descriptor.cc revision d0332953cda33fb4f8e24ebff9c49159b69c43d6
1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// http://code.google.com/p/protobuf/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//  Based on original Protocol Buffers design by
33//  Sanjay Ghemawat, Jeff Dean, and others.
34
35#include <google/protobuf/stubs/hash.h>
36#include <map>
37#include <set>
38#include <vector>
39#include <algorithm>
40#include <limits>
41
42#include <google/protobuf/descriptor.h>
43#include <google/protobuf/descriptor_database.h>
44#include <google/protobuf/descriptor.pb.h>
45#include <google/protobuf/text_format.h>
46#include <google/protobuf/unknown_field_set.h>
47#include <google/protobuf/wire_format.h>
48#include <google/protobuf/io/coded_stream.h>
49#include <google/protobuf/io/zero_copy_stream_impl.h>
50#include <google/protobuf/stubs/common.h>
51#include <google/protobuf/stubs/once.h>
52#include <google/protobuf/stubs/strutil.h>
53#include <google/protobuf/stubs/substitute.h>
54#include <google/protobuf/stubs/map-util.h>
55#include <google/protobuf/stubs/stl_util-inl.h>
56
57#undef PACKAGE  // autoheader #defines this.  :(
58
59namespace google {
60namespace protobuf {
61
62const FieldDescriptor::CppType
63FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
64  static_cast<CppType>(0),  // 0 is reserved for errors
65
66  CPPTYPE_DOUBLE,   // TYPE_DOUBLE
67  CPPTYPE_FLOAT,    // TYPE_FLOAT
68  CPPTYPE_INT64,    // TYPE_INT64
69  CPPTYPE_UINT64,   // TYPE_UINT64
70  CPPTYPE_INT32,    // TYPE_INT32
71  CPPTYPE_UINT64,   // TYPE_FIXED64
72  CPPTYPE_UINT32,   // TYPE_FIXED32
73  CPPTYPE_BOOL,     // TYPE_BOOL
74  CPPTYPE_STRING,   // TYPE_STRING
75  CPPTYPE_MESSAGE,  // TYPE_GROUP
76  CPPTYPE_MESSAGE,  // TYPE_MESSAGE
77  CPPTYPE_STRING,   // TYPE_BYTES
78  CPPTYPE_UINT32,   // TYPE_UINT32
79  CPPTYPE_ENUM,     // TYPE_ENUM
80  CPPTYPE_INT32,    // TYPE_SFIXED32
81  CPPTYPE_INT64,    // TYPE_SFIXED64
82  CPPTYPE_INT32,    // TYPE_SINT32
83  CPPTYPE_INT64,    // TYPE_SINT64
84};
85
86const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
87  "ERROR",     // 0 is reserved for errors
88
89  "double",    // TYPE_DOUBLE
90  "float",     // TYPE_FLOAT
91  "int64",     // TYPE_INT64
92  "uint64",    // TYPE_UINT64
93  "int32",     // TYPE_INT32
94  "fixed64",   // TYPE_FIXED64
95  "fixed32",   // TYPE_FIXED32
96  "bool",      // TYPE_BOOL
97  "string",    // TYPE_STRING
98  "group",     // TYPE_GROUP
99  "message",   // TYPE_MESSAGE
100  "bytes",     // TYPE_BYTES
101  "uint32",    // TYPE_UINT32
102  "enum",      // TYPE_ENUM
103  "sfixed32",  // TYPE_SFIXED32
104  "sfixed64",  // TYPE_SFIXED64
105  "sint32",    // TYPE_SINT32
106  "sint64",    // TYPE_SINT64
107};
108
109const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
110  "ERROR",     // 0 is reserved for errors
111
112  "optional",  // LABEL_OPTIONAL
113  "required",  // LABEL_REQUIRED
114  "repeated",  // LABEL_REPEATED
115};
116
117#ifndef _MSC_VER  // MSVC doesn't need these and won't even accept them.
118const int FieldDescriptor::kMaxNumber;
119const int FieldDescriptor::kFirstReservedNumber;
120const int FieldDescriptor::kLastReservedNumber;
121#endif
122
123namespace {
124
125const string kEmptyString;
126
127string ToCamelCase(const string& input) {
128  bool capitalize_next = false;
129  string result;
130  result.reserve(input.size());
131
132  for (int i = 0; i < input.size(); i++) {
133    if (input[i] == '_') {
134      capitalize_next = true;
135    } else if (capitalize_next) {
136      // Note:  I distrust ctype.h due to locales.
137      if ('a' <= input[i] && input[i] <= 'z') {
138        result.push_back(input[i] - 'a' + 'A');
139      } else {
140        result.push_back(input[i]);
141      }
142      capitalize_next = false;
143    } else {
144      result.push_back(input[i]);
145    }
146  }
147
148  // Lower-case the first letter.
149  if (!result.empty() && 'A' <= result[0] && result[0] <= 'Z') {
150    result[0] = result[0] - 'A' + 'a';
151  }
152
153  return result;
154}
155
156// A DescriptorPool contains a bunch of hash_maps to implement the
157// various Find*By*() methods.  Since hashtable lookups are O(1), it's
158// most efficient to construct a fixed set of large hash_maps used by
159// all objects in the pool rather than construct one or more small
160// hash_maps for each object.
161//
162// The keys to these hash_maps are (parent, name) or (parent, number)
163// pairs.  Unfortunately STL doesn't provide hash functions for pair<>,
164// so we must invent our own.
165//
166// TODO(kenton):  Use StringPiece rather than const char* in keys?  It would
167//   be a lot cleaner but we'd just have to convert it back to const char*
168//   for the open source release.
169
170typedef pair<const void*, const char*> PointerStringPair;
171
172struct PointerStringPairEqual {
173  inline bool operator()(const PointerStringPair& a,
174                         const PointerStringPair& b) const {
175    return a.first == b.first && strcmp(a.second, b.second) == 0;
176  }
177};
178
179template<typename PairType>
180struct PointerIntegerPairHash {
181  size_t operator()(const PairType& p) const {
182    // FIXME(kenton):  What is the best way to compute this hash?  I have
183    // no idea!  This seems a bit better than an XOR.
184    return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second;
185  }
186
187  // Used only by MSVC and platforms where hash_map is not available.
188  static const size_t bucket_size = 4;
189  static const size_t min_buckets = 8;
190  inline bool operator()(const PairType& a, const PairType& b) const {
191    return a.first < b.first ||
192          (a.first == b.first && a.second < b.second);
193  }
194};
195
196typedef pair<const Descriptor*, int> DescriptorIntPair;
197typedef pair<const EnumDescriptor*, int> EnumIntPair;
198
199struct PointerStringPairHash {
200  size_t operator()(const PointerStringPair& p) const {
201    // FIXME(kenton):  What is the best way to compute this hash?  I have
202    // no idea!  This seems a bit better than an XOR.
203    hash<const char*> cstring_hash;
204    return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) +
205           cstring_hash(p.second);
206  }
207
208  // Used only by MSVC and platforms where hash_map is not available.
209  static const size_t bucket_size = 4;
210  static const size_t min_buckets = 8;
211  inline bool operator()(const PointerStringPair& a,
212                         const PointerStringPair& b) const {
213    if (a.first < b.first) return true;
214    if (a.first > b.first) return false;
215    return strcmp(a.second, b.second) < 0;
216  }
217};
218
219
220struct Symbol {
221  enum Type {
222    NULL_SYMBOL, MESSAGE, FIELD, ENUM, ENUM_VALUE, SERVICE, METHOD, PACKAGE
223  };
224  Type type;
225  union {
226    const Descriptor* descriptor;
227    const FieldDescriptor* field_descriptor;
228    const EnumDescriptor* enum_descriptor;
229    const EnumValueDescriptor* enum_value_descriptor;
230    const ServiceDescriptor* service_descriptor;
231    const MethodDescriptor* method_descriptor;
232    const FileDescriptor* package_file_descriptor;
233  };
234
235  inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; }
236  inline bool IsNull() const { return type == NULL_SYMBOL; }
237  inline bool IsType() const {
238    return type == MESSAGE || type == ENUM;
239  }
240  inline bool IsAggregate() const {
241    return type == MESSAGE || type == PACKAGE
242        || type == ENUM || type == SERVICE;
243  }
244
245#define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD)  \
246  inline explicit Symbol(const TYPE* value) {    \
247    type = TYPE_CONSTANT;                        \
248    this->FIELD = value;                         \
249  }
250
251  CONSTRUCTOR(Descriptor         , MESSAGE   , descriptor             )
252  CONSTRUCTOR(FieldDescriptor    , FIELD     , field_descriptor       )
253  CONSTRUCTOR(EnumDescriptor     , ENUM      , enum_descriptor        )
254  CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor  )
255  CONSTRUCTOR(ServiceDescriptor  , SERVICE   , service_descriptor     )
256  CONSTRUCTOR(MethodDescriptor   , METHOD    , method_descriptor      )
257  CONSTRUCTOR(FileDescriptor     , PACKAGE   , package_file_descriptor)
258#undef CONSTRUCTOR
259
260  const FileDescriptor* GetFile() const {
261    switch (type) {
262      case NULL_SYMBOL: return NULL;
263      case MESSAGE    : return descriptor           ->file();
264      case FIELD      : return field_descriptor     ->file();
265      case ENUM       : return enum_descriptor      ->file();
266      case ENUM_VALUE : return enum_value_descriptor->type()->file();
267      case SERVICE    : return service_descriptor   ->file();
268      case METHOD     : return method_descriptor    ->service()->file();
269      case PACKAGE    : return package_file_descriptor;
270    }
271    return NULL;
272  }
273};
274
275const Symbol kNullSymbol;
276
277typedef hash_map<const char*, Symbol,
278                 hash<const char*>, streq>
279  SymbolsByNameMap;
280typedef hash_map<PointerStringPair, Symbol,
281                 PointerStringPairHash, PointerStringPairEqual>
282  SymbolsByParentMap;
283typedef hash_map<const char*, const FileDescriptor*,
284                 hash<const char*>, streq>
285  FilesByNameMap;
286typedef hash_map<PointerStringPair, const FieldDescriptor*,
287                 PointerStringPairHash, PointerStringPairEqual>
288  FieldsByNameMap;
289typedef hash_map<DescriptorIntPair, const FieldDescriptor*,
290                 PointerIntegerPairHash<DescriptorIntPair> >
291  FieldsByNumberMap;
292typedef hash_map<EnumIntPair, const EnumValueDescriptor*,
293                 PointerIntegerPairHash<EnumIntPair> >
294  EnumValuesByNumberMap;
295// This is a map rather than a hash_map, since we use it to iterate
296// through all the extensions that extend a given Descriptor, and an
297// ordered data structure that implements lower_bound is convenient
298// for that.
299typedef map<DescriptorIntPair, const FieldDescriptor*>
300  ExtensionsGroupedByDescriptorMap;
301
302}  // anonymous namespace
303
304// ===================================================================
305// DescriptorPool::Tables
306
307class DescriptorPool::Tables {
308 public:
309  Tables();
310  ~Tables();
311
312  // Checkpoint the state of the tables.  Future calls to Rollback() will
313  // return the Tables to this state.  This is used when building files, since
314  // some kinds of validation errors cannot be detected until the file's
315  // descriptors have already been added to the tables.  BuildFile() calls
316  // Checkpoint() before it starts building and Rollback() if it encounters
317  // an error.
318  void Checkpoint();
319
320  // Roll back the Tables to the state of the last Checkpoint(), removing
321  // everything that was added after that point.
322  void Rollback();
323
324  // The stack of files which are currently being built.  Used to detect
325  // cyclic dependencies when loading files from a DescriptorDatabase.  Not
326  // used when fallback_database_ == NULL.
327  vector<string> pending_files_;
328
329  // A set of files which we have tried to load from the fallback database
330  // and encountered errors.  We will not attempt to load them again.
331  // Not used when fallback_database_ == NULL.
332  hash_set<string> known_bad_files_;
333
334  // The set of descriptors for which we've already loaded the full
335  // set of extensions numbers from fallback_database_.
336  hash_set<const Descriptor*> extensions_loaded_from_db_;
337
338  // -----------------------------------------------------------------
339  // Finding items.
340
341  // Find symbols.  This returns a null Symbol (symbol.IsNull() is true)
342  // if not found.
343  inline Symbol FindSymbol(const string& key) const;
344
345  // This implements the body of DescriptorPool::Find*ByName().  It should
346  // really be a private method of DescriptorPool, but that would require
347  // declaring Symbol in descriptor.h, which would drag all kinds of other
348  // stuff into the header.  Yay C++.
349  Symbol FindByNameHelper(
350    const DescriptorPool* pool, const string& name) const;
351
352  // These return NULL if not found.
353  inline const FileDescriptor* FindFile(const string& key) const;
354  inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
355                                              int number);
356  inline void FindAllExtensions(const Descriptor* extendee,
357                                vector<const FieldDescriptor*>* out) const;
358
359  // -----------------------------------------------------------------
360  // Adding items.
361
362  // These add items to the corresponding tables.  They return false if
363  // the key already exists in the table.  For AddSymbol(), the string passed
364  // in must be one that was constructed using AllocateString(), as it will
365  // be used as a key in the symbols_by_name_ map without copying.
366  bool AddSymbol(const string& full_name, Symbol symbol);
367  bool AddFile(const FileDescriptor* file);
368  bool AddExtension(const FieldDescriptor* field);
369
370  // -----------------------------------------------------------------
371  // Allocating memory.
372
373  // Allocate an object which will be reclaimed when the pool is
374  // destroyed.  Note that the object's destructor will never be called,
375  // so its fields must be plain old data (primitive data types and
376  // pointers).  All of the descriptor types are such objects.
377  template<typename Type> Type* Allocate();
378
379  // Allocate an array of objects which will be reclaimed when the
380  // pool in destroyed.  Again, destructors are never called.
381  template<typename Type> Type* AllocateArray(int count);
382
383  // Allocate a string which will be destroyed when the pool is destroyed.
384  // The string is initialized to the given value for convenience.
385  string* AllocateString(const string& value);
386
387  // Allocate a protocol message object.  Some older versions of GCC have
388  // trouble understanding explicit template instantiations in some cases, so
389  // in those cases we have to pass a dummy pointer of the right type as the
390  // parameter instead of specifying the type explicitly.
391  template<typename Type> Type* AllocateMessage(Type* dummy = NULL);
392
393  // Allocate a FileDescriptorTables object.
394  FileDescriptorTables* AllocateFileTables();
395
396 private:
397  vector<string*> strings_;    // All strings in the pool.
398  vector<Message*> messages_;  // All messages in the pool.
399  vector<FileDescriptorTables*> file_tables_;  // All file tables in the pool.
400  vector<void*> allocations_;  // All other memory allocated in the pool.
401
402  SymbolsByNameMap      symbols_by_name_;
403  FilesByNameMap        files_by_name_;
404  ExtensionsGroupedByDescriptorMap extensions_;
405
406  int strings_before_checkpoint_;
407  int messages_before_checkpoint_;
408  int file_tables_before_checkpoint_;
409  int allocations_before_checkpoint_;
410  vector<const char*      > symbols_after_checkpoint_;
411  vector<const char*      > files_after_checkpoint_;
412  vector<DescriptorIntPair> extensions_after_checkpoint_;
413
414  // Allocate some bytes which will be reclaimed when the pool is
415  // destroyed.
416  void* AllocateBytes(int size);
417};
418
419// Contains tables specific to a particular file.  These tables are not
420// modified once the file has been constructed, so they need not be
421// protected by a mutex.  This makes operations that depend only on the
422// contents of a single file -- e.g. Descriptor::FindFieldByName() --
423// lock-free.
424//
425// For historical reasons, the definitions of the methods of
426// FileDescriptorTables and DescriptorPool::Tables are interleaved below.
427// These used to be a single class.
428class FileDescriptorTables {
429 public:
430  FileDescriptorTables();
431  ~FileDescriptorTables();
432
433  // Empty table, used with placeholder files.
434  static const FileDescriptorTables kEmpty;
435
436  // -----------------------------------------------------------------
437  // Finding items.
438
439  // Find symbols.  These return a null Symbol (symbol.IsNull() is true)
440  // if not found.
441  inline Symbol FindNestedSymbol(const void* parent,
442                                 const string& name) const;
443  inline Symbol FindNestedSymbolOfType(const void* parent,
444                                       const string& name,
445                                       const Symbol::Type type) const;
446
447  // These return NULL if not found.
448  inline const FieldDescriptor* FindFieldByNumber(
449    const Descriptor* parent, int number) const;
450  inline const FieldDescriptor* FindFieldByLowercaseName(
451    const void* parent, const string& lowercase_name) const;
452  inline const FieldDescriptor* FindFieldByCamelcaseName(
453    const void* parent, const string& camelcase_name) const;
454  inline const EnumValueDescriptor* FindEnumValueByNumber(
455    const EnumDescriptor* parent, int number) const;
456
457  // -----------------------------------------------------------------
458  // Adding items.
459
460  // These add items to the corresponding tables.  They return false if
461  // the key already exists in the table.  For AddAliasUnderParent(), the
462  // string passed in must be one that was constructed using AllocateString(),
463  // as it will be used as a key in the symbols_by_parent_ map without copying.
464  bool AddAliasUnderParent(const void* parent, const string& name,
465                           Symbol symbol);
466  bool AddFieldByNumber(const FieldDescriptor* field);
467  bool AddEnumValueByNumber(const EnumValueDescriptor* value);
468
469  // Adds the field to the lowercase_name and camelcase_name maps.  Never
470  // fails because we allow duplicates; the first field by the name wins.
471  void AddFieldByStylizedNames(const FieldDescriptor* field);
472
473 private:
474  SymbolsByParentMap    symbols_by_parent_;
475  FieldsByNameMap       fields_by_lowercase_name_;
476  FieldsByNameMap       fields_by_camelcase_name_;
477  FieldsByNumberMap     fields_by_number_;       // Not including extensions.
478  EnumValuesByNumberMap enum_values_by_number_;
479};
480
481DescriptorPool::Tables::Tables()
482  : strings_before_checkpoint_(0),
483    messages_before_checkpoint_(0),
484    allocations_before_checkpoint_(0) {}
485
486DescriptorPool::Tables::~Tables() {
487  // Note that the deletion order is important, since the destructors of some
488  // messages may refer to objects in allocations_.
489  STLDeleteElements(&messages_);
490  for (int i = 0; i < allocations_.size(); i++) {
491    operator delete(allocations_[i]);
492  }
493  STLDeleteElements(&strings_);
494  STLDeleteElements(&file_tables_);
495}
496
497FileDescriptorTables::FileDescriptorTables() {}
498FileDescriptorTables::~FileDescriptorTables() {}
499
500const FileDescriptorTables FileDescriptorTables::kEmpty;
501
502void DescriptorPool::Tables::Checkpoint() {
503  strings_before_checkpoint_ = strings_.size();
504  messages_before_checkpoint_ = messages_.size();
505  file_tables_before_checkpoint_ = file_tables_.size();
506  allocations_before_checkpoint_ = allocations_.size();
507
508  symbols_after_checkpoint_.clear();
509  files_after_checkpoint_.clear();
510  extensions_after_checkpoint_.clear();
511}
512
513void DescriptorPool::Tables::Rollback() {
514  for (int i = 0; i < symbols_after_checkpoint_.size(); i++) {
515    symbols_by_name_.erase(symbols_after_checkpoint_[i]);
516  }
517  for (int i = 0; i < files_after_checkpoint_.size(); i++) {
518    files_by_name_.erase(files_after_checkpoint_[i]);
519  }
520  for (int i = 0; i < extensions_after_checkpoint_.size(); i++) {
521    extensions_.erase(extensions_after_checkpoint_[i]);
522  }
523
524  symbols_after_checkpoint_.clear();
525  files_after_checkpoint_.clear();
526  extensions_after_checkpoint_.clear();
527
528  STLDeleteContainerPointers(
529    strings_.begin() + strings_before_checkpoint_, strings_.end());
530  STLDeleteContainerPointers(
531    messages_.begin() + messages_before_checkpoint_, messages_.end());
532  STLDeleteContainerPointers(
533    file_tables_.begin() + file_tables_before_checkpoint_, file_tables_.end());
534  for (int i = allocations_before_checkpoint_; i < allocations_.size(); i++) {
535    operator delete(allocations_[i]);
536  }
537
538  strings_.resize(strings_before_checkpoint_);
539  messages_.resize(messages_before_checkpoint_);
540  file_tables_.resize(file_tables_before_checkpoint_);
541  allocations_.resize(allocations_before_checkpoint_);
542}
543
544// -------------------------------------------------------------------
545
546inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const {
547  const Symbol* result = FindOrNull(symbols_by_name_, key.c_str());
548  if (result == NULL) {
549    return kNullSymbol;
550  } else {
551    return *result;
552  }
553}
554
555inline Symbol FileDescriptorTables::FindNestedSymbol(
556    const void* parent, const string& name) const {
557  const Symbol* result =
558    FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str()));
559  if (result == NULL) {
560    return kNullSymbol;
561  } else {
562    return *result;
563  }
564}
565
566inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
567    const void* parent, const string& name, const Symbol::Type type) const {
568  Symbol result = FindNestedSymbol(parent, name);
569  if (result.type != type) return kNullSymbol;
570  return result;
571}
572
573Symbol DescriptorPool::Tables::FindByNameHelper(
574    const DescriptorPool* pool, const string& name) const {
575  MutexLockMaybe lock(pool->mutex_);
576  Symbol result = FindSymbol(name);
577
578  if (result.IsNull() && pool->underlay_ != NULL) {
579    // Symbol not found; check the underlay.
580    result =
581      pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
582  }
583
584  if (result.IsNull()) {
585    // Symbol still not found, so check fallback database.
586    if (pool->TryFindSymbolInFallbackDatabase(name)) {
587      result = FindSymbol(name);
588    }
589  }
590
591  return result;
592}
593
594inline const FileDescriptor* DescriptorPool::Tables::FindFile(
595    const string& key) const {
596  return FindPtrOrNull(files_by_name_, key.c_str());
597}
598
599inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
600    const Descriptor* parent, int number) const {
601  return FindPtrOrNull(fields_by_number_, make_pair(parent, number));
602}
603
604inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
605    const void* parent, const string& lowercase_name) const {
606  return FindPtrOrNull(fields_by_lowercase_name_,
607                       PointerStringPair(parent, lowercase_name.c_str()));
608}
609
610inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
611    const void* parent, const string& camelcase_name) const {
612  return FindPtrOrNull(fields_by_camelcase_name_,
613                       PointerStringPair(parent, camelcase_name.c_str()));
614}
615
616inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
617    const EnumDescriptor* parent, int number) const {
618  return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number));
619}
620
621inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
622    const Descriptor* extendee, int number) {
623  return FindPtrOrNull(extensions_, make_pair(extendee, number));
624}
625
626inline void DescriptorPool::Tables::FindAllExtensions(
627    const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
628  ExtensionsGroupedByDescriptorMap::const_iterator it =
629      extensions_.lower_bound(make_pair(extendee, 0));
630  for (; it != extensions_.end() && it->first.first == extendee; ++it) {
631    out->push_back(it->second);
632  }
633}
634
635// -------------------------------------------------------------------
636
637bool DescriptorPool::Tables::AddSymbol(
638    const string& full_name, Symbol symbol) {
639  if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) {
640    symbols_after_checkpoint_.push_back(full_name.c_str());
641    return true;
642  } else {
643    return false;
644  }
645}
646
647bool FileDescriptorTables::AddAliasUnderParent(
648    const void* parent, const string& name, Symbol symbol) {
649  PointerStringPair by_parent_key(parent, name.c_str());
650  return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
651}
652
653bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
654  if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) {
655    files_after_checkpoint_.push_back(file->name().c_str());
656    return true;
657  } else {
658    return false;
659  }
660}
661
662void FileDescriptorTables::AddFieldByStylizedNames(
663    const FieldDescriptor* field) {
664  const void* parent;
665  if (field->is_extension()) {
666    if (field->extension_scope() == NULL) {
667      parent = field->file();
668    } else {
669      parent = field->extension_scope();
670    }
671  } else {
672    parent = field->containing_type();
673  }
674
675  PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
676  InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field);
677
678  PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
679  InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field);
680}
681
682bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
683  DescriptorIntPair key(field->containing_type(), field->number());
684  return InsertIfNotPresent(&fields_by_number_, key, field);
685}
686
687bool FileDescriptorTables::AddEnumValueByNumber(
688    const EnumValueDescriptor* value) {
689  EnumIntPair key(value->type(), value->number());
690  return InsertIfNotPresent(&enum_values_by_number_, key, value);
691}
692
693bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
694  DescriptorIntPair key(field->containing_type(), field->number());
695  if (InsertIfNotPresent(&extensions_, key, field)) {
696    extensions_after_checkpoint_.push_back(key);
697    return true;
698  } else {
699    return false;
700  }
701}
702
703// -------------------------------------------------------------------
704
705template<typename Type>
706Type* DescriptorPool::Tables::Allocate() {
707  return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
708}
709
710template<typename Type>
711Type* DescriptorPool::Tables::AllocateArray(int count) {
712  return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
713}
714
715string* DescriptorPool::Tables::AllocateString(const string& value) {
716  string* result = new string(value);
717  strings_.push_back(result);
718  return result;
719}
720
721template<typename Type>
722Type* DescriptorPool::Tables::AllocateMessage(Type* dummy) {
723  Type* result = new Type;
724  messages_.push_back(result);
725  return result;
726}
727
728FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
729  FileDescriptorTables* result = new FileDescriptorTables;
730  file_tables_.push_back(result);
731  return result;
732}
733
734void* DescriptorPool::Tables::AllocateBytes(int size) {
735  // TODO(kenton):  Would it be worthwhile to implement this in some more
736  // sophisticated way?  Probably not for the open source release, but for
737  // internal use we could easily plug in one of our existing memory pool
738  // allocators...
739  if (size == 0) return NULL;
740
741  void* result = operator new(size);
742  allocations_.push_back(result);
743  return result;
744}
745
746// ===================================================================
747// DescriptorPool
748
749DescriptorPool::ErrorCollector::~ErrorCollector() {}
750
751DescriptorPool::DescriptorPool()
752  : mutex_(NULL),
753    fallback_database_(NULL),
754    default_error_collector_(NULL),
755    underlay_(NULL),
756    tables_(new Tables),
757    enforce_dependencies_(true),
758    allow_unknown_(false) {}
759
760DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
761                               ErrorCollector* error_collector)
762  : mutex_(new Mutex),
763    fallback_database_(fallback_database),
764    default_error_collector_(error_collector),
765    underlay_(NULL),
766    tables_(new Tables),
767    enforce_dependencies_(true),
768    allow_unknown_(false) {
769}
770
771DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
772  : mutex_(NULL),
773    fallback_database_(NULL),
774    default_error_collector_(NULL),
775    underlay_(underlay),
776    tables_(new Tables),
777    enforce_dependencies_(true),
778    allow_unknown_(false) {}
779
780DescriptorPool::~DescriptorPool() {
781  if (mutex_ != NULL) delete mutex_;
782}
783
784// DescriptorPool::BuildFile() defined later.
785// DescriptorPool::BuildFileCollectingErrors() defined later.
786
787void DescriptorPool::InternalDontEnforceDependencies() {
788  enforce_dependencies_ = false;
789}
790
791bool DescriptorPool::InternalIsFileLoaded(const string& filename) const {
792  MutexLockMaybe lock(mutex_);
793  return tables_->FindFile(filename) != NULL;
794}
795
796// generated_pool ====================================================
797
798namespace {
799
800
801EncodedDescriptorDatabase* generated_database_ = NULL;
802DescriptorPool* generated_pool_ = NULL;
803GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_);
804
805void DeleteGeneratedPool() {
806  delete generated_database_;
807  generated_database_ = NULL;
808  delete generated_pool_;
809  generated_pool_ = NULL;
810}
811
812void InitGeneratedPool() {
813  generated_database_ = new EncodedDescriptorDatabase;
814  generated_pool_ = new DescriptorPool(generated_database_);
815
816  internal::OnShutdown(&DeleteGeneratedPool);
817}
818
819inline void InitGeneratedPoolOnce() {
820  ::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool);
821}
822
823}  // anonymous namespace
824
825const DescriptorPool* DescriptorPool::generated_pool() {
826  InitGeneratedPoolOnce();
827  return generated_pool_;
828}
829
830DescriptorPool* DescriptorPool::internal_generated_pool() {
831  InitGeneratedPoolOnce();
832  return generated_pool_;
833}
834
835void DescriptorPool::InternalAddGeneratedFile(
836    const void* encoded_file_descriptor, int size) {
837  // So, this function is called in the process of initializing the
838  // descriptors for generated proto classes.  Each generated .pb.cc file
839  // has an internal procedure called AddDescriptors() which is called at
840  // process startup, and that function calls this one in order to register
841  // the raw bytes of the FileDescriptorProto representing the file.
842  //
843  // We do not actually construct the descriptor objects right away.  We just
844  // hang on to the bytes until they are actually needed.  We actually construct
845  // the descriptor the first time one of the following things happens:
846  // * Someone calls a method like descriptor(), GetDescriptor(), or
847  //   GetReflection() on the generated types, which requires returning the
848  //   descriptor or an object based on it.
849  // * Someone looks up the descriptor in DescriptorPool::generated_pool().
850  //
851  // Once one of these happens, the DescriptorPool actually parses the
852  // FileDescriptorProto and generates a FileDescriptor (and all its children)
853  // based on it.
854  //
855  // Note that FileDescriptorProto is itself a generated protocol message.
856  // Therefore, when we parse one, we have to be very careful to avoid using
857  // any descriptor-based operations, since this might cause infinite recursion
858  // or deadlock.
859  InitGeneratedPoolOnce();
860  GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size));
861}
862
863
864// Find*By* methods ==================================================
865
866// TODO(kenton):  There's a lot of repeated code here, but I'm not sure if
867//   there's any good way to factor it out.  Think about this some time when
868//   there's nothing more important to do (read: never).
869
870const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const {
871  MutexLockMaybe lock(mutex_);
872  const FileDescriptor* result = tables_->FindFile(name);
873  if (result != NULL) return result;
874  if (underlay_ != NULL) {
875    const FileDescriptor* result = underlay_->FindFileByName(name);
876    if (result != NULL) return result;
877  }
878  if (TryFindFileInFallbackDatabase(name)) {
879    const FileDescriptor* result = tables_->FindFile(name);
880    if (result != NULL) return result;
881  }
882  return NULL;
883}
884
885const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
886    const string& symbol_name) const {
887  MutexLockMaybe lock(mutex_);
888  Symbol result = tables_->FindSymbol(symbol_name);
889  if (!result.IsNull()) return result.GetFile();
890  if (underlay_ != NULL) {
891    const FileDescriptor* result =
892      underlay_->FindFileContainingSymbol(symbol_name);
893    if (result != NULL) return result;
894  }
895  if (TryFindSymbolInFallbackDatabase(symbol_name)) {
896    Symbol result = tables_->FindSymbol(symbol_name);
897    if (!result.IsNull()) return result.GetFile();
898  }
899  return NULL;
900}
901
902const Descriptor* DescriptorPool::FindMessageTypeByName(
903    const string& name) const {
904  Symbol result = tables_->FindByNameHelper(this, name);
905  return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL;
906}
907
908const FieldDescriptor* DescriptorPool::FindFieldByName(
909    const string& name) const {
910  Symbol result = tables_->FindByNameHelper(this, name);
911  if (result.type == Symbol::FIELD &&
912      !result.field_descriptor->is_extension()) {
913    return result.field_descriptor;
914  } else {
915    return NULL;
916  }
917}
918
919const FieldDescriptor* DescriptorPool::FindExtensionByName(
920    const string& name) const {
921  Symbol result = tables_->FindByNameHelper(this, name);
922  if (result.type == Symbol::FIELD &&
923      result.field_descriptor->is_extension()) {
924    return result.field_descriptor;
925  } else {
926    return NULL;
927  }
928}
929
930const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
931    const string& name) const {
932  Symbol result = tables_->FindByNameHelper(this, name);
933  return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL;
934}
935
936const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
937    const string& name) const {
938  Symbol result = tables_->FindByNameHelper(this, name);
939  return (result.type == Symbol::ENUM_VALUE) ?
940    result.enum_value_descriptor : NULL;
941}
942
943const ServiceDescriptor* DescriptorPool::FindServiceByName(
944    const string& name) const {
945  Symbol result = tables_->FindByNameHelper(this, name);
946  return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL;
947}
948
949const MethodDescriptor* DescriptorPool::FindMethodByName(
950    const string& name) const {
951  Symbol result = tables_->FindByNameHelper(this, name);
952  return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL;
953}
954
955const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
956    const Descriptor* extendee, int number) const {
957  MutexLockMaybe lock(mutex_);
958  const FieldDescriptor* result = tables_->FindExtension(extendee, number);
959  if (result != NULL) {
960    return result;
961  }
962  if (underlay_ != NULL) {
963    const FieldDescriptor* result =
964      underlay_->FindExtensionByNumber(extendee, number);
965    if (result != NULL) return result;
966  }
967  if (TryFindExtensionInFallbackDatabase(extendee, number)) {
968    const FieldDescriptor* result = tables_->FindExtension(extendee, number);
969    if (result != NULL) {
970      return result;
971    }
972  }
973  return NULL;
974}
975
976void DescriptorPool::FindAllExtensions(
977    const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
978  MutexLockMaybe lock(mutex_);
979
980  // Initialize tables_->extensions_ from the fallback database first
981  // (but do this only once per descriptor).
982  if (fallback_database_ != NULL &&
983      tables_->extensions_loaded_from_db_.count(extendee) == 0) {
984    vector<int> numbers;
985    if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
986                                                    &numbers)) {
987      for (int i = 0; i < numbers.size(); ++i) {
988        int number = numbers[i];
989        if (tables_->FindExtension(extendee, number) == NULL) {
990          TryFindExtensionInFallbackDatabase(extendee, number);
991        }
992      }
993      tables_->extensions_loaded_from_db_.insert(extendee);
994    }
995  }
996
997  tables_->FindAllExtensions(extendee, out);
998  if (underlay_ != NULL) {
999    underlay_->FindAllExtensions(extendee, out);
1000  }
1001}
1002
1003// -------------------------------------------------------------------
1004
1005const FieldDescriptor*
1006Descriptor::FindFieldByNumber(int key) const {
1007  const FieldDescriptor* result =
1008    file()->tables_->FindFieldByNumber(this, key);
1009  if (result == NULL || result->is_extension()) {
1010    return NULL;
1011  } else {
1012    return result;
1013  }
1014}
1015
1016const FieldDescriptor*
1017Descriptor::FindFieldByLowercaseName(const string& key) const {
1018  const FieldDescriptor* result =
1019    file()->tables_->FindFieldByLowercaseName(this, key);
1020  if (result == NULL || result->is_extension()) {
1021    return NULL;
1022  } else {
1023    return result;
1024  }
1025}
1026
1027const FieldDescriptor*
1028Descriptor::FindFieldByCamelcaseName(const string& key) const {
1029  const FieldDescriptor* result =
1030    file()->tables_->FindFieldByCamelcaseName(this, key);
1031  if (result == NULL || result->is_extension()) {
1032    return NULL;
1033  } else {
1034    return result;
1035  }
1036}
1037
1038const FieldDescriptor*
1039Descriptor::FindFieldByName(const string& key) const {
1040  Symbol result =
1041    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1042  if (!result.IsNull() && !result.field_descriptor->is_extension()) {
1043    return result.field_descriptor;
1044  } else {
1045    return NULL;
1046  }
1047}
1048
1049const FieldDescriptor*
1050Descriptor::FindExtensionByName(const string& key) const {
1051  Symbol result =
1052    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1053  if (!result.IsNull() && result.field_descriptor->is_extension()) {
1054    return result.field_descriptor;
1055  } else {
1056    return NULL;
1057  }
1058}
1059
1060const FieldDescriptor*
1061Descriptor::FindExtensionByLowercaseName(const string& key) const {
1062  const FieldDescriptor* result =
1063    file()->tables_->FindFieldByLowercaseName(this, key);
1064  if (result == NULL || !result->is_extension()) {
1065    return NULL;
1066  } else {
1067    return result;
1068  }
1069}
1070
1071const FieldDescriptor*
1072Descriptor::FindExtensionByCamelcaseName(const string& key) const {
1073  const FieldDescriptor* result =
1074    file()->tables_->FindFieldByCamelcaseName(this, key);
1075  if (result == NULL || !result->is_extension()) {
1076    return NULL;
1077  } else {
1078    return result;
1079  }
1080}
1081
1082const Descriptor*
1083Descriptor::FindNestedTypeByName(const string& key) const {
1084  Symbol result =
1085    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1086  if (!result.IsNull()) {
1087    return result.descriptor;
1088  } else {
1089    return NULL;
1090  }
1091}
1092
1093const EnumDescriptor*
1094Descriptor::FindEnumTypeByName(const string& key) const {
1095  Symbol result =
1096    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1097  if (!result.IsNull()) {
1098    return result.enum_descriptor;
1099  } else {
1100    return NULL;
1101  }
1102}
1103
1104const EnumValueDescriptor*
1105Descriptor::FindEnumValueByName(const string& key) const {
1106  Symbol result =
1107    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1108  if (!result.IsNull()) {
1109    return result.enum_value_descriptor;
1110  } else {
1111    return NULL;
1112  }
1113}
1114
1115const EnumValueDescriptor*
1116EnumDescriptor::FindValueByName(const string& key) const {
1117  Symbol result =
1118    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1119  if (!result.IsNull()) {
1120    return result.enum_value_descriptor;
1121  } else {
1122    return NULL;
1123  }
1124}
1125
1126const EnumValueDescriptor*
1127EnumDescriptor::FindValueByNumber(int key) const {
1128  return file()->tables_->FindEnumValueByNumber(this, key);
1129}
1130
1131const MethodDescriptor*
1132ServiceDescriptor::FindMethodByName(const string& key) const {
1133  Symbol result =
1134    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
1135  if (!result.IsNull()) {
1136    return result.method_descriptor;
1137  } else {
1138    return NULL;
1139  }
1140}
1141
1142const Descriptor*
1143FileDescriptor::FindMessageTypeByName(const string& key) const {
1144  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1145  if (!result.IsNull()) {
1146    return result.descriptor;
1147  } else {
1148    return NULL;
1149  }
1150}
1151
1152const EnumDescriptor*
1153FileDescriptor::FindEnumTypeByName(const string& key) const {
1154  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1155  if (!result.IsNull()) {
1156    return result.enum_descriptor;
1157  } else {
1158    return NULL;
1159  }
1160}
1161
1162const EnumValueDescriptor*
1163FileDescriptor::FindEnumValueByName(const string& key) const {
1164  Symbol result =
1165    tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1166  if (!result.IsNull()) {
1167    return result.enum_value_descriptor;
1168  } else {
1169    return NULL;
1170  }
1171}
1172
1173const ServiceDescriptor*
1174FileDescriptor::FindServiceByName(const string& key) const {
1175  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
1176  if (!result.IsNull()) {
1177    return result.service_descriptor;
1178  } else {
1179    return NULL;
1180  }
1181}
1182
1183const FieldDescriptor*
1184FileDescriptor::FindExtensionByName(const string& key) const {
1185  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1186  if (!result.IsNull() && result.field_descriptor->is_extension()) {
1187    return result.field_descriptor;
1188  } else {
1189    return NULL;
1190  }
1191}
1192
1193const FieldDescriptor*
1194FileDescriptor::FindExtensionByLowercaseName(const string& key) const {
1195  const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
1196  if (result == NULL || !result->is_extension()) {
1197    return NULL;
1198  } else {
1199    return result;
1200  }
1201}
1202
1203const FieldDescriptor*
1204FileDescriptor::FindExtensionByCamelcaseName(const string& key) const {
1205  const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
1206  if (result == NULL || !result->is_extension()) {
1207    return NULL;
1208  } else {
1209    return result;
1210  }
1211}
1212
1213bool Descriptor::IsExtensionNumber(int number) const {
1214  // Linear search should be fine because we don't expect a message to have
1215  // more than a couple extension ranges.
1216  for (int i = 0; i < extension_range_count(); i++) {
1217    if (number >= extension_range(i)->start &&
1218        number <  extension_range(i)->end) {
1219      return true;
1220    }
1221  }
1222  return false;
1223}
1224
1225// -------------------------------------------------------------------
1226
1227bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const {
1228  if (fallback_database_ == NULL) return false;
1229
1230  if (tables_->known_bad_files_.count(name) > 0) return false;
1231
1232  FileDescriptorProto file_proto;
1233  if (!fallback_database_->FindFileByName(name, &file_proto) ||
1234      BuildFileFromDatabase(file_proto) == NULL) {
1235    tables_->known_bad_files_.insert(name);
1236    return false;
1237  }
1238
1239  return true;
1240}
1241
1242bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const {
1243  if (fallback_database_ == NULL) return false;
1244
1245  FileDescriptorProto file_proto;
1246  if (!fallback_database_->FindFileContainingSymbol(name, &file_proto)) {
1247    return false;
1248  }
1249
1250  if (tables_->FindFile(file_proto.name()) != NULL) {
1251    // We've already loaded this file, and it apparently doesn't contain the
1252    // symbol we're looking for.  Some DescriptorDatabases return false
1253    // positives.
1254    return false;
1255  }
1256
1257  if (BuildFileFromDatabase(file_proto) == NULL) {
1258    return false;
1259  }
1260
1261  return true;
1262}
1263
1264bool DescriptorPool::TryFindExtensionInFallbackDatabase(
1265    const Descriptor* containing_type, int field_number) const {
1266  if (fallback_database_ == NULL) return false;
1267
1268  FileDescriptorProto file_proto;
1269  if (!fallback_database_->FindFileContainingExtension(
1270        containing_type->full_name(), field_number, &file_proto)) {
1271    return false;
1272  }
1273
1274  if (tables_->FindFile(file_proto.name()) != NULL) {
1275    // We've already loaded this file, and it apparently doesn't contain the
1276    // extension we're looking for.  Some DescriptorDatabases return false
1277    // positives.
1278    return false;
1279  }
1280
1281  if (BuildFileFromDatabase(file_proto) == NULL) {
1282    return false;
1283  }
1284
1285  return true;
1286}
1287
1288// ===================================================================
1289
1290string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const {
1291  GOOGLE_CHECK(has_default_value()) << "No default value";
1292  switch (cpp_type()) {
1293    case CPPTYPE_INT32:
1294      return SimpleItoa(default_value_int32());
1295      break;
1296    case CPPTYPE_INT64:
1297      return SimpleItoa(default_value_int64());
1298      break;
1299    case CPPTYPE_UINT32:
1300      return SimpleItoa(default_value_uint32());
1301      break;
1302    case CPPTYPE_UINT64:
1303      return SimpleItoa(default_value_uint64());
1304      break;
1305    case CPPTYPE_FLOAT:
1306      return SimpleFtoa(default_value_float());
1307      break;
1308    case CPPTYPE_DOUBLE:
1309      return SimpleDtoa(default_value_double());
1310      break;
1311    case CPPTYPE_BOOL:
1312      return default_value_bool() ? "true" : "false";
1313      break;
1314    case CPPTYPE_STRING:
1315      if (quote_string_type) {
1316        return "\"" + CEscape(default_value_string()) + "\"";
1317      } else {
1318        if (type() == TYPE_BYTES) {
1319          return CEscape(default_value_string());
1320        } else {
1321          return default_value_string();
1322        }
1323      }
1324      break;
1325    case CPPTYPE_ENUM:
1326      return default_value_enum()->name();
1327      break;
1328    case CPPTYPE_MESSAGE:
1329      GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
1330      break;
1331  }
1332  GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
1333  return "";
1334}
1335
1336// CopyTo methods ====================================================
1337
1338void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
1339  proto->set_name(name());
1340  if (!package().empty()) proto->set_package(package());
1341
1342  for (int i = 0; i < dependency_count(); i++) {
1343    proto->add_dependency(dependency(i)->name());
1344  }
1345
1346  for (int i = 0; i < message_type_count(); i++) {
1347    message_type(i)->CopyTo(proto->add_message_type());
1348  }
1349  for (int i = 0; i < enum_type_count(); i++) {
1350    enum_type(i)->CopyTo(proto->add_enum_type());
1351  }
1352  for (int i = 0; i < service_count(); i++) {
1353    service(i)->CopyTo(proto->add_service());
1354  }
1355  for (int i = 0; i < extension_count(); i++) {
1356    extension(i)->CopyTo(proto->add_extension());
1357  }
1358
1359  if (&options() != &FileOptions::default_instance()) {
1360    proto->mutable_options()->CopyFrom(options());
1361  }
1362}
1363
1364void Descriptor::CopyTo(DescriptorProto* proto) const {
1365  proto->set_name(name());
1366
1367  for (int i = 0; i < field_count(); i++) {
1368    field(i)->CopyTo(proto->add_field());
1369  }
1370  for (int i = 0; i < nested_type_count(); i++) {
1371    nested_type(i)->CopyTo(proto->add_nested_type());
1372  }
1373  for (int i = 0; i < enum_type_count(); i++) {
1374    enum_type(i)->CopyTo(proto->add_enum_type());
1375  }
1376  for (int i = 0; i < extension_range_count(); i++) {
1377    DescriptorProto::ExtensionRange* range = proto->add_extension_range();
1378    range->set_start(extension_range(i)->start);
1379    range->set_end(extension_range(i)->end);
1380  }
1381  for (int i = 0; i < extension_count(); i++) {
1382    extension(i)->CopyTo(proto->add_extension());
1383  }
1384
1385  if (&options() != &MessageOptions::default_instance()) {
1386    proto->mutable_options()->CopyFrom(options());
1387  }
1388}
1389
1390void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
1391  proto->set_name(name());
1392  proto->set_number(number());
1393
1394  // Some compilers do not allow static_cast directly between two enum types,
1395  // so we must cast to int first.
1396  proto->set_label(static_cast<FieldDescriptorProto::Label>(
1397                     implicit_cast<int>(label())));
1398  proto->set_type(static_cast<FieldDescriptorProto::Type>(
1399                    implicit_cast<int>(type())));
1400
1401  if (is_extension()) {
1402    if (!containing_type()->is_unqualified_placeholder_) {
1403      proto->set_extendee(".");
1404    }
1405    proto->mutable_extendee()->append(containing_type()->full_name());
1406  }
1407
1408  if (cpp_type() == CPPTYPE_MESSAGE) {
1409    if (message_type()->is_placeholder_) {
1410      // We don't actually know if the type is a message type.  It could be
1411      // an enum.
1412      proto->clear_type();
1413    }
1414
1415    if (!message_type()->is_unqualified_placeholder_) {
1416      proto->set_type_name(".");
1417    }
1418    proto->mutable_type_name()->append(message_type()->full_name());
1419  } else if (cpp_type() == CPPTYPE_ENUM) {
1420    if (!enum_type()->is_unqualified_placeholder_) {
1421      proto->set_type_name(".");
1422    }
1423    proto->mutable_type_name()->append(enum_type()->full_name());
1424  }
1425
1426  if (has_default_value()) {
1427    proto->set_default_value(DefaultValueAsString(false));
1428  }
1429
1430  if (&options() != &FieldOptions::default_instance()) {
1431    proto->mutable_options()->CopyFrom(options());
1432  }
1433}
1434
1435void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
1436  proto->set_name(name());
1437
1438  for (int i = 0; i < value_count(); i++) {
1439    value(i)->CopyTo(proto->add_value());
1440  }
1441
1442  if (&options() != &EnumOptions::default_instance()) {
1443    proto->mutable_options()->CopyFrom(options());
1444  }
1445}
1446
1447void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
1448  proto->set_name(name());
1449  proto->set_number(number());
1450
1451  if (&options() != &EnumValueOptions::default_instance()) {
1452    proto->mutable_options()->CopyFrom(options());
1453  }
1454}
1455
1456void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
1457  proto->set_name(name());
1458
1459  for (int i = 0; i < method_count(); i++) {
1460    method(i)->CopyTo(proto->add_method());
1461  }
1462
1463  if (&options() != &ServiceOptions::default_instance()) {
1464    proto->mutable_options()->CopyFrom(options());
1465  }
1466}
1467
1468void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
1469  proto->set_name(name());
1470
1471  if (!input_type()->is_unqualified_placeholder_) {
1472    proto->set_input_type(".");
1473  }
1474  proto->mutable_input_type()->append(input_type()->full_name());
1475
1476  if (!output_type()->is_unqualified_placeholder_) {
1477    proto->set_output_type(".");
1478  }
1479  proto->mutable_output_type()->append(output_type()->full_name());
1480
1481  if (&options() != &MethodOptions::default_instance()) {
1482    proto->mutable_options()->CopyFrom(options());
1483  }
1484}
1485
1486// DebugString methods ===============================================
1487
1488namespace {
1489
1490// Used by each of the option formatters.
1491bool RetrieveOptions(const Message &options, vector<string> *option_entries) {
1492  option_entries->clear();
1493  const Reflection* reflection = options.GetReflection();
1494  vector<const FieldDescriptor*> fields;
1495  reflection->ListFields(options, &fields);
1496  for (int i = 0; i < fields.size(); i++) {
1497    // Doesn't make sense to have message type fields here
1498    if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1499      continue;
1500    }
1501    int count = 1;
1502    bool repeated = false;
1503    if (fields[i]->is_repeated()) {
1504      count = reflection->FieldSize(options, fields[i]);
1505      repeated = true;
1506    }
1507    for (int j = 0; j < count; j++) {
1508      string fieldval;
1509      TextFormat::PrintFieldValueToString(options, fields[i],
1510                                          repeated ? count : -1, &fieldval);
1511      option_entries->push_back(fields[i]->name() + " = " + fieldval);
1512    }
1513  }
1514  return !option_entries->empty();
1515}
1516
1517// Formats options that all appear together in brackets. Does not include
1518// brackets.
1519bool FormatBracketedOptions(const Message &options, string *output) {
1520  vector<string> all_options;
1521  if (RetrieveOptions(options, &all_options)) {
1522    output->append(JoinStrings(all_options, ", "));
1523  }
1524  return !all_options.empty();
1525}
1526
1527// Formats options one per line
1528bool FormatLineOptions(int depth, const Message &options, string *output) {
1529  string prefix(depth * 2, ' ');
1530  vector<string> all_options;
1531  if (RetrieveOptions(options, &all_options)) {
1532    for (int i = 0; i < all_options.size(); i++) {
1533      strings::SubstituteAndAppend(output, "$0option $1;\n",
1534                                   prefix, all_options[i]);
1535    }
1536  }
1537  return !all_options.empty();
1538}
1539
1540}  // anonymous namespace
1541
1542string FileDescriptor::DebugString() const {
1543  string contents = "syntax = \"proto2\";\n\n";
1544
1545  for (int i = 0; i < dependency_count(); i++) {
1546    strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
1547                                 dependency(i)->name());
1548  }
1549
1550  if (!package().empty()) {
1551    strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
1552  }
1553
1554  if (FormatLineOptions(0, options(), &contents)) {
1555    contents.append("\n");  // add some space if we had options
1556  }
1557
1558  for (int i = 0; i < enum_type_count(); i++) {
1559    enum_type(i)->DebugString(0, &contents);
1560    contents.append("\n");
1561  }
1562
1563  // Find all the 'group' type extensions; we will not output their nested
1564  // definitions (those will be done with their group field descriptor).
1565  set<const Descriptor*> groups;
1566  for (int i = 0; i < extension_count(); i++) {
1567    if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1568      groups.insert(extension(i)->message_type());
1569    }
1570  }
1571
1572  for (int i = 0; i < message_type_count(); i++) {
1573    if (groups.count(message_type(i)) == 0) {
1574      strings::SubstituteAndAppend(&contents, "message $0",
1575                                   message_type(i)->name());
1576      message_type(i)->DebugString(0, &contents);
1577      contents.append("\n");
1578    }
1579  }
1580
1581  for (int i = 0; i < service_count(); i++) {
1582    service(i)->DebugString(&contents);
1583    contents.append("\n");
1584  }
1585
1586  const Descriptor* containing_type = NULL;
1587  for (int i = 0; i < extension_count(); i++) {
1588    if (extension(i)->containing_type() != containing_type) {
1589      if (i > 0) contents.append("}\n\n");
1590      containing_type = extension(i)->containing_type();
1591      strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1592                                   containing_type->full_name());
1593    }
1594    extension(i)->DebugString(1, &contents);
1595  }
1596  if (extension_count() > 0) contents.append("}\n\n");
1597
1598  return contents;
1599}
1600
1601string Descriptor::DebugString() const {
1602  string contents;
1603  strings::SubstituteAndAppend(&contents, "message $0", name());
1604  DebugString(0, &contents);
1605  return contents;
1606}
1607
1608void Descriptor::DebugString(int depth, string *contents) const {
1609  string prefix(depth * 2, ' ');
1610  ++depth;
1611  contents->append(" {\n");
1612
1613  FormatLineOptions(depth, options(), contents);
1614
1615  // Find all the 'group' types for fields and extensions; we will not output
1616  // their nested definitions (those will be done with their group field
1617  // descriptor).
1618  set<const Descriptor*> groups;
1619  for (int i = 0; i < field_count(); i++) {
1620    if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
1621      groups.insert(field(i)->message_type());
1622    }
1623  }
1624  for (int i = 0; i < extension_count(); i++) {
1625    if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1626      groups.insert(extension(i)->message_type());
1627    }
1628  }
1629
1630  for (int i = 0; i < nested_type_count(); i++) {
1631    if (groups.count(nested_type(i)) == 0) {
1632      strings::SubstituteAndAppend(contents, "$0  message $1",
1633                                   prefix, nested_type(i)->name());
1634      nested_type(i)->DebugString(depth, contents);
1635    }
1636  }
1637  for (int i = 0; i < enum_type_count(); i++) {
1638    enum_type(i)->DebugString(depth, contents);
1639  }
1640  for (int i = 0; i < field_count(); i++) {
1641    field(i)->DebugString(depth, contents);
1642  }
1643
1644  for (int i = 0; i < extension_range_count(); i++) {
1645    strings::SubstituteAndAppend(contents, "$0  extensions $1 to $2;\n",
1646                                 prefix,
1647                                 extension_range(i)->start,
1648                                 extension_range(i)->end - 1);
1649  }
1650
1651  // Group extensions by what they extend, so they can be printed out together.
1652  const Descriptor* containing_type = NULL;
1653  for (int i = 0; i < extension_count(); i++) {
1654    if (extension(i)->containing_type() != containing_type) {
1655      if (i > 0) strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
1656      containing_type = extension(i)->containing_type();
1657      strings::SubstituteAndAppend(contents, "$0  extend .$1 {\n",
1658                                   prefix, containing_type->full_name());
1659    }
1660    extension(i)->DebugString(depth + 1, contents);
1661  }
1662  if (extension_count() > 0)
1663    strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
1664
1665  strings::SubstituteAndAppend(contents, "$0}\n", prefix);
1666}
1667
1668string FieldDescriptor::DebugString() const {
1669  string contents;
1670  int depth = 0;
1671  if (is_extension()) {
1672    strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1673                                 containing_type()->full_name());
1674    depth = 1;
1675  }
1676  DebugString(depth, &contents);
1677  if (is_extension()) {
1678     contents.append("}\n");
1679  }
1680  return contents;
1681}
1682
1683void FieldDescriptor::DebugString(int depth, string *contents) const {
1684  string prefix(depth * 2, ' ');
1685  string field_type;
1686  switch (type()) {
1687    case TYPE_MESSAGE:
1688      field_type = "." + message_type()->full_name();
1689      break;
1690    case TYPE_ENUM:
1691      field_type = "." + enum_type()->full_name();
1692      break;
1693    default:
1694      field_type = kTypeToName[type()];
1695  }
1696
1697  strings::SubstituteAndAppend(contents, "$0$1 $2 $3 = $4",
1698                               prefix,
1699                               kLabelToName[label()],
1700                               field_type,
1701                               type() == TYPE_GROUP ? message_type()->name() :
1702                                                      name(),
1703                               number());
1704
1705  bool bracketed = false;
1706  if (has_default_value()) {
1707    bracketed = true;
1708    strings::SubstituteAndAppend(contents, " [default = $0",
1709                                 DefaultValueAsString(true));
1710  }
1711
1712  string formatted_options;
1713  if (FormatBracketedOptions(options(), &formatted_options)) {
1714    contents->append(bracketed ? ", " : " [");
1715    bracketed = true;
1716    contents->append(formatted_options);
1717  }
1718
1719  if (bracketed) {
1720    contents->append("]");
1721  }
1722
1723  if (type() == TYPE_GROUP) {
1724    message_type()->DebugString(depth, contents);
1725  } else {
1726    contents->append(";\n");
1727  }
1728}
1729
1730string EnumDescriptor::DebugString() const {
1731  string contents;
1732  DebugString(0, &contents);
1733  return contents;
1734}
1735
1736void EnumDescriptor::DebugString(int depth, string *contents) const {
1737  string prefix(depth * 2, ' ');
1738  ++depth;
1739  strings::SubstituteAndAppend(contents, "$0enum $1 {\n",
1740                               prefix, name());
1741
1742  FormatLineOptions(depth, options(), contents);
1743
1744  for (int i = 0; i < value_count(); i++) {
1745    value(i)->DebugString(depth, contents);
1746  }
1747  strings::SubstituteAndAppend(contents, "$0}\n", prefix);
1748}
1749
1750string EnumValueDescriptor::DebugString() const {
1751  string contents;
1752  DebugString(0, &contents);
1753  return contents;
1754}
1755
1756void EnumValueDescriptor::DebugString(int depth, string *contents) const {
1757  string prefix(depth * 2, ' ');
1758  strings::SubstituteAndAppend(contents, "$0$1 = $2",
1759                               prefix, name(), number());
1760
1761  string formatted_options;
1762  if (FormatBracketedOptions(options(), &formatted_options)) {
1763    strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
1764  }
1765  contents->append(";\n");
1766}
1767
1768string ServiceDescriptor::DebugString() const {
1769  string contents;
1770  DebugString(&contents);
1771  return contents;
1772}
1773
1774void ServiceDescriptor::DebugString(string *contents) const {
1775  strings::SubstituteAndAppend(contents, "service $0 {\n", name());
1776
1777  FormatLineOptions(1, options(), contents);
1778
1779  for (int i = 0; i < method_count(); i++) {
1780    method(i)->DebugString(1, contents);
1781  }
1782
1783  contents->append("}\n");
1784}
1785
1786string MethodDescriptor::DebugString() const {
1787  string contents;
1788  DebugString(0, &contents);
1789  return contents;
1790}
1791
1792void MethodDescriptor::DebugString(int depth, string *contents) const {
1793  string prefix(depth * 2, ' ');
1794  ++depth;
1795  strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)",
1796                               prefix, name(),
1797                               input_type()->full_name(),
1798                               output_type()->full_name());
1799
1800  string formatted_options;
1801  if (FormatLineOptions(depth, options(), &formatted_options)) {
1802    strings::SubstituteAndAppend(contents, " {\n$0$1}\n",
1803                                 formatted_options, prefix);
1804  } else {
1805    contents->append(";\n");
1806  }
1807}
1808// ===================================================================
1809
1810namespace {
1811
1812// Represents an options message to interpret. Extension names in the option
1813// name are respolved relative to name_scope. element_name and orig_opt are
1814// used only for error reporting (since the parser records locations against
1815// pointers in the original options, not the mutable copy). The Message must be
1816// one of the Options messages in descriptor.proto.
1817struct OptionsToInterpret {
1818  OptionsToInterpret(const string& ns,
1819                     const string& el,
1820                     const Message* orig_opt,
1821                     Message* opt)
1822      : name_scope(ns),
1823        element_name(el),
1824        original_options(orig_opt),
1825        options(opt) {
1826  }
1827  string name_scope;
1828  string element_name;
1829  const Message* original_options;
1830  Message* options;
1831};
1832
1833}  // namespace
1834
1835class DescriptorBuilder {
1836 public:
1837  DescriptorBuilder(const DescriptorPool* pool,
1838                    DescriptorPool::Tables* tables,
1839                    DescriptorPool::ErrorCollector* error_collector);
1840  ~DescriptorBuilder();
1841
1842  const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
1843
1844 private:
1845  friend class OptionInterpreter;
1846
1847  const DescriptorPool* pool_;
1848  DescriptorPool::Tables* tables_;  // for convenience
1849  DescriptorPool::ErrorCollector* error_collector_;
1850
1851  // As we build descriptors we store copies of the options messages in
1852  // them. We put pointers to those copies in this vector, as we build, so we
1853  // can later (after cross-linking) interpret those options.
1854  vector<OptionsToInterpret> options_to_interpret_;
1855
1856  bool had_errors_;
1857  string filename_;
1858  FileDescriptor* file_;
1859  FileDescriptorTables* file_tables_;
1860
1861  // If LookupSymbol() finds a symbol that is in a file which is not a declared
1862  // dependency of this file, it will fail, but will set
1863  // possible_undeclared_dependency_ to point at that file.  This is only used
1864  // by AddNotDefinedError() to report a more useful error message.
1865  // possible_undeclared_dependency_name_ is the name of the symbol that was
1866  // actually found in possible_undeclared_dependency_, which may be a parent
1867  // of the symbol actually looked for.
1868  const FileDescriptor* possible_undeclared_dependency_;
1869  string possible_undeclared_dependency_name_;
1870
1871  void AddError(const string& element_name,
1872                const Message& descriptor,
1873                DescriptorPool::ErrorCollector::ErrorLocation location,
1874                const string& error);
1875
1876  // Adds an error indicating that undefined_symbol was not defined.  Must
1877  // only be called after LookupSymbol() fails.
1878  void AddNotDefinedError(
1879    const string& element_name,
1880    const Message& descriptor,
1881    DescriptorPool::ErrorCollector::ErrorLocation location,
1882    const string& undefined_symbol);
1883
1884  // Silly helper which determines if the given file is in the given package.
1885  // I.e., either file->package() == package_name or file->package() is a
1886  // nested package within package_name.
1887  bool IsInPackage(const FileDescriptor* file, const string& package_name);
1888
1889  // Like tables_->FindSymbol(), but additionally:
1890  // - Search the pool's underlay if not found in tables_.
1891  // - Insure that the resulting Symbol is from one of the file's declared
1892  //   dependencies.
1893  Symbol FindSymbol(const string& name);
1894
1895  // Like FindSymbol() but does not require that the symbol is in one of the
1896  // file's declared dependencies.
1897  Symbol FindSymbolNotEnforcingDeps(const string& name);
1898
1899  // Like FindSymbol(), but looks up the name relative to some other symbol
1900  // name.  This first searches siblings of relative_to, then siblings of its
1901  // parents, etc.  For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
1902  // the following calls, returning the first non-null result:
1903  // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
1904  // FindSymbol("foo.bar").  If AllowUnknownDependencies() has been called
1905  // on the DescriptorPool, this will generate a placeholder type if
1906  // the name is not found (unless the name itself is malformed).  The
1907  // placeholder_type parameter indicates what kind of placeholder should be
1908  // constructed in this case.  The resolve_mode parameter determines whether
1909  // any symbol is returned, or only symbols that are types.  Note, however,
1910  // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
1911  // if it believes that's all it could refer to.  The caller should always
1912  // check that it receives the type of symbol it was expecting.
1913  enum PlaceholderType {
1914    PLACEHOLDER_MESSAGE,
1915    PLACEHOLDER_ENUM,
1916    PLACEHOLDER_EXTENDABLE_MESSAGE
1917  };
1918  enum ResolveMode {
1919    LOOKUP_ALL, LOOKUP_TYPES
1920  };
1921  Symbol LookupSymbol(const string& name, const string& relative_to,
1922                      PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE,
1923                      ResolveMode resolve_mode = LOOKUP_ALL);
1924
1925  // Like LookupSymbol() but will not return a placeholder even if
1926  // AllowUnknownDependencies() has been used.
1927  Symbol LookupSymbolNoPlaceholder(const string& name,
1928                                   const string& relative_to,
1929                                   ResolveMode resolve_mode = LOOKUP_ALL);
1930
1931  // Creates a placeholder type suitable for return from LookupSymbol().  May
1932  // return kNullSymbol if the name is not a valid type name.
1933  Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type);
1934
1935  // Creates a placeholder file.  Never returns NULL.  This is used when an
1936  // import is not found and AllowUnknownDependencies() is enabled.
1937  const FileDescriptor* NewPlaceholderFile(const string& name);
1938
1939  // Calls tables_->AddSymbol() and records an error if it fails.  Returns
1940  // true if successful or false if failed, though most callers can ignore
1941  // the return value since an error has already been recorded.
1942  bool AddSymbol(const string& full_name,
1943                 const void* parent, const string& name,
1944                 const Message& proto, Symbol symbol);
1945
1946  // Like AddSymbol(), but succeeds if the symbol is already defined as long
1947  // as the existing definition is also a package (because it's OK to define
1948  // the same package in two different files).  Also adds all parents of the
1949  // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add
1950  // "foo.bar" and "foo" to the table).
1951  void AddPackage(const string& name, const Message& proto,
1952                  const FileDescriptor* file);
1953
1954  // Checks that the symbol name contains only alphanumeric characters and
1955  // underscores.  Records an error otherwise.
1956  void ValidateSymbolName(const string& name, const string& full_name,
1957                          const Message& proto);
1958
1959  // Like ValidateSymbolName(), but the name is allowed to contain periods and
1960  // an error is indicated by returning false (not recording the error).
1961  bool ValidateQualifiedName(const string& name);
1962
1963  // Used by BUILD_ARRAY macro (below) to avoid having to have the type
1964  // specified as a macro parameter.
1965  template <typename Type>
1966  inline void AllocateArray(int size, Type** output) {
1967    *output = tables_->AllocateArray<Type>(size);
1968  }
1969
1970  // Allocates a copy of orig_options in tables_ and stores it in the
1971  // descriptor. Remembers its uninterpreted options, to be interpreted
1972  // later. DescriptorT must be one of the Descriptor messages from
1973  // descriptor.proto.
1974  template<class DescriptorT> void AllocateOptions(
1975      const typename DescriptorT::OptionsType& orig_options,
1976      DescriptorT* descriptor);
1977  // Specialization for FileOptions.
1978  void AllocateOptions(const FileOptions& orig_options,
1979                       FileDescriptor* descriptor);
1980
1981  // Implementation for AllocateOptions(). Don't call this directly.
1982  template<class DescriptorT> void AllocateOptionsImpl(
1983      const string& name_scope,
1984      const string& element_name,
1985      const typename DescriptorT::OptionsType& orig_options,
1986      DescriptorT* descriptor);
1987
1988  // These methods all have the same signature for the sake of the BUILD_ARRAY
1989  // macro, below.
1990  void BuildMessage(const DescriptorProto& proto,
1991                    const Descriptor* parent,
1992                    Descriptor* result);
1993  void BuildFieldOrExtension(const FieldDescriptorProto& proto,
1994                             const Descriptor* parent,
1995                             FieldDescriptor* result,
1996                             bool is_extension);
1997  void BuildField(const FieldDescriptorProto& proto,
1998                  const Descriptor* parent,
1999                  FieldDescriptor* result) {
2000    BuildFieldOrExtension(proto, parent, result, false);
2001  }
2002  void BuildExtension(const FieldDescriptorProto& proto,
2003                      const Descriptor* parent,
2004                      FieldDescriptor* result) {
2005    BuildFieldOrExtension(proto, parent, result, true);
2006  }
2007  void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
2008                           const Descriptor* parent,
2009                           Descriptor::ExtensionRange* result);
2010  void BuildEnum(const EnumDescriptorProto& proto,
2011                 const Descriptor* parent,
2012                 EnumDescriptor* result);
2013  void BuildEnumValue(const EnumValueDescriptorProto& proto,
2014                      const EnumDescriptor* parent,
2015                      EnumValueDescriptor* result);
2016  void BuildService(const ServiceDescriptorProto& proto,
2017                    const void* dummy,
2018                    ServiceDescriptor* result);
2019  void BuildMethod(const MethodDescriptorProto& proto,
2020                   const ServiceDescriptor* parent,
2021                   MethodDescriptor* result);
2022
2023  // Must be run only after building.
2024  //
2025  // NOTE: Options will not be available during cross-linking, as they
2026  // have not yet been interpreted. Defer any handling of options to the
2027  // Validate*Options methods.
2028  void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
2029  void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
2030  void CrossLinkField(FieldDescriptor* field,
2031                      const FieldDescriptorProto& proto);
2032  void CrossLinkEnum(EnumDescriptor* enum_type,
2033                     const EnumDescriptorProto& proto);
2034  void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
2035                          const EnumValueDescriptorProto& proto);
2036  void CrossLinkService(ServiceDescriptor* service,
2037                        const ServiceDescriptorProto& proto);
2038  void CrossLinkMethod(MethodDescriptor* method,
2039                       const MethodDescriptorProto& proto);
2040
2041  // Must be run only after cross-linking.
2042  void InterpretOptions();
2043
2044  // A helper class for interpreting options.
2045  class OptionInterpreter {
2046   public:
2047    // Creates an interpreter that operates in the context of the pool of the
2048    // specified builder, which must not be NULL. We don't take ownership of the
2049    // builder.
2050    explicit OptionInterpreter(DescriptorBuilder* builder);
2051
2052    ~OptionInterpreter();
2053
2054    // Interprets the uninterpreted options in the specified Options message.
2055    // On error, calls AddError() on the underlying builder and returns false.
2056    // Otherwise returns true.
2057    bool InterpretOptions(OptionsToInterpret* options_to_interpret);
2058
2059   private:
2060    // Interprets uninterpreted_option_ on the specified message, which
2061    // must be the mutable copy of the original options message to which
2062    // uninterpreted_option_ belongs.
2063    bool InterpretSingleOption(Message* options);
2064
2065    // Adds the uninterpreted_option to the given options message verbatim.
2066    // Used when AllowUnknownDependencies() is in effect and we can't find
2067    // the option's definition.
2068    void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
2069                                Message* options);
2070
2071    // A recursive helper function that drills into the intermediate fields
2072    // in unknown_fields to check if field innermost_field is set on the
2073    // innermost message. Returns false and sets an error if so.
2074    bool ExamineIfOptionIsSet(
2075        vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
2076        vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
2077        const FieldDescriptor* innermost_field, const string& debug_msg_name,
2078        const UnknownFieldSet& unknown_fields);
2079
2080    // Validates the value for the option field of the currently interpreted
2081    // option and then sets it on the unknown_field.
2082    bool SetOptionValue(const FieldDescriptor* option_field,
2083                        UnknownFieldSet* unknown_fields);
2084
2085    // Convenience functions to set an int field the right way, depending on
2086    // its wire type (a single int CppType can represent multiple wire types).
2087    void SetInt32(int number, int32 value, FieldDescriptor::Type type,
2088                  UnknownFieldSet* unknown_fields);
2089    void SetInt64(int number, int64 value, FieldDescriptor::Type type,
2090                  UnknownFieldSet* unknown_fields);
2091    void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
2092                   UnknownFieldSet* unknown_fields);
2093    void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
2094                   UnknownFieldSet* unknown_fields);
2095
2096    // A helper function that adds an error at the specified location of the
2097    // option we're currently interpreting, and returns false.
2098    bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
2099                        const string& msg) {
2100      builder_->AddError(options_to_interpret_->element_name,
2101                         *uninterpreted_option_, location, msg);
2102      return false;
2103    }
2104
2105    // A helper function that adds an error at the location of the option name
2106    // and returns false.
2107    bool AddNameError(const string& msg) {
2108      return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
2109    }
2110
2111    // A helper function that adds an error at the location of the option name
2112    // and returns false.
2113    bool AddValueError(const string& msg) {
2114      return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
2115    }
2116
2117    // We interpret against this builder's pool. Is never NULL. We don't own
2118    // this pointer.
2119    DescriptorBuilder* builder_;
2120
2121    // The options we're currently interpreting, or NULL if we're not in a call
2122    // to InterpretOptions.
2123    const OptionsToInterpret* options_to_interpret_;
2124
2125    // The option we're currently interpreting within options_to_interpret_, or
2126    // NULL if we're not in a call to InterpretOptions(). This points to a
2127    // submessage of the original option, not the mutable copy. Therefore we
2128    // can use it to find locations recorded by the parser.
2129    const UninterpretedOption* uninterpreted_option_;
2130
2131    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
2132  };
2133
2134  // Work-around for broken compilers:  According to the C++ standard,
2135  // OptionInterpreter should have access to the private members of any class
2136  // which has declared DescriptorBuilder as a friend.  Unfortunately some old
2137  // versions of GCC and other compilers do not implement this correctly.  So,
2138  // we have to have these intermediate methods to provide access.  We also
2139  // redundantly declare OptionInterpreter a friend just to make things extra
2140  // clear for these bad compilers.
2141  friend class OptionInterpreter;
2142  static inline bool get_allow_unknown(const DescriptorPool* pool) {
2143    return pool->allow_unknown_;
2144  }
2145  static inline bool get_is_placeholder(const Descriptor* descriptor) {
2146    return descriptor->is_placeholder_;
2147  }
2148
2149  // Must be run only after options have been interpreted.
2150  //
2151  // NOTE: Validation code must only reference the options in the mutable
2152  // descriptors, which are the ones that have been interpreted. The const
2153  // proto references are passed in only so they can be provided to calls to
2154  // AddError(). Do not look at their options, which have not been interpreted.
2155  void ValidateFileOptions(FileDescriptor* file,
2156                           const FileDescriptorProto& proto);
2157  void ValidateMessageOptions(Descriptor* message,
2158                              const DescriptorProto& proto);
2159  void ValidateFieldOptions(FieldDescriptor* field,
2160                            const FieldDescriptorProto& proto);
2161  void ValidateEnumOptions(EnumDescriptor* enm,
2162                           const EnumDescriptorProto& proto);
2163  void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
2164                                const EnumValueDescriptorProto& proto);
2165  void ValidateServiceOptions(ServiceDescriptor* service,
2166                              const ServiceDescriptorProto& proto);
2167  void ValidateMethodOptions(MethodDescriptor* method,
2168                             const MethodDescriptorProto& proto);
2169
2170  void ValidateMapKey(FieldDescriptor* field,
2171                      const FieldDescriptorProto& proto);
2172};
2173
2174const FileDescriptor* DescriptorPool::BuildFile(
2175    const FileDescriptorProto& proto) {
2176  GOOGLE_CHECK(fallback_database_ == NULL)
2177    << "Cannot call BuildFile on a DescriptorPool that uses a "
2178       "DescriptorDatabase.  You must instead find a way to get your file "
2179       "into the underlying database.";
2180  GOOGLE_CHECK(mutex_ == NULL);   // Implied by the above GOOGLE_CHECK.
2181  return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto);
2182}
2183
2184const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
2185    const FileDescriptorProto& proto,
2186    ErrorCollector* error_collector) {
2187  GOOGLE_CHECK(fallback_database_ == NULL)
2188    << "Cannot call BuildFile on a DescriptorPool that uses a "
2189       "DescriptorDatabase.  You must instead find a way to get your file "
2190       "into the underlying database.";
2191  GOOGLE_CHECK(mutex_ == NULL);   // Implied by the above GOOGLE_CHECK.
2192  return DescriptorBuilder(this, tables_.get(),
2193                           error_collector).BuildFile(proto);
2194}
2195
2196const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
2197    const FileDescriptorProto& proto) const {
2198  mutex_->AssertHeld();
2199  return DescriptorBuilder(this, tables_.get(),
2200                           default_error_collector_).BuildFile(proto);
2201}
2202
2203DescriptorBuilder::DescriptorBuilder(
2204    const DescriptorPool* pool,
2205    DescriptorPool::Tables* tables,
2206    DescriptorPool::ErrorCollector* error_collector)
2207  : pool_(pool),
2208    tables_(tables),
2209    error_collector_(error_collector),
2210    had_errors_(false),
2211    possible_undeclared_dependency_(NULL) {}
2212
2213DescriptorBuilder::~DescriptorBuilder() {}
2214
2215void DescriptorBuilder::AddError(
2216    const string& element_name,
2217    const Message& descriptor,
2218    DescriptorPool::ErrorCollector::ErrorLocation location,
2219    const string& error) {
2220  if (error_collector_ == NULL) {
2221    if (!had_errors_) {
2222      GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
2223                 << "\":";
2224    }
2225    GOOGLE_LOG(ERROR) << "  " << element_name << ": " << error;
2226  } else {
2227    error_collector_->AddError(filename_, element_name,
2228                               &descriptor, location, error);
2229  }
2230  had_errors_ = true;
2231}
2232
2233void DescriptorBuilder::AddNotDefinedError(
2234    const string& element_name,
2235    const Message& descriptor,
2236    DescriptorPool::ErrorCollector::ErrorLocation location,
2237    const string& undefined_symbol) {
2238  if (possible_undeclared_dependency_ == NULL) {
2239    AddError(element_name, descriptor, location,
2240             "\"" + undefined_symbol + "\" is not defined.");
2241  } else {
2242    AddError(element_name, descriptor, location,
2243             "\"" + possible_undeclared_dependency_name_ +
2244             "\" seems to be defined in \"" +
2245             possible_undeclared_dependency_->name() + "\", which is not "
2246             "imported by \"" + filename_ + "\".  To use it here, please "
2247             "add the necessary import.");
2248  }
2249}
2250
2251bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
2252                                    const string& package_name) {
2253  return HasPrefixString(file->package(), package_name) &&
2254           (file->package().size() == package_name.size() ||
2255            file->package()[package_name.size()] == '.');
2256}
2257
2258Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) {
2259  Symbol result;
2260
2261  // We need to search our pool and all its underlays.
2262  const DescriptorPool* pool = pool_;
2263  while (true) {
2264    // If we are looking at an underlay, we must lock its mutex_, since we are
2265    // accessing the underlay's tables_ dircetly.
2266    MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_);
2267
2268    // Note that we don't have to check fallback_database_ here because the
2269    // symbol has to be in one of its file's direct dependencies, and we have
2270    // already loaded those by the time we get here.
2271    result = pool->tables_->FindSymbol(name);
2272    if (!result.IsNull()) break;
2273    if (pool->underlay_ == NULL) return kNullSymbol;
2274    pool = pool->underlay_;
2275  }
2276
2277  return result;
2278}
2279
2280Symbol DescriptorBuilder::FindSymbol(const string& name) {
2281  Symbol result = FindSymbolNotEnforcingDeps(name);
2282
2283  if (!pool_->enforce_dependencies_) {
2284    // Hack for CompilerUpgrader.
2285    return result;
2286  }
2287
2288  // Only find symbols which were defined in this file or one of its
2289  // dependencies.
2290  const FileDescriptor* file = result.GetFile();
2291  if (file == file_) return result;
2292  for (int i = 0; i < file_->dependency_count(); i++) {
2293    if (file == file_->dependency(i)) return result;
2294  }
2295
2296  if (result.type == Symbol::PACKAGE) {
2297    // Arg, this is overcomplicated.  The symbol is a package name.  It could
2298    // be that the package was defined in multiple files.  result.GetFile()
2299    // returns the first file we saw that used this package.  We've determined
2300    // that that file is not a direct dependency of the file we are currently
2301    // building, but it could be that some other file which *is* a direct
2302    // dependency also defines the same package.  We can't really rule out this
2303    // symbol unless none of the dependencies define it.
2304    if (IsInPackage(file_, name)) return result;
2305    for (int i = 0; i < file_->dependency_count(); i++) {
2306      // Note:  A dependency may be NULL if it was not found or had errors.
2307      if (file_->dependency(i) != NULL &&
2308          IsInPackage(file_->dependency(i), name)) {
2309        return result;
2310      }
2311    }
2312  }
2313
2314  possible_undeclared_dependency_ = file;
2315  possible_undeclared_dependency_name_ = name;
2316  return kNullSymbol;
2317}
2318
2319Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
2320    const string& name, const string& relative_to, ResolveMode resolve_mode) {
2321  possible_undeclared_dependency_ = NULL;
2322
2323  if (name.size() > 0 && name[0] == '.') {
2324    // Fully-qualified name.
2325    return FindSymbol(name.substr(1));
2326  }
2327
2328  // If name is something like "Foo.Bar.baz", and symbols named "Foo" are
2329  // defined in multiple parent scopes, we only want to find "Bar.baz" in the
2330  // innermost one.  E.g., the following should produce an error:
2331  //   message Bar { message Baz {} }
2332  //   message Foo {
2333  //     message Bar {
2334  //     }
2335  //     optional Bar.Baz baz = 1;
2336  //   }
2337  // So, we look for just "Foo" first, then look for "Bar.baz" within it if
2338  // found.
2339  int name_dot_pos = name.find_first_of('.');
2340  string first_part_of_name;
2341  if (name_dot_pos == string::npos) {
2342    first_part_of_name = name;
2343  } else {
2344    first_part_of_name = name.substr(0, name_dot_pos);
2345  }
2346
2347  string scope_to_try(relative_to);
2348
2349  while (true) {
2350    // Chop off the last component of the scope.
2351    string::size_type dot_pos = scope_to_try.find_last_of('.');
2352    if (dot_pos == string::npos) {
2353      return FindSymbol(name);
2354    } else {
2355      scope_to_try.erase(dot_pos);
2356    }
2357
2358    // Append ".first_part_of_name" and try to find.
2359    string::size_type old_size = scope_to_try.size();
2360    scope_to_try.append(1, '.');
2361    scope_to_try.append(first_part_of_name);
2362    Symbol result = FindSymbol(scope_to_try);
2363    if (!result.IsNull()) {
2364      if (first_part_of_name.size() < name.size()) {
2365        // name is a compound symbol, of which we only found the first part.
2366        // Now try to look up the rest of it.
2367        if (result.IsAggregate()) {
2368          scope_to_try.append(name, first_part_of_name.size(),
2369                              name.size() - first_part_of_name.size());
2370          return FindSymbol(scope_to_try);
2371        } else {
2372          // We found a symbol but it's not an aggregate.  Continue the loop.
2373        }
2374      } else {
2375        if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
2376          // We found a symbol but it's not a type.  Continue the loop.
2377        } else {
2378          return result;
2379        }
2380      }
2381    }
2382
2383    // Not found.  Remove the name so we can try again.
2384    scope_to_try.erase(old_size);
2385  }
2386}
2387
2388Symbol DescriptorBuilder::LookupSymbol(
2389    const string& name, const string& relative_to,
2390    PlaceholderType placeholder_type, ResolveMode resolve_mode) {
2391  Symbol result = LookupSymbolNoPlaceholder(
2392      name, relative_to, resolve_mode);
2393  if (result.IsNull() && pool_->allow_unknown_) {
2394    // Not found, but AllowUnknownDependencies() is enabled.  Return a
2395    // placeholder instead.
2396    result = NewPlaceholder(name, placeholder_type);
2397  }
2398  return result;
2399}
2400
2401Symbol DescriptorBuilder::NewPlaceholder(const string& name,
2402                                         PlaceholderType placeholder_type) {
2403  // Compute names.
2404  const string* placeholder_full_name;
2405  const string* placeholder_name;
2406  const string* placeholder_package;
2407
2408  if (!ValidateQualifiedName(name)) return kNullSymbol;
2409  if (name[0] == '.') {
2410    // Fully-qualified.
2411    placeholder_full_name = tables_->AllocateString(name.substr(1));
2412  } else {
2413    placeholder_full_name = tables_->AllocateString(name);
2414  }
2415
2416  string::size_type dotpos = placeholder_full_name->find_last_of('.');
2417  if (dotpos != string::npos) {
2418    placeholder_package = tables_->AllocateString(
2419      placeholder_full_name->substr(0, dotpos));
2420    placeholder_name = tables_->AllocateString(
2421      placeholder_full_name->substr(dotpos + 1));
2422  } else {
2423    placeholder_package = &kEmptyString;
2424    placeholder_name = placeholder_full_name;
2425  }
2426
2427  // Create the placeholders.
2428  FileDescriptor* placeholder_file = tables_->Allocate<FileDescriptor>();
2429  memset(placeholder_file, 0, sizeof(*placeholder_file));
2430
2431  placeholder_file->name_ =
2432    tables_->AllocateString(*placeholder_full_name + ".placeholder.proto");
2433  placeholder_file->package_ = placeholder_package;
2434  placeholder_file->pool_ = pool_;
2435  placeholder_file->options_ = &FileOptions::default_instance();
2436  placeholder_file->tables_ = &FileDescriptorTables::kEmpty;
2437  // All other fields are zero or NULL.
2438
2439  if (placeholder_type == PLACEHOLDER_ENUM) {
2440    placeholder_file->enum_type_count_ = 1;
2441    placeholder_file->enum_types_ =
2442      tables_->AllocateArray<EnumDescriptor>(1);
2443
2444    EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
2445    memset(placeholder_enum, 0, sizeof(*placeholder_enum));
2446
2447    placeholder_enum->full_name_ = placeholder_full_name;
2448    placeholder_enum->name_ = placeholder_name;
2449    placeholder_enum->file_ = placeholder_file;
2450    placeholder_enum->options_ = &EnumOptions::default_instance();
2451    placeholder_enum->is_placeholder_ = true;
2452    placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
2453
2454    // Enums must have at least one value.
2455    placeholder_enum->value_count_ = 1;
2456    placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
2457
2458    EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
2459    memset(placeholder_value, 0, sizeof(*placeholder_value));
2460
2461    placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
2462    // Note that enum value names are siblings of their type, not children.
2463    placeholder_value->full_name_ =
2464      placeholder_package->empty() ? placeholder_value->name_ :
2465        tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE");
2466
2467    placeholder_value->number_ = 0;
2468    placeholder_value->type_ = placeholder_enum;
2469    placeholder_value->options_ = &EnumValueOptions::default_instance();
2470
2471    return Symbol(placeholder_enum);
2472  } else {
2473    placeholder_file->message_type_count_ = 1;
2474    placeholder_file->message_types_ =
2475      tables_->AllocateArray<Descriptor>(1);
2476
2477    Descriptor* placeholder_message = &placeholder_file->message_types_[0];
2478    memset(placeholder_message, 0, sizeof(*placeholder_message));
2479
2480    placeholder_message->full_name_ = placeholder_full_name;
2481    placeholder_message->name_ = placeholder_name;
2482    placeholder_message->file_ = placeholder_file;
2483    placeholder_message->options_ = &MessageOptions::default_instance();
2484    placeholder_message->is_placeholder_ = true;
2485    placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
2486
2487    if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
2488      placeholder_message->extension_range_count_ = 1;
2489      placeholder_message->extension_ranges_ =
2490        tables_->AllocateArray<Descriptor::ExtensionRange>(1);
2491      placeholder_message->extension_ranges_->start = 1;
2492      // kMaxNumber + 1 because ExtensionRange::end is exclusive.
2493      placeholder_message->extension_ranges_->end =
2494        FieldDescriptor::kMaxNumber + 1;
2495    }
2496
2497    return Symbol(placeholder_message);
2498  }
2499}
2500
2501const FileDescriptor* DescriptorBuilder::NewPlaceholderFile(
2502    const string& name) {
2503  FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
2504  memset(placeholder, 0, sizeof(*placeholder));
2505
2506  placeholder->name_ = tables_->AllocateString(name);
2507  placeholder->package_ = &kEmptyString;
2508  placeholder->pool_ = pool_;
2509  placeholder->options_ = &FileOptions::default_instance();
2510  placeholder->tables_ = &FileDescriptorTables::kEmpty;
2511  // All other fields are zero or NULL.
2512
2513  return placeholder;
2514}
2515
2516bool DescriptorBuilder::AddSymbol(
2517    const string& full_name, const void* parent, const string& name,
2518    const Message& proto, Symbol symbol) {
2519  // If the caller passed NULL for the parent, the symbol is at file scope.
2520  // Use its file as the parent instead.
2521  if (parent == NULL) parent = file_;
2522
2523  if (tables_->AddSymbol(full_name, symbol)) {
2524    if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
2525      GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in "
2526                     "symbols_by_name_, but was defined in symbols_by_parent_; "
2527                     "this shouldn't be possible.";
2528      return false;
2529    }
2530    return true;
2531  } else {
2532    const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
2533    if (other_file == file_) {
2534      string::size_type dot_pos = full_name.find_last_of('.');
2535      if (dot_pos == string::npos) {
2536        AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2537                 "\"" + full_name + "\" is already defined.");
2538      } else {
2539        AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2540                 "\"" + full_name.substr(dot_pos + 1) +
2541                 "\" is already defined in \"" +
2542                 full_name.substr(0, dot_pos) + "\".");
2543      }
2544    } else {
2545      // Symbol seems to have been defined in a different file.
2546      AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2547               "\"" + full_name + "\" is already defined in file \"" +
2548               other_file->name() + "\".");
2549    }
2550    return false;
2551  }
2552}
2553
2554void DescriptorBuilder::AddPackage(
2555    const string& name, const Message& proto, const FileDescriptor* file) {
2556  if (tables_->AddSymbol(name, Symbol(file))) {
2557    // Success.  Also add parent package, if any.
2558    string::size_type dot_pos = name.find_last_of('.');
2559    if (dot_pos == string::npos) {
2560      // No parents.
2561      ValidateSymbolName(name, name, proto);
2562    } else {
2563      // Has parent.
2564      string* parent_name = tables_->AllocateString(name.substr(0, dot_pos));
2565      AddPackage(*parent_name, proto, file);
2566      ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
2567    }
2568  } else {
2569    Symbol existing_symbol = tables_->FindSymbol(name);
2570    // It's OK to redefine a package.
2571    if (existing_symbol.type != Symbol::PACKAGE) {
2572      // Symbol seems to have been defined in a different file.
2573      AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
2574               "\"" + name + "\" is already defined (as something other than "
2575               "a package) in file \"" + existing_symbol.GetFile()->name() +
2576               "\".");
2577    }
2578  }
2579}
2580
2581void DescriptorBuilder::ValidateSymbolName(
2582    const string& name, const string& full_name, const Message& proto) {
2583  if (name.empty()) {
2584    AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2585             "Missing name.");
2586  } else {
2587    for (int i = 0; i < name.size(); i++) {
2588      // I don't trust isalnum() due to locales.  :(
2589      if ((name[i] < 'a' || 'z' < name[i]) &&
2590          (name[i] < 'A' || 'Z' < name[i]) &&
2591          (name[i] < '0' || '9' < name[i]) &&
2592          (name[i] != '_')) {
2593        AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2594                 "\"" + name + "\" is not a valid identifier.");
2595      }
2596    }
2597  }
2598}
2599
2600bool DescriptorBuilder::ValidateQualifiedName(const string& name) {
2601  bool last_was_period = false;
2602
2603  for (int i = 0; i < name.size(); i++) {
2604    // I don't trust isalnum() due to locales.  :(
2605    if (('a' <= name[i] && name[i] <= 'z') ||
2606        ('A' <= name[i] && name[i] <= 'Z') ||
2607        ('0' <= name[i] && name[i] <= '9') ||
2608        (name[i] == '_')) {
2609      last_was_period = false;
2610    } else if (name[i] == '.') {
2611      if (last_was_period) return false;
2612      last_was_period = true;
2613    } else {
2614      return false;
2615    }
2616  }
2617
2618  return !name.empty() && !last_was_period;
2619}
2620
2621// -------------------------------------------------------------------
2622
2623// This generic implementation is good for all descriptors except
2624// FileDescriptor.
2625template<class DescriptorT> void DescriptorBuilder::AllocateOptions(
2626    const typename DescriptorT::OptionsType& orig_options,
2627    DescriptorT* descriptor) {
2628  AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
2629                      orig_options, descriptor);
2630}
2631
2632// We specialize for FileDescriptor.
2633void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
2634                                        FileDescriptor* descriptor) {
2635  // We add the dummy token so that LookupSymbol does the right thing.
2636  AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
2637                      orig_options, descriptor);
2638}
2639
2640template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl(
2641    const string& name_scope,
2642    const string& element_name,
2643    const typename DescriptorT::OptionsType& orig_options,
2644    DescriptorT* descriptor) {
2645  // We need to use a dummy pointer to work around a bug in older versions of
2646  // GCC.  Otherwise, the following two lines could be replaced with:
2647  //   typename DescriptorT::OptionsType* options =
2648  //       tables_->AllocateMessage<typename DescriptorT::OptionsType>();
2649  typename DescriptorT::OptionsType* const dummy = NULL;
2650  typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
2651  options->CopyFrom(orig_options);
2652  descriptor->options_ = options;
2653
2654  // Don't add to options_to_interpret_ unless there were uninterpreted
2655  // options.  This not only avoids unnecessary work, but prevents a
2656  // bootstrapping problem when building descriptors for descriptor.proto.
2657  // descriptor.proto does not contain any uninterpreted options, but
2658  // attempting to interpret options anyway will cause
2659  // OptionsType::GetDescriptor() to be called which may then deadlock since
2660  // we're still trying to build it.
2661  if (options->uninterpreted_option_size() > 0) {
2662    options_to_interpret_.push_back(
2663        OptionsToInterpret(name_scope, element_name, &orig_options, options));
2664  }
2665}
2666
2667
2668// A common pattern:  We want to convert a repeated field in the descriptor
2669// to an array of values, calling some method to build each value.
2670#define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT)             \
2671  OUTPUT->NAME##_count_ = INPUT.NAME##_size();                       \
2672  AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_);             \
2673  for (int i = 0; i < INPUT.NAME##_size(); i++) {                    \
2674    METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i);             \
2675  }
2676
2677const FileDescriptor* DescriptorBuilder::BuildFile(
2678    const FileDescriptorProto& proto) {
2679  filename_ = proto.name();
2680
2681  // Check if the file already exists and is identical to the one being built.
2682  // Note:  This only works if the input is canonical -- that is, it
2683  //   fully-qualifies all type names, has no UninterpretedOptions, etc.
2684  //   This is fine, because this idempotency "feature" really only exists to
2685  //   accomodate one hack in the proto1->proto2 migration layer.
2686  const FileDescriptor* existing_file = tables_->FindFile(filename_);
2687  if (existing_file != NULL) {
2688    // File already in pool.  Compare the existing one to the input.
2689    FileDescriptorProto existing_proto;
2690    existing_file->CopyTo(&existing_proto);
2691    if (existing_proto.SerializeAsString() == proto.SerializeAsString()) {
2692      // They're identical.  Return the existing descriptor.
2693      return existing_file;
2694    }
2695
2696    // Not a match.  The error will be detected and handled later.
2697  }
2698
2699  // Check to see if this file is already on the pending files list.
2700  // TODO(kenton):  Allow recursive imports?  It may not work with some
2701  //   (most?) programming languages.  E.g., in C++, a forward declaration
2702  //   of a type is not sufficient to allow it to be used even in a
2703  //   generated header file due to inlining.  This could perhaps be
2704  //   worked around using tricks involving inserting #include statements
2705  //   mid-file, but that's pretty ugly, and I'm pretty sure there are
2706  //   some languages out there that do not allow recursive dependencies
2707  //   at all.
2708  for (int i = 0; i < tables_->pending_files_.size(); i++) {
2709    if (tables_->pending_files_[i] == proto.name()) {
2710      string error_message("File recursively imports itself: ");
2711      for (; i < tables_->pending_files_.size(); i++) {
2712        error_message.append(tables_->pending_files_[i]);
2713        error_message.append(" -> ");
2714      }
2715      error_message.append(proto.name());
2716
2717      AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
2718               error_message);
2719      return NULL;
2720    }
2721  }
2722
2723  // If we have a fallback_database_, attempt to load all dependencies now,
2724  // before checkpointing tables_.  This avoids confusion with recursive
2725  // checkpoints.
2726  if (pool_->fallback_database_ != NULL) {
2727    tables_->pending_files_.push_back(proto.name());
2728    for (int i = 0; i < proto.dependency_size(); i++) {
2729      if (tables_->FindFile(proto.dependency(i)) == NULL &&
2730          (pool_->underlay_ == NULL ||
2731           pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) {
2732        // We don't care what this returns since we'll find out below anyway.
2733        pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
2734      }
2735    }
2736    tables_->pending_files_.pop_back();
2737  }
2738
2739  // Checkpoint the tables so that we can roll back if something goes wrong.
2740  tables_->Checkpoint();
2741
2742  FileDescriptor* result = tables_->Allocate<FileDescriptor>();
2743  file_ = result;
2744
2745  file_tables_ = tables_->AllocateFileTables();
2746  file_->tables_ = file_tables_;
2747
2748  if (!proto.has_name()) {
2749    AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
2750             "Missing field: FileDescriptorProto.name.");
2751  }
2752
2753  result->name_ = tables_->AllocateString(proto.name());
2754  if (proto.has_package()) {
2755    result->package_ = tables_->AllocateString(proto.package());
2756  } else {
2757    // We cannot rely on proto.package() returning a valid string if
2758    // proto.has_package() is false, because we might be running at static
2759    // initialization time, in which case default values have not yet been
2760    // initialized.
2761    result->package_ = tables_->AllocateString("");
2762  }
2763  result->pool_ = pool_;
2764
2765  // Add to tables.
2766  if (!tables_->AddFile(result)) {
2767    AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
2768             "A file with this name is already in the pool.");
2769    // Bail out early so that if this is actually the exact same file, we
2770    // don't end up reporting that every single symbol is already defined.
2771    tables_->Rollback();
2772    return NULL;
2773  }
2774  if (!result->package().empty()) {
2775    AddPackage(result->package(), proto, result);
2776  }
2777
2778  // Make sure all dependencies are loaded.
2779  set<string> seen_dependencies;
2780  result->dependency_count_ = proto.dependency_size();
2781  result->dependencies_ =
2782    tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
2783  for (int i = 0; i < proto.dependency_size(); i++) {
2784    if (!seen_dependencies.insert(proto.dependency(i)).second) {
2785      AddError(proto.name(), proto,
2786               DescriptorPool::ErrorCollector::OTHER,
2787               "Import \"" + proto.dependency(i) + "\" was listed twice.");
2788    }
2789
2790    const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
2791    if (dependency == NULL && pool_->underlay_ != NULL) {
2792      dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
2793    }
2794
2795    if (dependency == NULL) {
2796      if (pool_->allow_unknown_) {
2797        dependency = NewPlaceholderFile(proto.dependency(i));
2798      } else {
2799        string message;
2800        if (pool_->fallback_database_ == NULL) {
2801          message = "Import \"" + proto.dependency(i) +
2802                    "\" has not been loaded.";
2803        } else {
2804          message = "Import \"" + proto.dependency(i) +
2805                    "\" was not found or had errors.";
2806        }
2807        AddError(proto.name(), proto,
2808                 DescriptorPool::ErrorCollector::OTHER,
2809                 message);
2810      }
2811    }
2812
2813    result->dependencies_[i] = dependency;
2814  }
2815
2816  // Convert children.
2817  BUILD_ARRAY(proto, result, message_type, BuildMessage  , NULL);
2818  BUILD_ARRAY(proto, result, enum_type   , BuildEnum     , NULL);
2819  BUILD_ARRAY(proto, result, service     , BuildService  , NULL);
2820  BUILD_ARRAY(proto, result, extension   , BuildExtension, NULL);
2821
2822  // Copy options.
2823  if (!proto.has_options()) {
2824    result->options_ = NULL;  // Will set to default_instance later.
2825  } else {
2826    AllocateOptions(proto.options(), result);
2827  }
2828
2829  // Note that the following steps must occur in exactly the specified order.
2830
2831  // Cross-link.
2832  CrossLinkFile(result, proto);
2833
2834  // Interpret any remaining uninterpreted options gathered into
2835  // options_to_interpret_ during descriptor building.  Cross-linking has made
2836  // extension options known, so all interpretations should now succeed.
2837  if (!had_errors_) {
2838    OptionInterpreter option_interpreter(this);
2839    for (vector<OptionsToInterpret>::iterator iter =
2840             options_to_interpret_.begin();
2841         iter != options_to_interpret_.end(); ++iter) {
2842      option_interpreter.InterpretOptions(&(*iter));
2843    }
2844    options_to_interpret_.clear();
2845  }
2846
2847  // Validate options.
2848  if (!had_errors_) {
2849    ValidateFileOptions(result, proto);
2850  }
2851
2852  if (had_errors_) {
2853    tables_->Rollback();
2854    return NULL;
2855  } else {
2856    tables_->Checkpoint();
2857    return result;
2858  }
2859}
2860
2861void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
2862                                     const Descriptor* parent,
2863                                     Descriptor* result) {
2864  const string& scope = (parent == NULL) ?
2865    file_->package() : parent->full_name();
2866  string* full_name = tables_->AllocateString(scope);
2867  if (!full_name->empty()) full_name->append(1, '.');
2868  full_name->append(proto.name());
2869
2870  ValidateSymbolName(proto.name(), *full_name, proto);
2871
2872  result->name_            = tables_->AllocateString(proto.name());
2873  result->full_name_       = full_name;
2874  result->file_            = file_;
2875  result->containing_type_ = parent;
2876  result->is_placeholder_  = false;
2877  result->is_unqualified_placeholder_ = false;
2878
2879  BUILD_ARRAY(proto, result, field          , BuildField         , result);
2880  BUILD_ARRAY(proto, result, nested_type    , BuildMessage       , result);
2881  BUILD_ARRAY(proto, result, enum_type      , BuildEnum          , result);
2882  BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
2883  BUILD_ARRAY(proto, result, extension      , BuildExtension     , result);
2884
2885  // Copy options.
2886  if (!proto.has_options()) {
2887    result->options_ = NULL;  // Will set to default_instance later.
2888  } else {
2889    AllocateOptions(proto.options(), result);
2890  }
2891
2892  AddSymbol(result->full_name(), parent, result->name(),
2893            proto, Symbol(result));
2894
2895  // Check that no fields have numbers in extension ranges.
2896  for (int i = 0; i < result->field_count(); i++) {
2897    const FieldDescriptor* field = result->field(i);
2898    for (int j = 0; j < result->extension_range_count(); j++) {
2899      const Descriptor::ExtensionRange* range = result->extension_range(j);
2900      if (range->start <= field->number() && field->number() < range->end) {
2901        AddError(field->full_name(), proto.extension_range(j),
2902                 DescriptorPool::ErrorCollector::NUMBER,
2903                 strings::Substitute(
2904                   "Extension range $0 to $1 includes field \"$2\" ($3).",
2905                   range->start, range->end - 1,
2906                   field->name(), field->number()));
2907      }
2908    }
2909  }
2910
2911  // Check that extension ranges don't overlap.
2912  for (int i = 0; i < result->extension_range_count(); i++) {
2913    const Descriptor::ExtensionRange* range1 = result->extension_range(i);
2914    for (int j = i + 1; j < result->extension_range_count(); j++) {
2915      const Descriptor::ExtensionRange* range2 = result->extension_range(j);
2916      if (range1->end > range2->start && range2->end > range1->start) {
2917        AddError(result->full_name(), proto.extension_range(j),
2918                 DescriptorPool::ErrorCollector::NUMBER,
2919                 strings::Substitute("Extension range $0 to $1 overlaps with "
2920                                     "already-defined range $2 to $3.",
2921                                     range2->start, range2->end - 1,
2922                                     range1->start, range1->end - 1));
2923      }
2924    }
2925  }
2926}
2927
2928void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
2929                                              const Descriptor* parent,
2930                                              FieldDescriptor* result,
2931                                              bool is_extension) {
2932  const string& scope = (parent == NULL) ?
2933    file_->package() : parent->full_name();
2934  string* full_name = tables_->AllocateString(scope);
2935  if (!full_name->empty()) full_name->append(1, '.');
2936  full_name->append(proto.name());
2937
2938  ValidateSymbolName(proto.name(), *full_name, proto);
2939
2940  result->name_         = tables_->AllocateString(proto.name());
2941  result->full_name_    = full_name;
2942  result->file_         = file_;
2943  result->number_       = proto.number();
2944  result->is_extension_ = is_extension;
2945
2946  // If .proto files follow the style guide then the name should already be
2947  // lower-cased.  If that's the case we can just reuse the string we already
2948  // allocated rather than allocate a new one.
2949  string lowercase_name(proto.name());
2950  LowerString(&lowercase_name);
2951  if (lowercase_name == proto.name()) {
2952    result->lowercase_name_ = result->name_;
2953  } else {
2954    result->lowercase_name_ = tables_->AllocateString(lowercase_name);
2955  }
2956
2957  // Don't bother with the above optimization for camel-case names since
2958  // .proto files that follow the guide shouldn't be using names in this
2959  // format, so the optimization wouldn't help much.
2960  result->camelcase_name_ = tables_->AllocateString(ToCamelCase(proto.name()));
2961
2962  // Some compilers do not allow static_cast directly between two enum types,
2963  // so we must cast to int first.
2964  result->type_  = static_cast<FieldDescriptor::Type>(
2965                     implicit_cast<int>(proto.type()));
2966  result->label_ = static_cast<FieldDescriptor::Label>(
2967                     implicit_cast<int>(proto.label()));
2968
2969  // Some of these may be filled in when cross-linking.
2970  result->containing_type_ = NULL;
2971  result->extension_scope_ = NULL;
2972  result->experimental_map_key_ = NULL;
2973  result->message_type_ = NULL;
2974  result->enum_type_ = NULL;
2975
2976  result->has_default_value_ = proto.has_default_value();
2977  if (proto.has_default_value() && result->is_repeated()) {
2978    AddError(result->full_name(), proto,
2979             DescriptorPool::ErrorCollector::DEFAULT_VALUE,
2980             "Repeated fields can't have default values.");
2981  }
2982
2983  if (proto.has_type()) {
2984    if (proto.has_default_value()) {
2985      char* end_pos = NULL;
2986      switch (result->cpp_type()) {
2987        case FieldDescriptor::CPPTYPE_INT32:
2988          result->default_value_int32_ =
2989            strtol(proto.default_value().c_str(), &end_pos, 0);
2990          break;
2991        case FieldDescriptor::CPPTYPE_INT64:
2992          result->default_value_int64_ =
2993            strto64(proto.default_value().c_str(), &end_pos, 0);
2994          break;
2995        case FieldDescriptor::CPPTYPE_UINT32:
2996          result->default_value_uint32_ =
2997            strtoul(proto.default_value().c_str(), &end_pos, 0);
2998          break;
2999        case FieldDescriptor::CPPTYPE_UINT64:
3000          result->default_value_uint64_ =
3001            strtou64(proto.default_value().c_str(), &end_pos, 0);
3002          break;
3003        case FieldDescriptor::CPPTYPE_FLOAT:
3004          if (proto.default_value() == "inf") {
3005            result->default_value_float_ = numeric_limits<float>::infinity();
3006          } else if (proto.default_value() == "-inf") {
3007            result->default_value_float_ = -numeric_limits<float>::infinity();
3008          } else if (proto.default_value() == "nan") {
3009            result->default_value_float_ = numeric_limits<float>::quiet_NaN();
3010          } else  {
3011            result->default_value_float_ =
3012              NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3013          }
3014          break;
3015        case FieldDescriptor::CPPTYPE_DOUBLE:
3016          if (proto.default_value() == "inf") {
3017            result->default_value_double_ = numeric_limits<double>::infinity();
3018          } else if (proto.default_value() == "-inf") {
3019            result->default_value_double_ = -numeric_limits<double>::infinity();
3020          } else if (proto.default_value() == "nan") {
3021            result->default_value_double_ = numeric_limits<double>::quiet_NaN();
3022          } else  {
3023            result->default_value_double_ =
3024              NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3025          }
3026          break;
3027        case FieldDescriptor::CPPTYPE_BOOL:
3028          if (proto.default_value() == "true") {
3029            result->default_value_bool_ = true;
3030          } else if (proto.default_value() == "false") {
3031            result->default_value_bool_ = false;
3032          } else {
3033            AddError(result->full_name(), proto,
3034                     DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3035                     "Boolean default must be true or false.");
3036          }
3037          break;
3038        case FieldDescriptor::CPPTYPE_ENUM:
3039          // This will be filled in when cross-linking.
3040          result->default_value_enum_ = NULL;
3041          break;
3042        case FieldDescriptor::CPPTYPE_STRING:
3043          if (result->type() == FieldDescriptor::TYPE_BYTES) {
3044            result->default_value_string_ = tables_->AllocateString(
3045              UnescapeCEscapeString(proto.default_value()));
3046          } else {
3047            result->default_value_string_ =
3048              tables_->AllocateString(proto.default_value());
3049          }
3050          break;
3051        case FieldDescriptor::CPPTYPE_MESSAGE:
3052          AddError(result->full_name(), proto,
3053                   DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3054                   "Messages can't have default values.");
3055          result->has_default_value_ = false;
3056          break;
3057      }
3058
3059      if (end_pos != NULL) {
3060        // end_pos is only set non-NULL by the parsers for numeric types, above.
3061        // This checks that the default was non-empty and had no extra junk
3062        // after the end of the number.
3063        if (proto.default_value().empty() || *end_pos != '\0') {
3064          AddError(result->full_name(), proto,
3065                   DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3066                   "Couldn't parse default value.");
3067        }
3068      }
3069    } else {
3070      // No explicit default value
3071      switch (result->cpp_type()) {
3072        case FieldDescriptor::CPPTYPE_INT32:
3073          result->default_value_int32_ = 0;
3074          break;
3075        case FieldDescriptor::CPPTYPE_INT64:
3076          result->default_value_int64_ = 0;
3077          break;
3078        case FieldDescriptor::CPPTYPE_UINT32:
3079          result->default_value_uint32_ = 0;
3080          break;
3081        case FieldDescriptor::CPPTYPE_UINT64:
3082          result->default_value_uint64_ = 0;
3083          break;
3084        case FieldDescriptor::CPPTYPE_FLOAT:
3085          result->default_value_float_ = 0.0f;
3086          break;
3087        case FieldDescriptor::CPPTYPE_DOUBLE:
3088          result->default_value_double_ = 0.0;
3089          break;
3090        case FieldDescriptor::CPPTYPE_BOOL:
3091          result->default_value_bool_ = false;
3092          break;
3093        case FieldDescriptor::CPPTYPE_ENUM:
3094          // This will be filled in when cross-linking.
3095          result->default_value_enum_ = NULL;
3096          break;
3097        case FieldDescriptor::CPPTYPE_STRING:
3098          result->default_value_string_ = &kEmptyString;
3099          break;
3100        case FieldDescriptor::CPPTYPE_MESSAGE:
3101          break;
3102      }
3103    }
3104  }
3105
3106  if (result->number() <= 0) {
3107    AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3108             "Field numbers must be positive integers.");
3109  } else if (result->number() > FieldDescriptor::kMaxNumber) {
3110    AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3111             strings::Substitute("Field numbers cannot be greater than $0.",
3112                                 FieldDescriptor::kMaxNumber));
3113  } else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
3114             result->number() <= FieldDescriptor::kLastReservedNumber) {
3115    AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3116             strings::Substitute(
3117               "Field numbers $0 through $1 are reserved for the protocol "
3118               "buffer library implementation.",
3119               FieldDescriptor::kFirstReservedNumber,
3120               FieldDescriptor::kLastReservedNumber));
3121  }
3122
3123  if (is_extension) {
3124    if (!proto.has_extendee()) {
3125      AddError(result->full_name(), proto,
3126               DescriptorPool::ErrorCollector::EXTENDEE,
3127               "FieldDescriptorProto.extendee not set for extension field.");
3128    }
3129
3130    result->extension_scope_ = parent;
3131  } else {
3132    if (proto.has_extendee()) {
3133      AddError(result->full_name(), proto,
3134               DescriptorPool::ErrorCollector::EXTENDEE,
3135               "FieldDescriptorProto.extendee set for non-extension field.");
3136    }
3137
3138    result->containing_type_ = parent;
3139  }
3140
3141  // Copy options.
3142  if (!proto.has_options()) {
3143    result->options_ = NULL;  // Will set to default_instance later.
3144  } else {
3145    AllocateOptions(proto.options(), result);
3146  }
3147
3148  AddSymbol(result->full_name(), parent, result->name(),
3149            proto, Symbol(result));
3150}
3151
3152void DescriptorBuilder::BuildExtensionRange(
3153    const DescriptorProto::ExtensionRange& proto,
3154    const Descriptor* parent,
3155    Descriptor::ExtensionRange* result) {
3156  result->start = proto.start();
3157  result->end = proto.end();
3158  if (result->start <= 0) {
3159    AddError(parent->full_name(), proto,
3160             DescriptorPool::ErrorCollector::NUMBER,
3161             "Extension numbers must be positive integers.");
3162  }
3163
3164  if (result->end > FieldDescriptor::kMaxNumber + 1) {
3165    AddError(parent->full_name(), proto,
3166             DescriptorPool::ErrorCollector::NUMBER,
3167             strings::Substitute("Extension numbers cannot be greater than $0.",
3168                                 FieldDescriptor::kMaxNumber));
3169  }
3170
3171  if (result->start >= result->end) {
3172    AddError(parent->full_name(), proto,
3173             DescriptorPool::ErrorCollector::NUMBER,
3174             "Extension range end number must be greater than start number.");
3175  }
3176}
3177
3178void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
3179                                  const Descriptor* parent,
3180                                  EnumDescriptor* result) {
3181  const string& scope = (parent == NULL) ?
3182    file_->package() : parent->full_name();
3183  string* full_name = tables_->AllocateString(scope);
3184  if (!full_name->empty()) full_name->append(1, '.');
3185  full_name->append(proto.name());
3186
3187  ValidateSymbolName(proto.name(), *full_name, proto);
3188
3189  result->name_            = tables_->AllocateString(proto.name());
3190  result->full_name_       = full_name;
3191  result->file_            = file_;
3192  result->containing_type_ = parent;
3193  result->is_placeholder_  = false;
3194  result->is_unqualified_placeholder_ = false;
3195
3196  if (proto.value_size() == 0) {
3197    // We cannot allow enums with no values because this would mean there
3198    // would be no valid default value for fields of this type.
3199    AddError(result->full_name(), proto,
3200             DescriptorPool::ErrorCollector::NAME,
3201             "Enums must contain at least one value.");
3202  }
3203
3204  BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
3205
3206  // Copy options.
3207  if (!proto.has_options()) {
3208    result->options_ = NULL;  // Will set to default_instance later.
3209  } else {
3210    AllocateOptions(proto.options(), result);
3211  }
3212
3213  AddSymbol(result->full_name(), parent, result->name(),
3214            proto, Symbol(result));
3215}
3216
3217void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
3218                                       const EnumDescriptor* parent,
3219                                       EnumValueDescriptor* result) {
3220  result->name_   = tables_->AllocateString(proto.name());
3221  result->number_ = proto.number();
3222  result->type_   = parent;
3223
3224  // Note:  full_name for enum values is a sibling to the parent's name, not a
3225  //   child of it.
3226  string* full_name = tables_->AllocateString(*parent->full_name_);
3227  full_name->resize(full_name->size() - parent->name_->size());
3228  full_name->append(*result->name_);
3229  result->full_name_ = full_name;
3230
3231  ValidateSymbolName(proto.name(), *full_name, proto);
3232
3233  // Copy options.
3234  if (!proto.has_options()) {
3235    result->options_ = NULL;  // Will set to default_instance later.
3236  } else {
3237    AllocateOptions(proto.options(), result);
3238  }
3239
3240  // Again, enum values are weird because we makes them appear as siblings
3241  // of the enum type instead of children of it.  So, we use
3242  // parent->containing_type() as the value's parent.
3243  bool added_to_outer_scope =
3244    AddSymbol(result->full_name(), parent->containing_type(), result->name(),
3245              proto, Symbol(result));
3246
3247  // However, we also want to be able to search for values within a single
3248  // enum type, so we add it as a child of the enum type itself, too.
3249  // Note:  This could fail, but if it does, the error has already been
3250  //   reported by the above AddSymbol() call, so we ignore the return code.
3251  bool added_to_inner_scope =
3252    file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
3253
3254  if (added_to_inner_scope && !added_to_outer_scope) {
3255    // This value did not conflict with any values defined in the same enum,
3256    // but it did conflict with some other symbol defined in the enum type's
3257    // scope.  Let's print an additional error to explain this.
3258    string outer_scope;
3259    if (parent->containing_type() == NULL) {
3260      outer_scope = file_->package();
3261    } else {
3262      outer_scope = parent->containing_type()->full_name();
3263    }
3264
3265    if (outer_scope.empty()) {
3266      outer_scope = "the global scope";
3267    } else {
3268      outer_scope = "\"" + outer_scope + "\"";
3269    }
3270
3271    AddError(result->full_name(), proto,
3272             DescriptorPool::ErrorCollector::NAME,
3273             "Note that enum values use C++ scoping rules, meaning that "
3274             "enum values are siblings of their type, not children of it.  "
3275             "Therefore, \"" + result->name() + "\" must be unique within "
3276             + outer_scope + ", not just within \"" + parent->name() + "\".");
3277  }
3278
3279  // An enum is allowed to define two numbers that refer to the same value.
3280  // FindValueByNumber() should return the first such value, so we simply
3281  // ignore AddEnumValueByNumber()'s return code.
3282  file_tables_->AddEnumValueByNumber(result);
3283}
3284
3285void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
3286                                     const void* dummy,
3287                                     ServiceDescriptor* result) {
3288  string* full_name = tables_->AllocateString(file_->package());
3289  if (!full_name->empty()) full_name->append(1, '.');
3290  full_name->append(proto.name());
3291
3292  ValidateSymbolName(proto.name(), *full_name, proto);
3293
3294  result->name_      = tables_->AllocateString(proto.name());
3295  result->full_name_ = full_name;
3296  result->file_      = file_;
3297
3298  BUILD_ARRAY(proto, result, method, BuildMethod, result);
3299
3300  // Copy options.
3301  if (!proto.has_options()) {
3302    result->options_ = NULL;  // Will set to default_instance later.
3303  } else {
3304    AllocateOptions(proto.options(), result);
3305  }
3306
3307  AddSymbol(result->full_name(), NULL, result->name(),
3308            proto, Symbol(result));
3309}
3310
3311void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
3312                                    const ServiceDescriptor* parent,
3313                                    MethodDescriptor* result) {
3314  result->name_    = tables_->AllocateString(proto.name());
3315  result->service_ = parent;
3316
3317  string* full_name = tables_->AllocateString(parent->full_name());
3318  full_name->append(1, '.');
3319  full_name->append(*result->name_);
3320  result->full_name_ = full_name;
3321
3322  ValidateSymbolName(proto.name(), *full_name, proto);
3323
3324  // These will be filled in when cross-linking.
3325  result->input_type_ = NULL;
3326  result->output_type_ = NULL;
3327
3328  // Copy options.
3329  if (!proto.has_options()) {
3330    result->options_ = NULL;  // Will set to default_instance later.
3331  } else {
3332    AllocateOptions(proto.options(), result);
3333  }
3334
3335  AddSymbol(result->full_name(), parent, result->name(),
3336            proto, Symbol(result));
3337}
3338
3339#undef BUILD_ARRAY
3340
3341// -------------------------------------------------------------------
3342
3343void DescriptorBuilder::CrossLinkFile(
3344    FileDescriptor* file, const FileDescriptorProto& proto) {
3345  if (file->options_ == NULL) {
3346    file->options_ = &FileOptions::default_instance();
3347  }
3348
3349  for (int i = 0; i < file->message_type_count(); i++) {
3350    CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
3351  }
3352
3353  for (int i = 0; i < file->extension_count(); i++) {
3354    CrossLinkField(&file->extensions_[i], proto.extension(i));
3355  }
3356
3357  for (int i = 0; i < file->enum_type_count(); i++) {
3358    CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
3359  }
3360
3361  for (int i = 0; i < file->service_count(); i++) {
3362    CrossLinkService(&file->services_[i], proto.service(i));
3363  }
3364}
3365
3366void DescriptorBuilder::CrossLinkMessage(
3367    Descriptor* message, const DescriptorProto& proto) {
3368  if (message->options_ == NULL) {
3369    message->options_ = &MessageOptions::default_instance();
3370  }
3371
3372  for (int i = 0; i < message->nested_type_count(); i++) {
3373    CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
3374  }
3375
3376  for (int i = 0; i < message->enum_type_count(); i++) {
3377    CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
3378  }
3379
3380  for (int i = 0; i < message->field_count(); i++) {
3381    CrossLinkField(&message->fields_[i], proto.field(i));
3382  }
3383
3384  for (int i = 0; i < message->extension_count(); i++) {
3385    CrossLinkField(&message->extensions_[i], proto.extension(i));
3386  }
3387}
3388
3389void DescriptorBuilder::CrossLinkField(
3390    FieldDescriptor* field, const FieldDescriptorProto& proto) {
3391  if (field->options_ == NULL) {
3392    field->options_ = &FieldOptions::default_instance();
3393  }
3394
3395  if (proto.has_extendee()) {
3396    Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(),
3397                                   PLACEHOLDER_EXTENDABLE_MESSAGE);
3398    if (extendee.IsNull()) {
3399      AddNotDefinedError(field->full_name(), proto,
3400                         DescriptorPool::ErrorCollector::EXTENDEE,
3401                         proto.extendee());
3402      return;
3403    } else if (extendee.type != Symbol::MESSAGE) {
3404      AddError(field->full_name(), proto,
3405               DescriptorPool::ErrorCollector::EXTENDEE,
3406               "\"" + proto.extendee() + "\" is not a message type.");
3407      return;
3408    }
3409    field->containing_type_ = extendee.descriptor;
3410
3411    if (!field->containing_type()->IsExtensionNumber(field->number())) {
3412      AddError(field->full_name(), proto,
3413               DescriptorPool::ErrorCollector::NUMBER,
3414               strings::Substitute("\"$0\" does not declare $1 as an "
3415                                   "extension number.",
3416                                   field->containing_type()->full_name(),
3417                                   field->number()));
3418    }
3419  }
3420
3421  if (proto.has_type_name()) {
3422    // Assume we are expecting a message type unless the proto contains some
3423    // evidence that it expects an enum type.  This only makes a difference if
3424    // we end up creating a placeholder.
3425    bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
3426                          proto.has_default_value();
3427
3428    Symbol type =
3429      LookupSymbol(proto.type_name(), field->full_name(),
3430                   expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE,
3431                   LOOKUP_TYPES);
3432
3433    if (type.IsNull()) {
3434      AddNotDefinedError(field->full_name(), proto,
3435                         DescriptorPool::ErrorCollector::TYPE,
3436                         proto.type_name());
3437      return;
3438    }
3439
3440    if (!proto.has_type()) {
3441      // Choose field type based on symbol.
3442      if (type.type == Symbol::MESSAGE) {
3443        field->type_ = FieldDescriptor::TYPE_MESSAGE;
3444      } else if (type.type == Symbol::ENUM) {
3445        field->type_ = FieldDescriptor::TYPE_ENUM;
3446      } else {
3447        AddError(field->full_name(), proto,
3448                 DescriptorPool::ErrorCollector::TYPE,
3449                 "\"" + proto.type_name() + "\" is not a type.");
3450        return;
3451      }
3452    }
3453
3454    if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
3455      if (type.type != Symbol::MESSAGE) {
3456        AddError(field->full_name(), proto,
3457                 DescriptorPool::ErrorCollector::TYPE,
3458                 "\"" + proto.type_name() + "\" is not a message type.");
3459        return;
3460      }
3461      field->message_type_ = type.descriptor;
3462
3463      if (field->has_default_value()) {
3464        AddError(field->full_name(), proto,
3465                 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3466                 "Messages can't have default values.");
3467      }
3468    } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
3469      if (type.type != Symbol::ENUM) {
3470        AddError(field->full_name(), proto,
3471                 DescriptorPool::ErrorCollector::TYPE,
3472                 "\"" + proto.type_name() + "\" is not an enum type.");
3473        return;
3474      }
3475      field->enum_type_ = type.enum_descriptor;
3476
3477      if (field->enum_type()->is_placeholder_) {
3478        // We can't look up default values for placeholder types.  We'll have
3479        // to just drop them.
3480        field->has_default_value_ = false;
3481      }
3482
3483      if (field->has_default_value()) {
3484        // We can't just use field->enum_type()->FindValueByName() here
3485        // because that locks the pool's mutex, which we have already locked
3486        // at this point.
3487        Symbol default_value =
3488          LookupSymbolNoPlaceholder(proto.default_value(),
3489                                    field->enum_type()->full_name());
3490
3491        if (default_value.type == Symbol::ENUM_VALUE &&
3492            default_value.enum_value_descriptor->type() == field->enum_type()) {
3493          field->default_value_enum_ = default_value.enum_value_descriptor;
3494        } else {
3495          AddError(field->full_name(), proto,
3496                   DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3497                   "Enum type \"" + field->enum_type()->full_name() +
3498                   "\" has no value named \"" + proto.default_value() + "\".");
3499        }
3500      } else if (field->enum_type()->value_count() > 0) {
3501        // All enums must have at least one value, or we would have reported
3502        // an error elsewhere.  We use the first defined value as the default
3503        // if a default is not explicitly defined.
3504        field->default_value_enum_ = field->enum_type()->value(0);
3505      }
3506    } else {
3507      AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3508               "Field with primitive type has type_name.");
3509    }
3510  } else {
3511    if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
3512        field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
3513      AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3514               "Field with message or enum type missing type_name.");
3515    }
3516  }
3517
3518  // Add the field to the fields-by-number table.
3519  // Note:  We have to do this *after* cross-linking because extensions do not
3520  //   know their containing type until now.
3521  if (!file_tables_->AddFieldByNumber(field)) {
3522    const FieldDescriptor* conflicting_field =
3523      file_tables_->FindFieldByNumber(field->containing_type(),
3524                                      field->number());
3525    if (field->is_extension()) {
3526      AddError(field->full_name(), proto,
3527               DescriptorPool::ErrorCollector::NUMBER,
3528               strings::Substitute("Extension number $0 has already been used "
3529                                   "in \"$1\" by extension \"$2\".",
3530                                   field->number(),
3531                                   field->containing_type()->full_name(),
3532                                   conflicting_field->full_name()));
3533    } else {
3534      AddError(field->full_name(), proto,
3535               DescriptorPool::ErrorCollector::NUMBER,
3536               strings::Substitute("Field number $0 has already been used in "
3537                                   "\"$1\" by field \"$2\".",
3538                                   field->number(),
3539                                   field->containing_type()->full_name(),
3540                                   conflicting_field->name()));
3541    }
3542  }
3543
3544  if (field->is_extension()) {
3545    // No need for error checking: if the extension number collided,
3546    // we've already been informed of it by the if() above.
3547    tables_->AddExtension(field);
3548  }
3549
3550  // Add the field to the lowercase-name and camelcase-name tables.
3551  file_tables_->AddFieldByStylizedNames(field);
3552}
3553
3554void DescriptorBuilder::CrossLinkEnum(
3555    EnumDescriptor* enum_type, const EnumDescriptorProto& proto) {
3556  if (enum_type->options_ == NULL) {
3557    enum_type->options_ = &EnumOptions::default_instance();
3558  }
3559
3560  for (int i = 0; i < enum_type->value_count(); i++) {
3561    CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
3562  }
3563}
3564
3565void DescriptorBuilder::CrossLinkEnumValue(
3566    EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto) {
3567  if (enum_value->options_ == NULL) {
3568    enum_value->options_ = &EnumValueOptions::default_instance();
3569  }
3570}
3571
3572void DescriptorBuilder::CrossLinkService(
3573    ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
3574  if (service->options_ == NULL) {
3575    service->options_ = &ServiceOptions::default_instance();
3576  }
3577
3578  for (int i = 0; i < service->method_count(); i++) {
3579    CrossLinkMethod(&service->methods_[i], proto.method(i));
3580  }
3581}
3582
3583void DescriptorBuilder::CrossLinkMethod(
3584    MethodDescriptor* method, const MethodDescriptorProto& proto) {
3585  if (method->options_ == NULL) {
3586    method->options_ = &MethodOptions::default_instance();
3587  }
3588
3589  Symbol input_type = LookupSymbol(proto.input_type(), method->full_name());
3590  if (input_type.IsNull()) {
3591    AddNotDefinedError(method->full_name(), proto,
3592                       DescriptorPool::ErrorCollector::INPUT_TYPE,
3593                       proto.input_type());
3594  } else if (input_type.type != Symbol::MESSAGE) {
3595    AddError(method->full_name(), proto,
3596             DescriptorPool::ErrorCollector::INPUT_TYPE,
3597             "\"" + proto.input_type() + "\" is not a message type.");
3598  } else {
3599    method->input_type_ = input_type.descriptor;
3600  }
3601
3602  Symbol output_type = LookupSymbol(proto.output_type(), method->full_name());
3603  if (output_type.IsNull()) {
3604    AddNotDefinedError(method->full_name(), proto,
3605                       DescriptorPool::ErrorCollector::OUTPUT_TYPE,
3606                       proto.output_type());
3607  } else if (output_type.type != Symbol::MESSAGE) {
3608    AddError(method->full_name(), proto,
3609             DescriptorPool::ErrorCollector::OUTPUT_TYPE,
3610             "\"" + proto.output_type() + "\" is not a message type.");
3611  } else {
3612    method->output_type_ = output_type.descriptor;
3613  }
3614}
3615
3616// -------------------------------------------------------------------
3617
3618#define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type)  \
3619  for (int i = 0; i < descriptor->array_name##_count(); ++i) {     \
3620    Validate##type##Options(descriptor->array_name##s_ + i,        \
3621                            proto.array_name(i));                  \
3622  }
3623
3624// Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
3625// avoid problems that exist at init time.
3626static bool IsLite(const FileDescriptor* file) {
3627  // TODO(kenton):  I don't even remember how many of these conditions are
3628  //   actually possible.  I'm just being super-safe.
3629  return file != NULL &&
3630         &file->options() != NULL &&
3631         &file->options() != &FileOptions::default_instance() &&
3632         file->options().optimize_for() == FileOptions::LITE_RUNTIME;
3633}
3634
3635void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
3636                                            const FileDescriptorProto& proto) {
3637  VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
3638  VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
3639  VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
3640  VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
3641
3642  // Lite files can only be imported by other Lite files.
3643  if (!IsLite(file)) {
3644    for (int i = 0; i < file->dependency_count(); i++) {
3645      if (IsLite(file->dependency(i))) {
3646        AddError(
3647          file->name(), proto,
3648          DescriptorPool::ErrorCollector::OTHER,
3649          "Files that do not use optimize_for = LITE_RUNTIME cannot import "
3650          "files which do use this option.  This file is not lite, but it "
3651          "imports \"" + file->dependency(i)->name() + "\" which is.");
3652        break;
3653      }
3654    }
3655  }
3656}
3657
3658void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
3659                                               const DescriptorProto& proto) {
3660  VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
3661  VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
3662  VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
3663  VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
3664}
3665
3666void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field,
3667    const FieldDescriptorProto& proto) {
3668  if (field->options().has_experimental_map_key()) {
3669    ValidateMapKey(field, proto);
3670  }
3671
3672  // Only repeated primitive fields may be packed.
3673  if (field->options().packed() && !field->is_packable()) {
3674    AddError(
3675      field->full_name(), proto,
3676      DescriptorPool::ErrorCollector::TYPE,
3677      "[packed = true] can only be specified for repeated primitive fields.");
3678  }
3679
3680  // Note:  Default instance may not yet be initialized here, so we have to
3681  //   avoid reading from it.
3682  if (field->containing_type_ != NULL &&
3683      &field->containing_type()->options() !=
3684      &MessageOptions::default_instance() &&
3685      field->containing_type()->options().message_set_wire_format()) {
3686    if (field->is_extension()) {
3687      if (!field->is_optional() ||
3688          field->type() != FieldDescriptor::TYPE_MESSAGE) {
3689        AddError(field->full_name(), proto,
3690                 DescriptorPool::ErrorCollector::TYPE,
3691                 "Extensions of MessageSets must be optional messages.");
3692      }
3693    } else {
3694      AddError(field->full_name(), proto,
3695               DescriptorPool::ErrorCollector::NAME,
3696               "MessageSets cannot have fields, only extensions.");
3697    }
3698  }
3699
3700  // Lite extensions can only be of Lite types.
3701  if (IsLite(field->file()) &&
3702      field->containing_type_ != NULL &&
3703      !IsLite(field->containing_type()->file())) {
3704    AddError(field->full_name(), proto,
3705             DescriptorPool::ErrorCollector::EXTENDEE,
3706             "Extensions to non-lite types can only be declared in non-lite "
3707             "files.  Note that you cannot extend a non-lite type to contain "
3708             "a lite type, but the reverse is allowed.");
3709  }
3710}
3711
3712void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
3713                                            const EnumDescriptorProto& proto) {
3714  VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
3715}
3716
3717void DescriptorBuilder::ValidateEnumValueOptions(
3718    EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto) {
3719  // Nothing to do so far.
3720}
3721void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service,
3722    const ServiceDescriptorProto& proto) {
3723  if (IsLite(service->file())) {
3724    AddError(service->full_name(), proto,
3725             DescriptorPool::ErrorCollector::NAME,
3726             "Files with optimize_for = LITE_RUNTIME cannot define services.");
3727  }
3728
3729  VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
3730}
3731
3732void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* method,
3733    const MethodDescriptorProto& proto) {
3734  // Nothing to do so far.
3735}
3736
3737void DescriptorBuilder::ValidateMapKey(FieldDescriptor* field,
3738                                       const FieldDescriptorProto& proto) {
3739  if (!field->is_repeated()) {
3740    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3741             "map type is only allowed for repeated fields.");
3742    return;
3743  }
3744
3745  if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
3746    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3747             "map type is only allowed for fields with a message type.");
3748    return;
3749  }
3750
3751  const Descriptor* item_type = field->message_type();
3752  if (item_type == NULL) {
3753    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3754             "Could not find field type.");
3755    return;
3756  }
3757
3758  // Find the field in item_type named by "experimental_map_key"
3759  const string& key_name = field->options().experimental_map_key();
3760  const Symbol key_symbol = LookupSymbol(
3761      key_name,
3762      // We append ".key_name" to the containing type's name since
3763      // LookupSymbol() searches for peers of the supplied name, not
3764      // children of the supplied name.
3765      item_type->full_name() + "." + key_name);
3766
3767  if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) {
3768    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3769             "Could not find field named \"" + key_name + "\" in type \"" +
3770             item_type->full_name() + "\".");
3771    return;
3772  }
3773  const FieldDescriptor* key_field = key_symbol.field_descriptor;
3774
3775  if (key_field->is_repeated()) {
3776    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3777             "map_key must not name a repeated field.");
3778    return;
3779  }
3780
3781  if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
3782    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3783             "map key must name a scalar or string field.");
3784    return;
3785  }
3786
3787  field->experimental_map_key_ = key_field;
3788}
3789
3790#undef VALIDATE_OPTIONS_FROM_ARRAY
3791
3792// -------------------------------------------------------------------
3793
3794DescriptorBuilder::OptionInterpreter::OptionInterpreter(
3795    DescriptorBuilder* builder) : builder_(builder) {
3796  GOOGLE_CHECK(builder_);
3797}
3798
3799DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {
3800}
3801
3802bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
3803    OptionsToInterpret* options_to_interpret) {
3804  // Note that these may be in different pools, so we can't use the same
3805  // descriptor and reflection objects on both.
3806  Message* options = options_to_interpret->options;
3807  const Message* original_options = options_to_interpret->original_options;
3808
3809  bool failed = false;
3810  options_to_interpret_ = options_to_interpret;
3811
3812  // Find the uninterpreted_option field in the mutable copy of the options
3813  // and clear them, since we're about to interpret them.
3814  const FieldDescriptor* uninterpreted_options_field =
3815      options->GetDescriptor()->FindFieldByName("uninterpreted_option");
3816  GOOGLE_CHECK(uninterpreted_options_field != NULL)
3817      << "No field named \"uninterpreted_option\" in the Options proto.";
3818  options->GetReflection()->ClearField(options, uninterpreted_options_field);
3819
3820  // Find the uninterpreted_option field in the original options.
3821  const FieldDescriptor* original_uninterpreted_options_field =
3822      original_options->GetDescriptor()->
3823          FindFieldByName("uninterpreted_option");
3824  GOOGLE_CHECK(original_uninterpreted_options_field != NULL)
3825      << "No field named \"uninterpreted_option\" in the Options proto.";
3826
3827  const int num_uninterpreted_options = original_options->GetReflection()->
3828      FieldSize(*original_options, original_uninterpreted_options_field);
3829  for (int i = 0; i < num_uninterpreted_options; ++i) {
3830    uninterpreted_option_ = down_cast<const UninterpretedOption*>(
3831        &original_options->GetReflection()->GetRepeatedMessage(
3832            *original_options, original_uninterpreted_options_field, i));
3833    if (!InterpretSingleOption(options)) {
3834      // Error already added by InterpretSingleOption().
3835      failed = true;
3836      break;
3837    }
3838  }
3839  // Reset these, so we don't have any dangling pointers.
3840  uninterpreted_option_ = NULL;
3841  options_to_interpret_ = NULL;
3842
3843  if (!failed) {
3844    // InterpretSingleOption() added the interpreted options in the
3845    // UnknownFieldSet, in case the option isn't yet known to us.  Now we
3846    // serialize the options message and deserialize it back.  That way, any
3847    // option fields that we do happen to know about will get moved from the
3848    // UnknownFieldSet into the real fields, and thus be available right away.
3849    // If they are not known, that's OK too. They will get reparsed into the
3850    // UnknownFieldSet and wait there until the message is parsed by something
3851    // that does know about the options.
3852    string buf;
3853    options->AppendToString(&buf);
3854    GOOGLE_CHECK(options->ParseFromString(buf))
3855        << "Protocol message serialized itself in invalid fashion.";
3856  }
3857
3858  return !failed;
3859}
3860
3861bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
3862    Message* options) {
3863  // First do some basic validation.
3864  if (uninterpreted_option_->name_size() == 0) {
3865    // This should never happen unless the parser has gone seriously awry or
3866    // someone has manually created the uninterpreted option badly.
3867    return AddNameError("Option must have a name.");
3868  }
3869  if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
3870    return AddNameError("Option must not use reserved name "
3871                        "\"uninterpreted_option\".");
3872  }
3873
3874  const Descriptor* options_descriptor = NULL;
3875  // Get the options message's descriptor from the builder's pool, so that we
3876  // get the version that knows about any extension options declared in the
3877  // file we're currently building. The descriptor should be there as long as
3878  // the file we're building imported "google/protobuf/descriptors.proto".
3879
3880  // Note that we use DescriptorBuilder::FindSymbol(), not
3881  // DescriptorPool::FindMessageTypeByName() because we're already holding the
3882  // pool's mutex, and the latter method locks it again.
3883  Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
3884    options->GetDescriptor()->full_name());
3885  if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
3886    options_descriptor = symbol.descriptor;
3887  } else {
3888    // The options message's descriptor was not in the builder's pool, so use
3889    // the standard version from the generated pool. We're not holding the
3890    // generated pool's mutex, so we can search it the straightforward way.
3891    options_descriptor = options->GetDescriptor();
3892  }
3893  GOOGLE_CHECK(options_descriptor);
3894
3895  // We iterate over the name parts to drill into the submessages until we find
3896  // the leaf field for the option. As we drill down we remember the current
3897  // submessage's descriptor in |descriptor| and the next field in that
3898  // submessage in |field|. We also track the fields we're drilling down
3899  // through in |intermediate_fields|. As we go, we reconstruct the full option
3900  // name in |debug_msg_name|, for use in error messages.
3901  const Descriptor* descriptor = options_descriptor;
3902  const FieldDescriptor* field = NULL;
3903  vector<const FieldDescriptor*> intermediate_fields;
3904  string debug_msg_name = "";
3905
3906  for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
3907    const string& name_part = uninterpreted_option_->name(i).name_part();
3908    if (debug_msg_name.size() > 0) {
3909      debug_msg_name += ".";
3910    }
3911    if (uninterpreted_option_->name(i).is_extension()) {
3912      debug_msg_name += "(" + name_part + ")";
3913      // Search for the extension's descriptor as an extension in the builder's
3914      // pool. Note that we use DescriptorBuilder::LookupSymbol(), not
3915      // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
3916      // relative lookups, and 2) because we're already holding the pool's
3917      // mutex, and the latter method locks it again.
3918      Symbol symbol = builder_->LookupSymbol(name_part,
3919                                             options_to_interpret_->name_scope);
3920      if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
3921        field = symbol.field_descriptor;
3922      }
3923      // If we don't find the field then the field's descriptor was not in the
3924      // builder's pool, but there's no point in looking in the generated
3925      // pool. We require that you import the file that defines any extensions
3926      // you use, so they must be present in the builder's pool.
3927    } else {
3928      debug_msg_name += name_part;
3929      // Search for the field's descriptor as a regular field.
3930      field = descriptor->FindFieldByName(name_part);
3931    }
3932
3933    if (field == NULL) {
3934      if (get_allow_unknown(builder_->pool_)) {
3935        // We can't find the option, but AllowUnknownDependencies() is enabled,
3936        // so we will just leave it as uninterpreted.
3937        AddWithoutInterpreting(*uninterpreted_option_, options);
3938        return true;
3939      } else {
3940        return AddNameError("Option \"" + debug_msg_name + "\" unknown.");
3941      }
3942    } else if (field->containing_type() != descriptor) {
3943      if (get_is_placeholder(field->containing_type())) {
3944        // The field is an extension of a placeholder type, so we can't
3945        // reliably verify whether it is a valid extension to use here (e.g.
3946        // we don't know if it is an extension of the correct *Options message,
3947        // or if it has a valid field number, etc.).  Just leave it as
3948        // uninterpreted instead.
3949        AddWithoutInterpreting(*uninterpreted_option_, options);
3950        return true;
3951      } else {
3952        // This can only happen if, due to some insane misconfiguration of the
3953        // pools, we find the options message in one pool but the field in
3954        // another. This would probably imply a hefty bug somewhere.
3955        return AddNameError("Option field \"" + debug_msg_name +
3956                            "\" is not a field or extension of message \"" +
3957                            descriptor->name() + "\".");
3958      }
3959    } else if (field->is_repeated()) {
3960      return AddNameError("Option field \"" + debug_msg_name +
3961                          "\" is repeated. Repeated options are not "
3962                          "supported.");
3963    } else if (i < uninterpreted_option_->name_size() - 1) {
3964      if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
3965        return AddNameError("Option \"" +  debug_msg_name +
3966                            "\" is an atomic type, not a message.");
3967      } else {
3968        // Drill down into the submessage.
3969        intermediate_fields.push_back(field);
3970        descriptor = field->message_type();
3971      }
3972    } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
3973      return AddNameError("Option field \"" + debug_msg_name +
3974                          "\" cannot be of message type.");
3975    }
3976  }
3977
3978  // We've found the leaf field. Now we use UnknownFieldSets to set its value
3979  // on the options message. We do so because the message may not yet know
3980  // about its extension fields, so we may not be able to set the fields
3981  // directly. But the UnknownFieldSets will serialize to the same wire-format
3982  // message, so reading that message back in once the extension fields are
3983  // known will populate them correctly.
3984
3985  // First see if the option is already set.
3986  if (!ExamineIfOptionIsSet(
3987          intermediate_fields.begin(),
3988          intermediate_fields.end(),
3989          field, debug_msg_name,
3990          options->GetReflection()->GetUnknownFields(*options))) {
3991    return false;  // ExamineIfOptionIsSet() already added the error.
3992  }
3993
3994
3995  // First set the value on the UnknownFieldSet corresponding to the
3996  // innermost message.
3997  scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
3998  if (!SetOptionValue(field, unknown_fields.get())) {
3999    return false;  // SetOptionValue() already added the error.
4000  }
4001
4002  // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
4003  // the intermediate messages.
4004  for (vector<const FieldDescriptor*>::reverse_iterator iter =
4005           intermediate_fields.rbegin();
4006       iter != intermediate_fields.rend(); ++iter) {
4007    scoped_ptr<UnknownFieldSet> parent_unknown_fields(new UnknownFieldSet());
4008    switch ((*iter)->type()) {
4009      case FieldDescriptor::TYPE_MESSAGE: {
4010        io::StringOutputStream outstr(
4011            parent_unknown_fields->AddLengthDelimited((*iter)->number()));
4012        io::CodedOutputStream out(&outstr);
4013        internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
4014        GOOGLE_CHECK(!out.HadError())
4015            << "Unexpected failure while serializing option submessage "
4016            << debug_msg_name << "\".";
4017        break;
4018      }
4019
4020      case FieldDescriptor::TYPE_GROUP: {
4021         parent_unknown_fields->AddGroup((*iter)->number())
4022                              ->MergeFrom(*unknown_fields);
4023        break;
4024      }
4025
4026      default:
4027        GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
4028                   << (*iter)->type();
4029        return false;
4030    }
4031    unknown_fields.reset(parent_unknown_fields.release());
4032  }
4033
4034  // Now merge the UnknownFieldSet corresponding to the top-level message into
4035  // the options message.
4036  options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
4037      *unknown_fields);
4038
4039  return true;
4040}
4041
4042void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
4043    const UninterpretedOption& uninterpreted_option, Message* options) {
4044  const FieldDescriptor* field =
4045    options->GetDescriptor()->FindFieldByName("uninterpreted_option");
4046  GOOGLE_CHECK(field != NULL);
4047
4048  options->GetReflection()->AddMessage(options, field)
4049    ->CopyFrom(uninterpreted_option);
4050}
4051
4052bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
4053    vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
4054    vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
4055    const FieldDescriptor* innermost_field, const string& debug_msg_name,
4056    const UnknownFieldSet& unknown_fields) {
4057  // We do linear searches of the UnknownFieldSet and its sub-groups.  This
4058  // should be fine since it's unlikely that any one options structure will
4059  // contain more than a handful of options.
4060
4061  if (intermediate_fields_iter == intermediate_fields_end) {
4062    // We're at the innermost submessage.
4063    for (int i = 0; i < unknown_fields.field_count(); i++) {
4064      if (unknown_fields.field(i).number() == innermost_field->number()) {
4065        return AddNameError("Option \"" + debug_msg_name +
4066                            "\" was already set.");
4067      }
4068    }
4069    return true;
4070  }
4071
4072  for (int i = 0; i < unknown_fields.field_count(); i++) {
4073    if (unknown_fields.field(i).number() ==
4074        (*intermediate_fields_iter)->number()) {
4075      const UnknownField* unknown_field = &unknown_fields.field(i);
4076      FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
4077      // Recurse into the next submessage.
4078      switch (type) {
4079        case FieldDescriptor::TYPE_MESSAGE:
4080          if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
4081            UnknownFieldSet intermediate_unknown_fields;
4082            if (intermediate_unknown_fields.ParseFromString(
4083                    unknown_field->length_delimited()) &&
4084                !ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4085                                      intermediate_fields_end,
4086                                      innermost_field, debug_msg_name,
4087                                      intermediate_unknown_fields)) {
4088              return false;  // Error already added.
4089            }
4090          }
4091          break;
4092
4093        case FieldDescriptor::TYPE_GROUP:
4094          if (unknown_field->type() == UnknownField::TYPE_GROUP) {
4095            if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4096                                      intermediate_fields_end,
4097                                      innermost_field, debug_msg_name,
4098                                      unknown_field->group())) {
4099              return false;  // Error already added.
4100            }
4101          }
4102          break;
4103
4104        default:
4105          GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
4106          return false;
4107      }
4108    }
4109  }
4110  return true;
4111}
4112
4113bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
4114    const FieldDescriptor* option_field,
4115    UnknownFieldSet* unknown_fields) {
4116  // We switch on the CppType to validate.
4117  switch (option_field->cpp_type()) {
4118
4119    case FieldDescriptor::CPPTYPE_INT32:
4120      if (uninterpreted_option_->has_positive_int_value()) {
4121        if (uninterpreted_option_->positive_int_value() >
4122            static_cast<uint64>(kint32max)) {
4123          return AddValueError("Value out of range for int32 option \"" +
4124                               option_field->full_name() + "\".");
4125        } else {
4126          SetInt32(option_field->number(),
4127                   uninterpreted_option_->positive_int_value(),
4128                   option_field->type(), unknown_fields);
4129        }
4130      } else if (uninterpreted_option_->has_negative_int_value()) {
4131        if (uninterpreted_option_->negative_int_value() <
4132            static_cast<int64>(kint32min)) {
4133          return AddValueError("Value out of range for int32 option \"" +
4134                               option_field->full_name() + "\".");
4135        } else {
4136          SetInt32(option_field->number(),
4137                   uninterpreted_option_->negative_int_value(),
4138                   option_field->type(), unknown_fields);
4139        }
4140      } else {
4141        return AddValueError("Value must be integer for int32 option \"" +
4142                             option_field->full_name() + "\".");
4143      }
4144      break;
4145
4146    case FieldDescriptor::CPPTYPE_INT64:
4147      if (uninterpreted_option_->has_positive_int_value()) {
4148        if (uninterpreted_option_->positive_int_value() >
4149            static_cast<uint64>(kint64max)) {
4150          return AddValueError("Value out of range for int64 option \"" +
4151                               option_field->full_name() + "\".");
4152        } else {
4153          SetInt64(option_field->number(),
4154                   uninterpreted_option_->positive_int_value(),
4155                   option_field->type(), unknown_fields);
4156        }
4157      } else if (uninterpreted_option_->has_negative_int_value()) {
4158        SetInt64(option_field->number(),
4159                 uninterpreted_option_->negative_int_value(),
4160                 option_field->type(), unknown_fields);
4161      } else {
4162        return AddValueError("Value must be integer for int64 option \"" +
4163                             option_field->full_name() + "\".");
4164      }
4165      break;
4166
4167    case FieldDescriptor::CPPTYPE_UINT32:
4168      if (uninterpreted_option_->has_positive_int_value()) {
4169        if (uninterpreted_option_->positive_int_value() > kuint32max) {
4170          return AddValueError("Value out of range for uint32 option \"" +
4171                               option_field->name() + "\".");
4172        } else {
4173          SetUInt32(option_field->number(),
4174                    uninterpreted_option_->positive_int_value(),
4175                    option_field->type(), unknown_fields);
4176        }
4177      } else {
4178        return AddValueError("Value must be non-negative integer for uint32 "
4179                             "option \"" + option_field->full_name() + "\".");
4180      }
4181      break;
4182
4183    case FieldDescriptor::CPPTYPE_UINT64:
4184      if (uninterpreted_option_->has_positive_int_value()) {
4185        SetUInt64(option_field->number(),
4186                  uninterpreted_option_->positive_int_value(),
4187                  option_field->type(), unknown_fields);
4188      } else {
4189        return AddValueError("Value must be non-negative integer for uint64 "
4190                             "option \"" + option_field->full_name() + "\".");
4191      }
4192      break;
4193
4194    case FieldDescriptor::CPPTYPE_FLOAT: {
4195      float value;
4196      if (uninterpreted_option_->has_double_value()) {
4197        value = uninterpreted_option_->double_value();
4198      } else if (uninterpreted_option_->has_positive_int_value()) {
4199        value = uninterpreted_option_->positive_int_value();
4200      } else if (uninterpreted_option_->has_negative_int_value()) {
4201        value = uninterpreted_option_->negative_int_value();
4202      } else {
4203        return AddValueError("Value must be number for float option \"" +
4204                             option_field->full_name() + "\".");
4205      }
4206      unknown_fields->AddFixed32(option_field->number(),
4207          google::protobuf::internal::WireFormatLite::EncodeFloat(value));
4208      break;
4209    }
4210
4211    case FieldDescriptor::CPPTYPE_DOUBLE: {
4212      double value;
4213      if (uninterpreted_option_->has_double_value()) {
4214        value = uninterpreted_option_->double_value();
4215      } else if (uninterpreted_option_->has_positive_int_value()) {
4216        value = uninterpreted_option_->positive_int_value();
4217      } else if (uninterpreted_option_->has_negative_int_value()) {
4218        value = uninterpreted_option_->negative_int_value();
4219      } else {
4220        return AddValueError("Value must be number for double option \"" +
4221                             option_field->full_name() + "\".");
4222      }
4223      unknown_fields->AddFixed64(option_field->number(),
4224          google::protobuf::internal::WireFormatLite::EncodeDouble(value));
4225      break;
4226    }
4227
4228    case FieldDescriptor::CPPTYPE_BOOL:
4229      uint64 value;
4230      if (!uninterpreted_option_->has_identifier_value()) {
4231        return AddValueError("Value must be identifier for boolean option "
4232                             "\"" + option_field->full_name() + "\".");
4233      }
4234      if (uninterpreted_option_->identifier_value() == "true") {
4235        value = 1;
4236      } else if (uninterpreted_option_->identifier_value() == "false") {
4237        value = 0;
4238      } else {
4239        return AddValueError("Value must be \"true\" or \"false\" for boolean "
4240                             "option \"" + option_field->full_name() + "\".");
4241      }
4242      unknown_fields->AddVarint(option_field->number(), value);
4243      break;
4244
4245    case FieldDescriptor::CPPTYPE_ENUM: {
4246      if (!uninterpreted_option_->has_identifier_value()) {
4247        return AddValueError("Value must be identifier for enum-valued option "
4248                             "\"" + option_field->full_name() + "\".");
4249      }
4250      const EnumDescriptor* enum_type = option_field->enum_type();
4251      const string& value_name = uninterpreted_option_->identifier_value();
4252      const EnumValueDescriptor* enum_value = NULL;
4253
4254      if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
4255        // Note that the enum value's fully-qualified name is a sibling of the
4256        // enum's name, not a child of it.
4257        string fully_qualified_name = enum_type->full_name();
4258        fully_qualified_name.resize(fully_qualified_name.size() -
4259                                    enum_type->name().size());
4260        fully_qualified_name += value_name;
4261
4262        // Search for the enum value's descriptor in the builder's pool. Note
4263        // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
4264        // DescriptorPool::FindEnumValueByName() because we're already holding
4265        // the pool's mutex, and the latter method locks it again.
4266        Symbol symbol =
4267          builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
4268        if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
4269          if (symbol.enum_value_descriptor->type() != enum_type) {
4270            return AddValueError("Enum type \"" + enum_type->full_name() +
4271                "\" has no value named \"" + value_name + "\" for option \"" +
4272                option_field->full_name() +
4273                "\". This appears to be a value from a sibling type.");
4274          } else {
4275            enum_value = symbol.enum_value_descriptor;
4276          }
4277        }
4278      } else {
4279        // The enum type is in the generated pool, so we can search for the
4280        // value there.
4281        enum_value = enum_type->FindValueByName(value_name);
4282      }
4283
4284      if (enum_value == NULL) {
4285        return AddValueError("Enum type \"" +
4286                             option_field->enum_type()->full_name() +
4287                             "\" has no value named \"" + value_name + "\" for "
4288                             "option \"" + option_field->full_name() + "\".");
4289      } else {
4290        // Sign-extension is not a problem, since we cast directly from int32 to
4291        // uint64, without first going through uint32.
4292        unknown_fields->AddVarint(option_field->number(),
4293          static_cast<uint64>(static_cast<int64>(enum_value->number())));
4294      }
4295      break;
4296    }
4297
4298    case FieldDescriptor::CPPTYPE_STRING:
4299      if (!uninterpreted_option_->has_string_value()) {
4300        return AddValueError("Value must be quoted string for string option "
4301                             "\"" + option_field->full_name() + "\".");
4302      }
4303      // The string has already been unquoted and unescaped by the parser.
4304      unknown_fields->AddLengthDelimited(option_field->number(),
4305          uninterpreted_option_->string_value());
4306      break;
4307
4308    case FieldDescriptor::CPPTYPE_MESSAGE:
4309      // We don't currently support defining a message-typed option, so we
4310      // should never actually get here.
4311      return AddValueError("Option \"" + option_field->full_name() +
4312                           "\" is a message.  To set fields within it, use "
4313                           "syntax like \"" + option_field->name() +
4314                           ".foo = value\".");
4315      break;
4316  }
4317
4318  return true;
4319}
4320
4321void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value,
4322    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4323  switch (type) {
4324    case FieldDescriptor::TYPE_INT32:
4325      unknown_fields->AddVarint(number,
4326        static_cast<uint64>(static_cast<int64>(value)));
4327      break;
4328
4329    case FieldDescriptor::TYPE_SFIXED32:
4330      unknown_fields->AddFixed32(number, static_cast<uint32>(value));
4331      break;
4332
4333    case FieldDescriptor::TYPE_SINT32:
4334      unknown_fields->AddVarint(number,
4335          google::protobuf::internal::WireFormatLite::ZigZagEncode32(value));
4336      break;
4337
4338    default:
4339      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
4340      break;
4341  }
4342}
4343
4344void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value,
4345    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4346  switch (type) {
4347    case FieldDescriptor::TYPE_INT64:
4348      unknown_fields->AddVarint(number, static_cast<uint64>(value));
4349      break;
4350
4351    case FieldDescriptor::TYPE_SFIXED64:
4352      unknown_fields->AddFixed64(number, static_cast<uint64>(value));
4353      break;
4354
4355    case FieldDescriptor::TYPE_SINT64:
4356      unknown_fields->AddVarint(number,
4357          google::protobuf::internal::WireFormatLite::ZigZagEncode64(value));
4358      break;
4359
4360    default:
4361      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
4362      break;
4363  }
4364}
4365
4366void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value,
4367    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4368  switch (type) {
4369    case FieldDescriptor::TYPE_UINT32:
4370      unknown_fields->AddVarint(number, static_cast<uint64>(value));
4371      break;
4372
4373    case FieldDescriptor::TYPE_FIXED32:
4374      unknown_fields->AddFixed32(number, static_cast<uint32>(value));
4375      break;
4376
4377    default:
4378      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
4379      break;
4380  }
4381}
4382
4383void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value,
4384    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4385  switch (type) {
4386    case FieldDescriptor::TYPE_UINT64:
4387      unknown_fields->AddVarint(number, value);
4388      break;
4389
4390    case FieldDescriptor::TYPE_FIXED64:
4391      unknown_fields->AddFixed64(number, value);
4392      break;
4393
4394    default:
4395      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
4396      break;
4397  }
4398}
4399
4400}  // namespace protobuf
4401}  // namespace google
4402