1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jidctint.c
4 *
5 * Copyright (C) 1991-1998, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains a slow-but-accurate integer implementation of the
10 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
11 * must also perform dequantization of the input coefficients.
12 *
13 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14 * on each row (or vice versa, but it's more convenient to emit a row at
15 * a time).  Direct algorithms are also available, but they are much more
16 * complex and seem not to be any faster when reduced to code.
17 *
18 * This implementation is based on an algorithm described in
19 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
20 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
21 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
22 * The primary algorithm described there uses 11 multiplies and 29 adds.
23 * We use their alternate method with 12 multiplies and 32 adds.
24 * The advantage of this method is that no data path contains more than one
25 * multiplication; this allows a very simple and accurate implementation in
26 * scaled fixed-point arithmetic, with a minimal number of shifts.
27 */
28
29#define JPEG_INTERNALS
30#include "jinclude.h"
31#include "jpeglib.h"
32#include "jdct.h"		/* Private declarations for DCT subsystem */
33
34#ifdef DCT_ISLOW_SUPPORTED
35
36
37/*
38 * This module is specialized to the case DCTSIZE = 8.
39 */
40
41#if DCTSIZE != 8
42  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
43#endif
44
45
46/*
47 * The poop on this scaling stuff is as follows:
48 *
49 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
50 * larger than the true IDCT outputs.  The final outputs are therefore
51 * a factor of N larger than desired; since N=8 this can be cured by
52 * a simple right shift at the end of the algorithm.  The advantage of
53 * this arrangement is that we save two multiplications per 1-D IDCT,
54 * because the y0 and y4 inputs need not be divided by sqrt(N).
55 *
56 * We have to do addition and subtraction of the integer inputs, which
57 * is no problem, and multiplication by fractional constants, which is
58 * a problem to do in integer arithmetic.  We multiply all the constants
59 * by CONST_SCALE and convert them to integer constants (thus retaining
60 * CONST_BITS bits of precision in the constants).  After doing a
61 * multiplication we have to divide the product by CONST_SCALE, with proper
62 * rounding, to produce the correct output.  This division can be done
63 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
64 * as long as possible so that partial sums can be added together with
65 * full fractional precision.
66 *
67 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
68 * they are represented to better-than-integral precision.  These outputs
69 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
70 * with the recommended scaling.  (To scale up 12-bit sample data further, an
71 * intermediate INT32 array would be needed.)
72 *
73 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
74 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
75 * shows that the values given below are the most effective.
76 */
77
78#if BITS_IN_JSAMPLE == 8
79#define CONST_BITS  13
80#define PASS1_BITS  2
81#else
82#define CONST_BITS  13
83#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
84#endif
85
86/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
87 * causing a lot of useless floating-point operations at run time.
88 * To get around this we use the following pre-calculated constants.
89 * If you change CONST_BITS you may want to add appropriate values.
90 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
91 */
92
93#if CONST_BITS == 13
94#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
95#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
96#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
97#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
98#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
99#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
100#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
101#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
102#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
103#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
104#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
105#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
106#else
107#define FIX_0_298631336  FIX(0.298631336)
108#define FIX_0_390180644  FIX(0.390180644)
109#define FIX_0_541196100  FIX(0.541196100)
110#define FIX_0_765366865  FIX(0.765366865)
111#define FIX_0_899976223  FIX(0.899976223)
112#define FIX_1_175875602  FIX(1.175875602)
113#define FIX_1_501321110  FIX(1.501321110)
114#define FIX_1_847759065  FIX(1.847759065)
115#define FIX_1_961570560  FIX(1.961570560)
116#define FIX_2_053119869  FIX(2.053119869)
117#define FIX_2_562915447  FIX(2.562915447)
118#define FIX_3_072711026  FIX(3.072711026)
119#endif
120
121
122/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
123 * For 8-bit samples with the recommended scaling, all the variable
124 * and constant values involved are no more than 16 bits wide, so a
125 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
126 * For 12-bit samples, a full 32-bit multiplication will be needed.
127 */
128
129#if BITS_IN_JSAMPLE == 8
130#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
131#else
132#define MULTIPLY(var,const)  ((var) * (const))
133#endif
134
135
136/* Dequantize a coefficient by multiplying it by the multiplier-table
137 * entry; produce an int result.  In this module, both inputs and result
138 * are 16 bits or less, so either int or short multiply will work.
139 */
140
141#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
142
143
144/*
145 * Perform dequantization and inverse DCT on one block of coefficients.
146 */
147
148GLOBAL(void)
149jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
150		 JCOEFPTR coef_block,
151		 JSAMPARRAY output_buf, JDIMENSION output_col)
152{
153  INT32 tmp0, tmp1, tmp2, tmp3;
154  INT32 tmp10, tmp11, tmp12, tmp13;
155  INT32 z1, z2, z3, z4, z5;
156  JCOEFPTR inptr;
157  ISLOW_MULT_TYPE * quantptr;
158  int * wsptr;
159  JSAMPROW outptr;
160  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
161  int ctr;
162  int workspace[DCTSIZE2];	/* buffers data between passes */
163  SHIFT_TEMPS
164
165  /* Pass 1: process columns from input, store into work array. */
166  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
167  /* furthermore, we scale the results by 2**PASS1_BITS. */
168
169  inptr = coef_block;
170  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
171  wsptr = workspace;
172  for (ctr = DCTSIZE; ctr > 0; ctr--) {
173    /* Due to quantization, we will usually find that many of the input
174     * coefficients are zero, especially the AC terms.  We can exploit this
175     * by short-circuiting the IDCT calculation for any column in which all
176     * the AC terms are zero.  In that case each output is equal to the
177     * DC coefficient (with scale factor as needed).
178     * With typical images and quantization tables, half or more of the
179     * column DCT calculations can be simplified this way.
180     */
181
182    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
183	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
184	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
185	inptr[DCTSIZE*7] == 0) {
186      /* AC terms all zero */
187      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
188
189      wsptr[DCTSIZE*0] = dcval;
190      wsptr[DCTSIZE*1] = dcval;
191      wsptr[DCTSIZE*2] = dcval;
192      wsptr[DCTSIZE*3] = dcval;
193      wsptr[DCTSIZE*4] = dcval;
194      wsptr[DCTSIZE*5] = dcval;
195      wsptr[DCTSIZE*6] = dcval;
196      wsptr[DCTSIZE*7] = dcval;
197
198      inptr++;			/* advance pointers to next column */
199      quantptr++;
200      wsptr++;
201      continue;
202    }
203
204    /* Even part: reverse the even part of the forward DCT. */
205    /* The rotator is sqrt(2)*c(-6). */
206
207    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
208    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
209
210    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
211    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
212    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
213
214    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
215    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
216
217    tmp0 = (z2 + z3) << CONST_BITS;
218    tmp1 = (z2 - z3) << CONST_BITS;
219
220    tmp10 = tmp0 + tmp3;
221    tmp13 = tmp0 - tmp3;
222    tmp11 = tmp1 + tmp2;
223    tmp12 = tmp1 - tmp2;
224
225    /* Odd part per figure 8; the matrix is unitary and hence its
226     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
227     */
228
229    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
230    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
231    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
232    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
233
234    z1 = tmp0 + tmp3;
235    z2 = tmp1 + tmp2;
236    z3 = tmp0 + tmp2;
237    z4 = tmp1 + tmp3;
238    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
239
240    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
241    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
242    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
243    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
244    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
245    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
246    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
247    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
248
249    z3 += z5;
250    z4 += z5;
251
252    tmp0 += z1 + z3;
253    tmp1 += z2 + z4;
254    tmp2 += z2 + z3;
255    tmp3 += z1 + z4;
256
257    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
258
259    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
260    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
261    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
262    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
263    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
264    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
265    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
266    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
267
268    inptr++;			/* advance pointers to next column */
269    quantptr++;
270    wsptr++;
271  }
272
273  /* Pass 2: process rows from work array, store into output array. */
274  /* Note that we must descale the results by a factor of 8 == 2**3, */
275  /* and also undo the PASS1_BITS scaling. */
276
277  wsptr = workspace;
278  for (ctr = 0; ctr < DCTSIZE; ctr++) {
279    outptr = output_buf[ctr] + output_col;
280    /* Rows of zeroes can be exploited in the same way as we did with columns.
281     * However, the column calculation has created many nonzero AC terms, so
282     * the simplification applies less often (typically 5% to 10% of the time).
283     * On machines with very fast multiplication, it's possible that the
284     * test takes more time than it's worth.  In that case this section
285     * may be commented out.
286     */
287
288#ifndef NO_ZERO_ROW_TEST
289    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
290	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
291      /* AC terms all zero */
292      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
293				  & RANGE_MASK];
294
295      outptr[0] = dcval;
296      outptr[1] = dcval;
297      outptr[2] = dcval;
298      outptr[3] = dcval;
299      outptr[4] = dcval;
300      outptr[5] = dcval;
301      outptr[6] = dcval;
302      outptr[7] = dcval;
303
304      wsptr += DCTSIZE;		/* advance pointer to next row */
305      continue;
306    }
307#endif
308
309    /* Even part: reverse the even part of the forward DCT. */
310    /* The rotator is sqrt(2)*c(-6). */
311
312    z2 = (INT32) wsptr[2];
313    z3 = (INT32) wsptr[6];
314
315    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
316    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
317    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
318
319    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
320    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
321
322    tmp10 = tmp0 + tmp3;
323    tmp13 = tmp0 - tmp3;
324    tmp11 = tmp1 + tmp2;
325    tmp12 = tmp1 - tmp2;
326
327    /* Odd part per figure 8; the matrix is unitary and hence its
328     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
329     */
330
331    tmp0 = (INT32) wsptr[7];
332    tmp1 = (INT32) wsptr[5];
333    tmp2 = (INT32) wsptr[3];
334    tmp3 = (INT32) wsptr[1];
335
336    z1 = tmp0 + tmp3;
337    z2 = tmp1 + tmp2;
338    z3 = tmp0 + tmp2;
339    z4 = tmp1 + tmp3;
340    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
341
342    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
343    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
344    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
345    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
346    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
347    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
348    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
349    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
350
351    z3 += z5;
352    z4 += z5;
353
354    tmp0 += z1 + z3;
355    tmp1 += z2 + z4;
356    tmp2 += z2 + z3;
357    tmp3 += z1 + z4;
358
359    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
360
361    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
362					  CONST_BITS+PASS1_BITS+3)
363			    & RANGE_MASK];
364    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
365					  CONST_BITS+PASS1_BITS+3)
366			    & RANGE_MASK];
367    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
368					  CONST_BITS+PASS1_BITS+3)
369			    & RANGE_MASK];
370    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
371					  CONST_BITS+PASS1_BITS+3)
372			    & RANGE_MASK];
373    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
374					  CONST_BITS+PASS1_BITS+3)
375			    & RANGE_MASK];
376    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
377					  CONST_BITS+PASS1_BITS+3)
378			    & RANGE_MASK];
379    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
380					  CONST_BITS+PASS1_BITS+3)
381			    & RANGE_MASK];
382    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
383					  CONST_BITS+PASS1_BITS+3)
384			    & RANGE_MASK];
385
386    wsptr += DCTSIZE;		/* advance pointer to next row */
387  }
388}
389
390#endif /* DCT_ISLOW_SUPPORTED */
391
392#endif //_FX_JPEG_TURBO_
393