7;
252
253    tmp7 = z11 + z13;		/* phase 5 */
254    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
255
256    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
257    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
258    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
259
260    tmp6 = tmp12 - tmp7;	/* phase 2 */
261    tmp5 = tmp11 - tmp6;
262    tmp4 = tmp10 + tmp5;
263
264    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
265    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
266    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
267    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
268    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
269    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
270    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
271    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
272
273    inptr++;			/* advance pointers to next column */
274    quantptr++;
275    wsptr++;
276  }
277
278  /* Pass 2: process rows from work array, store into output array. */
279  /* Note that we must descale the results by a factor of 8 == 2**3, */
280  /* and also undo the PASS1_BITS scaling. */
281
282  wsptr = workspace;
283  for (ctr = 0; ctr < DCTSIZE; ctr++) {
284    outptr = output_buf[ctr] + output_col;
285    /* Rows of zeroes can be exploited in the same way as we did with columns.
286     * However, the column calculation has created many nonzero AC terms, so
287     * the simplification applies less often (typically 5% to 10% of the time).
288     * On machines with very fast multiplication, it's possible that the
289     * test takes more time than it's worth.  In that case this section
290     * may be commented out.
291     */
292
293#ifndef NO_ZERO_ROW_TEST
294    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
295	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
296      /* AC terms all zero */
297      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
298				  & RANGE_MASK];
299
300      outptr[0] = dcval;
301      outptr[1] = dcval;
302      outptr[2] = dcval;
303      outptr[3] = dcval;
304      outptr[4] = dcval;
305      outptr[5] = dcval;
306      outptr[6] = dcval;
307      outptr[7] = dcval;
308
309      wsptr += DCTSIZE;		/* advance pointer to next row */
310      continue;
311    }
312#endif
313
314    /* Even part */
315
316    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
317    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
318
319    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
320    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
321	    - tmp13;
322
323    tmp0 = tmp10 + tmp13;
324    tmp3 = tmp10 - tmp13;
325    tmp1 = tmp11 + tmp12;
326    tmp2 = tmp11 - tmp12;
327
328    /* Odd part */
329
330    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
331    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
332    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
333    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
334
335    tmp7 = z11 + z13;		/* phase 5 */
336    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
337
338    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
339    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
340    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
341
342    tmp6 = tmp12 - tmp7;	/* phase 2 */
343    tmp5 = tmp11 - tmp6;
344    tmp4 = tmp10 + tmp5;
345
346    /* Final output stage: scale down by a factor of 8 and range-limit */
347
348    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
349			    & RANGE_MASK];
350    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
351			    & RANGE_MASK];
352    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
353			    & RANGE_MASK];
354    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
355			    & RANGE_MASK];
356    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
357			    & RANGE_MASK];
358    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
359			    & RANGE_MASK];
360    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
361			    & RANGE_MASK];
362    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
363			    & RANGE_MASK];
364
365    wsptr += DCTSIZE;		/* advance pointer to next row */
366  }
367}
368
369#endif /* DCT_IFAST_SUPPORTED */
370
371#endif //_FX_JPEG_TURBO_
372