1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jidctred.c
4 *
5 * Copyright (C) 1994-1998, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains inverse-DCT routines that produce reduced-size output:
10 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
11 *
12 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
13 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
14 * with an 8-to-4 step that produces the four averages of two adjacent outputs
15 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
16 * These steps were derived by computing the corresponding values at the end
17 * of the normal LL&M code, then simplifying as much as possible.
18 *
19 * 1x1 is trivial: just take the DC coefficient divided by 8.
20 *
21 * See jidctint.c for additional comments.
22 */
23
24#define JPEG_INTERNALS
25#include "jinclude.h"
26#include "jpeglib.h"
27#include "jdct.h"		/* Private declarations for DCT subsystem */
28
29#ifdef IDCT_SCALING_SUPPORTED
30
31
32/*
33 * This module is specialized to the case DCTSIZE = 8.
34 */
35
36#if DCTSIZE != 8
37  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
38#endif
39
40
41/* Scaling is the same as in jidctint.c. */
42
43#if BITS_IN_JSAMPLE == 8
44#define CONST_BITS  13
45#define PASS1_BITS  2
46#else
47#define CONST_BITS  13
48#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
49#endif
50
51/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
52 * causing a lot of useless floating-point operations at run time.
53 * To get around this we use the following pre-calculated constants.
54 * If you change CONST_BITS you may want to add appropriate values.
55 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
56 */
57
58#if CONST_BITS == 13
59#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
60#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
61#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
62#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
63#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
64#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
65#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
66#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
67#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
68#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
69#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
70#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
71#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
72#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
73#else
74#define FIX_0_211164243  FIX(0.211164243)
75#define FIX_0_509795579  FIX(0.509795579)
76#define FIX_0_601344887  FIX(0.601344887)
77#define FIX_0_720959822  FIX(0.720959822)
78#define FIX_0_765366865  FIX(0.765366865)
79#define FIX_0_850430095  FIX(0.850430095)
80#define FIX_0_899976223  FIX(0.899976223)
81#define FIX_1_061594337  FIX(1.061594337)
82#define FIX_1_272758580  FIX(1.272758580)
83#define FIX_1_451774981  FIX(1.451774981)
84#define FIX_1_847759065  FIX(1.847759065)
85#define FIX_2_172734803  FIX(2.172734803)
86#define FIX_2_562915447  FIX(2.562915447)
87#define FIX_3_624509785  FIX(3.624509785)
88#endif
89
90
91/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
92 * For 8-bit samples with the recommended scaling, all the variable
93 * and constant values involved are no more than 16 bits wide, so a
94 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
95 * For 12-bit samples, a full 32-bit multiplication will be needed.
96 */
97
98#if BITS_IN_JSAMPLE == 8
99#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
100#else
101#define MULTIPLY(var,const)  ((var) * (const))
102#endif
103
104
105/* Dequantize a coefficient by multiplying it by the multiplier-table
106 * entry; produce an int result.  In this module, both inputs and result
107 * are 16 bits or less, so either int or short multiply will work.
108 */
109
110#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
111
112
113/*
114 * Perform dequantization and inverse DCT on one block of coefficients,
115 * producing a reduced-size 4x4 output block.
116 */
117
118GLOBAL(void)
119jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
120	       JCOEFPTR coef_block,
121	       JSAMPARRAY output_buf, JDIMENSION output_col)
122{
123  INT32 tmp0, tmp2, tmp10, tmp12;
124  INT32 z1, z2, z3, z4;
125  JCOEFPTR inptr;
126  ISLOW_MULT_TYPE * quantptr;
127  int * wsptr;
128  JSAMPROW outptr;
129  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
130  int ctr;
131  int workspace[DCTSIZE*4];	/* buffers data between passes */
132  SHIFT_TEMPS
133
134  /* Pass 1: process columns from input, store into work array. */
135
136  inptr = coef_block;
137  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
138  wsptr = workspace;
139  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
140    /* Don't bother to process column 4, because second pass won't use it */
141    if (ctr == DCTSIZE-4)
142      continue;
143    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
144	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
145	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
146      /* AC terms all zero; we need not examine term 4 for 4x4 output */
147      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
148
149      wsptr[DCTSIZE*0] = dcval;
150      wsptr[DCTSIZE*1] = dcval;
151      wsptr[DCTSIZE*2] = dcval;
152      wsptr[DCTSIZE*3] = dcval;
153
154      continue;
155    }
156
157    /* Even part */
158
159    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
160    tmp0 <<= (CONST_BITS+1);
161
162    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
163    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
164
165    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
166
167    tmp10 = tmp0 + tmp2;
168    tmp12 = tmp0 - tmp2;
169
170    /* Odd part */
171
172    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
173    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
174    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
175    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
176
177    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
178	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
179	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
180	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
181
182    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
183	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
184	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
185	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
186
187    /* Final output stage */
188
189    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
190    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
191    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
192    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
193  }
194
195  /* Pass 2: process 4 rows from work array, store into output array. */
196
197  wsptr = workspace;
198  for (ctr = 0; ctr < 4; ctr++) {
199    outptr = output_buf[ctr] + output_col;
200    /* It's not clear whether a zero row test is worthwhile here ... */
201
202#ifndef NO_ZERO_ROW_TEST
203    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
204	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
205      /* AC terms all zero */
206      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
207				  & RANGE_MASK];
208
209      outptr[0] = dcval;
210      outptr[1] = dcval;
211      outptr[2] = dcval;
212      outptr[3] = dcval;
213
214      wsptr += DCTSIZE;		/* advance pointer to next row */
215      continue;
216    }
217#endif
218
219    /* Even part */
220
221    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
222
223    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
224	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
225
226    tmp10 = tmp0 + tmp2;
227    tmp12 = tmp0 - tmp2;
228
229    /* Odd part */
230
231    z1 = (INT32) wsptr[7];
232    z2 = (INT32) wsptr[5];
233    z3 = (INT32) wsptr[3];
234    z4 = (INT32) wsptr[1];
235
236    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
237	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
238	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
239	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
240
241    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
242	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
243	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
244	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
245
246    /* Final output stage */
247
248    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
249					  CONST_BITS+PASS1_BITS+3+1)
250			    & RANGE_MASK];
251    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
252					  CONST_BITS+PASS1_BITS+3+1)
253			    & RANGE_MASK];
254    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
255					  CONST_BITS+PASS1_BITS+3+1)
256			    & RANGE_MASK];
257    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
258					  CONST_BITS+PASS1_BITS+3+1)
259			    & RANGE_MASK];
260
261    wsptr += DCTSIZE;		/* advance pointer to next row */
262  }
263}
264
265
266/*
267 * Perform dequantization and inverse DCT on one block of coefficients,
268 * producing a reduced-size 2x2 output block.
269 */
270
271GLOBAL(void)
272jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
273	       JCOEFPTR coef_block,
274	       JSAMPARRAY output_buf, JDIMENSION output_col)
275{
276  INT32 tmp0, tmp10, z1;
277  JCOEFPTR inptr;
278  ISLOW_MULT_TYPE * quantptr;
279  int * wsptr;
280  JSAMPROW outptr;
281  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
282  int ctr;
283  int workspace[DCTSIZE*2];	/* buffers data between passes */
284  SHIFT_TEMPS
285
286  /* Pass 1: process columns from input, store into work array. */
287
288  inptr = coef_block;
289  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
290  wsptr = workspace;
291  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
292    /* Don't bother to process columns 2,4,6 */
293    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
294      continue;
295    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
296	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
297      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
298      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
299
300      wsptr[DCTSIZE*0] = dcval;
301      wsptr[DCTSIZE*1] = dcval;
302
303      continue;
304    }
305
306    /* Even part */
307
308    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
309    tmp10 = z1 << (CONST_BITS+2);
310
311    /* Odd part */
312
313    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
314    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
315    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
316    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
317    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
318    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
319    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
320    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
321
322    /* Final output stage */
323
324    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
325    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
326  }
327
328  /* Pass 2: process 2 rows from work array, store into output array. */
329
330  wsptr = workspace;
331  for (ctr = 0; ctr < 2; ctr++) {
332    outptr = output_buf[ctr] + output_col;
333    /* It's not clear whether a zero row test is worthwhile here ... */
334
335#ifndef NO_ZERO_ROW_TEST
336    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
337      /* AC terms all zero */
338      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
339				  & RANGE_MASK];
340
341      outptr[0] = dcval;
342      outptr[1] = dcval;
343
344      wsptr += DCTSIZE;		/* advance pointer to next row */
345      continue;
346    }
347#endif
348
349    /* Even part */
350
351    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
352
353    /* Odd part */
354
355    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
356	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
357	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
358	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
359
360    /* Final output stage */
361
362    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
363					  CONST_BITS+PASS1_BITS+3+2)
364			    & RANGE_MASK];
365    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
366					  CONST_BITS+PASS1_BITS+3+2)
367			    & RANGE_MASK];
368
369    wsptr += DCTSIZE;		/* advance pointer to next row */
370  }
371}
372
373
374/*
375 * Perform dequantization and inverse DCT on one block of coefficients,
376 * producing a reduced-size 1x1 output block.
377 */
378
379GLOBAL(void)
380jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
381	       JCOEFPTR coef_block,
382	       JSAMPARRAY output_buf, JDIMENSION output_col)
383{
384  int dcval;
385  ISLOW_MULT_TYPE * quantptr;
386  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
387  SHIFT_TEMPS
388
389  /* We hardly need an inverse DCT routine for this: just take the
390   * average pixel value, which is one-eighth of the DC coefficient.
391   */
392  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
393  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
394  dcval = (int) DESCALE((INT32) dcval, 3);
395
396  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
397}
398
399#endif /* IDCT_SCALING_SUPPORTED */
400
401#endif //_FX_JPEG_TURBO_
402